CN1067956A - 制造超高纯氮的方法和设备 - Google Patents

制造超高纯氮的方法和设备 Download PDF

Info

Publication number
CN1067956A
CN1067956A CN92103555A CN92103555A CN1067956A CN 1067956 A CN1067956 A CN 1067956A CN 92103555 A CN92103555 A CN 92103555A CN 92103555 A CN92103555 A CN 92103555A CN 1067956 A CN1067956 A CN 1067956A
Authority
CN
China
Prior art keywords
stream
stripping
stripper
product stream
overhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92103555A
Other languages
English (en)
Other versions
CN1065621C (zh
Inventor
悉尼·S·斯特恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde LLC
Original Assignee
BOC Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24892824&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1067956(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BOC Group Inc filed Critical BOC Group Inc
Publication of CN1067956A publication Critical patent/CN1067956A/zh
Application granted granted Critical
Publication of CN1065621C publication Critical patent/CN1065621C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Abstract

本发明提供一种制取超高纯氮的设备和方法。 根据该方法和设备,空气被精馏而产生一种包括内含 丰富轻元素如氖、氦和氢的高纯度氮的塔顶馏出物。 接着,该塔顶馏出物在一冷凝器中被部分地冷凝,并 在一分相器中被分离为液相和汽相。该液相含轻元 素较少,而汽相中较丰富。该液相从分相器底部被取 出,再作为回流送入塔中。随着该回流从一个塔盘落 到下一个塔盘,其中的轻元素被汽提掉。在回流受到 合适的汽提后,从塔内引出一种含有超高纯液氮的产 品流。通过在一汽提塔内对该产品流汽提,该产品流 就得以进一步纯化。

Description

本发明涉及一种利用空气的低温精馏制取超高纯氮的方法及设备,更具体说,本发明涉及这样一种方法及设备,即从高纯氮中除去轻元素如氦、氢和氖,以制取超高纯度的产品氮。
现有技术中已知有数种利用空气的低温精馏制取高纯氮的方法和设备。美国专利4966022公开了这种方法和设备的一个实例。在该专利中,利用一种单塔低温精馏工艺制取高纯氮,该工艺因它包括一废料再加压循环而区别于其它工艺,在这一循环中,两股废氮支流分别由压缩机和涡轮膨胀器进行压缩和膨胀,该压缩机通过一耗能的制动器与一涡轮膨胀器相连接。被压缩的废氮支流被送入塔中,以提高氮回收率,而膨胀的废氮支流在该工艺中被用作制冷源。这种工艺和设备可在高压下制取高纯氮,且其热力学效率高。产品氮是高纯度的,内含的氧极少。然而,该产品氮中都含有诸轻元素如氦、氢和氖,这些元素因它们的挥发性缘故而会浓聚在氮产品中,使其含量比它们在输入的空气中的浓度大十倍。对于氮的多数的工业用途,这样浓度的轻元素是不重要的。但是,在电子工业中,要求使用超高纯氮,其中的产品氮中基本上是无轻元素的。
美国专利4902321揭示了一种制取超高纯氮的方法及设备,它也是结合一单塔设备来说明的。在该精馏塔中,在塔顶制得富氮汽,而在塔底部则收集到富氧液。一部分富氮汽通入一冷凝器,在此通过富氮汽与富氧液的间接的热交换而使富氮汽得以冷凝。被冷凝的氮然后作为回流返回到该塔中。一部分富氮汽通入一管壳式换热器。富氮汽在换热器中上升并得以逐渐部分地冷凝,以制取富氮液,这种富氮液也在换热器的底部收集到。富氮液流被膨胀到一低压力,然后被送入换热器的壳方。膨胀使在进入的富氮汽与膨胀的富氮液之间产生一压力差,又在蒸汽与液体之间产生热交换。该热交换的结果是富氮汽的冷凝和膨胀的富氮液的汽化,这些富氮液作为超高纯氮产品从换热器中被引出。
可以理解:增设了管壳式换热器就增加了设备制造成本。如下面要讨论的,本发明提供一种制取超高纯产品氮的方法和设备,就该方法和设备的最基本形式来说,只是最低限度地增加了设备制造成本。实际上,可将本发明结合到用于实施在美国专利4966002中揭示的方法的设备中,而只需对该设备稍作修改。
本发明提供一种制取超高纯氮的方法。按照该方法,根据一低温精馏工艺空气在一精馏塔中被精馏。该低温精馏工艺产生一种塔顶馏出物,该物质包含一种带有丰富的轻元素的高纯度氮汽。塔顶馏出物流被部分地冷凝,使该塔顶馏出物流包含一其中轻元素贫乏的液相和一其中轻元素丰富的气相。此后,气相从塔顶馏出物流中分离出来,而塔顶馏出物流作为回流返回到精馏塔。在精馏塔中,诸轻元素被从该回流中汽提出来,以制取液态超高纯氮。含有超高纯液氮的产品流被从精馏塔引出。视精馏工艺而定,该产品流可直接供给用户,或者在送给用户前进一步得以纯化和/或用于精馏工艺中(例如,回收其冷却潜能),然后供给用户。
利用一种汽提气(stripper    gas)将产品流中的尚存的轻元素汽提出来,可将产品流进一步纯化,以形成一种更纯的产品流。具体说,可将产品流送入一汽提塔(stripper    column)的顶部,而将汽提气从产品流下方送入汽提塔。这样,在汽提塔的底部制出液态的、更纯的超高纯氮,还制出汽提塔顶馏出物(stripper    tower    overhead)。
通过从汽提塔顶部引出汽提塔顶馏出物流、将汽提塔顶馏出物流再加压至精馏塔压力以及将被加压的汽提塔顶馏出物流送入精馏塔,可提高氮生产率。或者,为了省掉再压缩的费用,汽提塔顶馏出物流可从汽提塔中引出,并将其部分冷凝,以在汽提塔顶馏出物流中产生液相和气相。该液相和气相的汽提塔顶馏出物流分别是贫含和富含轻元素的。将气相从汽提塔顶馏出物流中分离出来,然后将汽提塔顶馏出物流送入汽提塔中,以在该塔中由汽提气汽提。此外,工艺液体,如在精馏塔底部制出的粗的富氧液(crude    oxygen    enriched    liguid),能作为工艺液流从精馏塔引出。汽提塔顶馏出物流在使工艺液流部分汽化时会被部分冷凝,从部分冷凝的液体产品流能回收制冷潜能,并再将制冷潜能送入该低温精馏工艺,以提高产品流的产量。该产品流的增产伴随着更纯的产品流的进一步增产。
另一方面,本发明提供一种制取超高纯产品氮的设备。按照本发明的这一方面,设置有一低温精馏装置,该装置具有一用于精馏空气的精馏塔。氮和轻元素浓聚于塔顶馏出物中,成为含丰富轻元素的高纯度氮气。冷凝装置连接于精馏塔顶部,以部分地冷凝塔顶馏出物流,这样,该塔顶馏出物流含有一含丰富轻元素的气相和一贫乏轻元素的液相。分相装置接收来自冷凝装置的料流,以从塔顶馏出物流中分离气相。该分相装置连接于精馏塔的顶部,使塔顶馏出物液流作为回流返回到精馏塔顶。该塔的尺寸这样确定,以使该回流中的轻元素被汽提掉,在塔顶部的下方形成液态超高纯氮。最后,还有一传送装置,用于从塔引出液态超高纯氮并传送来自该设备的液态或气态的超高纯氮。
该传送装置还可设有用于进一步纯产品流以形成一更纯的产品流,并传送来自该设备的该更纯的产品流的装置。这样的装置可包括制取轻元素含量比超高纯液氮中更少的汽提气的装置以及一与该汽提气制造装置相连的汽提塔,使汽提气在该汽提塔中上升。该汽提塔与精馏塔相连,使从精馏塔引出的产品流落入汽提塔中并由汽提气汽提,以在汽提塔底部制得更纯的液态超高纯氮。另设有一装置,它用于从汽提塔底部引出更纯的超高纯氮和使引出的超高纯液态氮形成更纯的产品流。
为了提高更纯的超高纯氮的生产率,可在汽提塔顶部与精馏塔的某一合适点之间连接一循环压缩机,以用来将汽提塔顶馏出物流加压到塔压力并将该受压缩的汽提塔顶馏出物流送入精馏塔。或者,可在汽提塔顶部连接一装置,以用来部分地冷凝汽提塔顶馏出物流,从而在汽提塔顶馏出物流中产生一内含丰富轻元素的富气相和一内含很少轻元素的贫液相。另设的物相分离装置用于分离富气相和贫液相,该装置与汽提塔相连,使贫液相落入塔内并也由汽提气汽提。
按照本发明的方法和设备,可方便地将一种高纯氮制备方法或设备设计修改,即通过修改冷凝器和塔,以及增加一分相罐(phase    separation    tank)和有关的管道以制取超高纯氮。该分相罐用于分离部分冷凝的料流中的气相,通过从冷凝流中除去轻元素而纯化该料流。当该料流作为回流返回到该塔时,在该塔顶部就进一步从回流中汽提轻元素,以制取超高纯氮。这种使用一不昂贵的分相罐和本身用作纯化器的塔的本发明的方法和设备,在低耗费情况下,较适于将高纯氮制造系统的能力提高到可制取超高纯氮。
虽然说明书以清楚指出作为申请人的发明的主题物的权利要求书为结尾,相信当结合附图可较好理解本发明,其中:
图1是按照本发明的一个空气分离设备的示意图;
图2是按照本发明的一空气分离设备的另一实施例的示意图;
图3是按照本发明的一空气分离设备的又一实施例的示意图;
图4是按照本发明的一空气分离设备的再一实施例的示意图;以及
图5是按照本发明的一空气分离设备的又一另外的实施例。
所有上面图示的实施例表示了应用于表示在美国专利4966002图4中的一空气分离工厂的本发明的方法和设备,该空气分离工厂的说明书和附图因此被引用了。为简化说明起见,在诸图中用相同的序号表示相同的组件和在组件间流动的工艺流体流。另外,诸箭头用来表示在组件之间流动的工艺流体的流动方向。
参阅图1,图示的是一种按本发明的空气分离设备10。在该空气分离设备10中,空气经一压缩机12加压后在一预纯化装置14中纯化。该预纯化装置14是一变压吸附(PSA)装置,它具有数个活性铝土和分子筛材料吸附床,以吸附二氧化碳、水和氢。已经压缩和净化的空气流16然后在一具有翅片结构(plate-fin    design)的主换热器18中受冷却。空气流16再被分为两部分20和22。空气流16的分流20被送入一具有约79只塔盘(tray)的精馏塔24中,在该塔中被精馏,以形成位于塔底部的富氧液26和塔顶馏出物28。在该精馏塔24中,在离开该塔24顶部为四个塔盘距离的托盘75处形成了高纯度液氮。因此,塔顶馏出物28包括含有丰富轻元素的高纯度氮汽,由于这些轻元素的挥发性缘故,它们集结在塔顶馏出物中。
富氧废液流30被从精馏塔24的底部引出。一止回阀25用来保持塔压力。在废液流30流过止回阀25后在一冷凝器32和一具有翅片结构的空气液化器(air    liquefier)34中被汽化和加热,以形成一热的废液流36。该热废液流36又分为两部分38和40。分流38在一压缩机42中加压,以形成一加压的废液流44。该加压的废液流44在主换热器18中被冷却并再流入精馏塔24底部,以提高氮回收率。
塔顶馏出物28的料流46从精馏塔24顶部引出。按照本发明,料流46在冷凝器32中被部分地冷凝,然后被送入一分相器48中。在分相器48底部收集了含有很少轻元素的液相,而在分相器48顶部收集了含有丰富的挥发性轻元素的气相。分相器48与精馏塔24顶部相连,以将部分冷凝的料流46的液相作为回流50送回到精馏塔24。因此,将料流46部分冷凝后随之以分相可从该料流46中分离出气相而部分地纯化该料流46。汽相部分作为气流52被取出,并接着与废流36的分流40合并,以形成一合成流54。背压调节阀55用于将料流52的压力减小到废流36的分流40的压力值。该合成流54在主换热器18中被部分地加热,在涡轮膨胀器56中被膨胀,以产生制冷作用,并得到膨胀后的废流58。须知:压缩机42通过一公用轴与涡轮膨胀器56相连,该轴有一油压制动器60,以消耗一些得自膨胀过程的功。膨胀的废流58在空气液化器34中被部分地加热,并在主换热器18中被充分加热至环境温度后脱离该工艺。在如此加热中,废流58冷却输入的空气流16。
如前所提到的,精馏塔24有约79个塔盘,比美国专利4966002中的精馏塔的塔盘数大致多4个。其原因是很明显的。在将回流50送入精馏塔24顶部之后,它从一个托盘落到下一个托盘,同时各轻元素被去除。如此,在精馏塔24顶部之下大致4个托盘处形成的液态产品流62中所含的轻元素比回流50中的更少,实际上即超高纯氮。尽管取出了产品流62,所用的止回阀64可保持住塔压力。在通过该止回阀之后,产品流62通过冷凝器32而被汽化并加热,以部分冷凝料流46,并接着通过空气液化器34,以帮助液化冷却的空气流16的分流22。这样,就将产品流62部分地加热,再送入主换热器18中以将产品流62充分加热至环境温度。
参阅图2,其中表示了一空气分离设备100。该设备能制取更纯的产品流66,其氮纯度比由空气分离设备10制取的产品流62的还要高。在空气分离设备100中,产品流62也是从离精馏塔24顶下方约4个托盘处取出。然后,该产品流62进入汽提塔68(约四级的封装式塔),在此产品流62由一种纯度比产品流62的还高的汽提气汽提。该汽提气从产品流进入处的下方进入汽提塔68,以形成更纯的产品流66,该产品流以液态形式被收集在汽提塔68的底部。
更纯的产品流66从汽提塔68底部被引出,然后在冷凝器32和空气液化器34中被汽化。更纯的产品流66然后分为两个分流72和74。更纯的产品流66的分流72组成汽提气并被送入汽提塔68的底部。更纯的产品流的另一分流74在主换热器18中被加热至环境温度,以传送给用户。汽提塔68的塔顶馏出物引出为气流78,该气流与气流52和废流36的分流40合并,以形成合成流54,该合成流经部分加热并然后在涡轮膨胀器56中膨胀,以形成膨胀后的废流58。背压调节阀77和79将气流52和78的压力减小于废流36的分流40的压力。设备操作的这一最后方面与空气分离设备10相比的优点在于:通过增加向涡轮膨胀器42的流入量而增加膨胀量,以使较多的氮在压缩机42中得以再压缩,以便加入精馏塔24中。其结果,使该工艺和设备100可制取超高纯氮产品,在相同的生产率下,该产品的纯度比由空气分离设备10的方法所制得的要高。
图3表示了一空气分离设备200,其操作与图2所示的设备100相类似。它与设备100之间的唯一区别是:由塔顶馏出物组成的气流78在一压缩机80中被压缩至压力等于精馏塔压力,并在浓度合适的位置送回该塔中。送入精馏塔24中的附加的氮使超高纯氮的回收率比图2所示的设备和工艺有所提高。
参阅图4,表示了一空气分离设备300。该空气分离设备300能比图2所示的空气分离设备100制取更多的超高纯氮,并无需对塔顶馏出物再压缩,因而无需如图3所示的空气分离设备200的附加的操作费用。
在空气分离设备300中,从精馏塔24引出产品流62后在传送出去之前作进一步纯化处理。为此,将产品流62送入汽提塔68顶部,由更纯的产品流66的分流72组成的汽提气作进一步汽提。由汽提塔顶馏出物组成的气流78在一汽提再冷凝器82中被部分地冷凝,然后再送入一分相器84中。在分相器84中,液相含轻元素较多,而汽相则较贫乏。来自分相器84底部的液流86随同产品流62被送入汽提塔68顶部,以提高超高纯氮的回收率。
废流支流30a从废流30中取出,然后在汽提再冷凝器82中充分汽化。另设置的一止回阀31用来维持精馏塔24的塔压。然后,废流支流30a送入涡轮膨胀器56的输出流中,以回收在其中所含的制冷能。从分相器84的顶部引出汽相流87,然后再与分相器48的气流52相合并,以随同废流36的分流40一起膨胀。这样产生附加的制冷作用,也提高了液氮生产率。背压调节阀89和91将气流52和87的压力减小到废流36的分流46的压力。
图5表示了一空气分离设备400,该设备除了具有空气分离设备300的所有组件外,还多一只分相罐88。空气分离设备400的目的是:使再压缩和膨胀程度超过空气分离设备300,以有效地提高超高纯氮的回收率。不同于空气分离设备300,废流支流30a只在汽提再冷凝器82中部分地汽化。该废流支流30a的部分汽化可产生一足够高的压力,以回收制冷潜能。通过使部分冷凝的废流支流30a流入分相罐88中,以分离为液相和气相,就能实现这种回流。从分相器88底部引出由液相组成的液流90。然后,液流90加入废流30中,以增大待膨胀的气流量,并增大待再压缩的量。此外,由于液流90先加入废流30后再送入冷凝器和空气液化器,故更多的塔顶馏出物可被部分冷凝、纯化、汽提和回收。所得的废流30b送入冷凝器32和空气液化器34中,以形成一热废流36a。从分相器88顶部引出一由汽相组成的气流92。该气流92在热废流36a通过冷凝器和空气液化器后加入其中,以形成包含被加进的待膨胀和再压缩气流的热废流36。通过将由液相汽化和加温后的气流和汽相组成的气流加入有待于在涡轮膨胀器中膨胀的合成流54中,就回收了制冷潜能。
要注意的是:申请人的发明的诸特点可应用于其它空气分离设备和工艺(在包括有一废流再压缩循环的那些工艺之外的其它工艺)。例如,类似于如上述讨论过的诸实施例中任一个所示的方式,一种两塔低温精馏工艺的一高压塔能用于在离开这样塔顶下方某一高度处制取液态高纯氮。含有丰富轻元素的高纯氮能被部分冷凝,送入一分相器,以除去含有丰富轻元素的汽相,然后再送入该塔,以进行汽提并纯化而制得超高纯氮。另外,类似于图2至5的诸实施例所示的方式,这种高压塔的产品能通过将它送入一汽提塔以待用一种汽提气汽提的方法使它进一步精练。在一类似于图3所示的工艺的工艺中,汽提塔顶馏出物能被再压缩和再送入精馏塔,以提高氮生产率。此外,按照与图4和5所示的类似的方法,通过汽提塔顶馏出物的部分冷凝,并紧接着通过分相,和将由液相组成的液流送入汽提塔顶部,可提高生产率。
例1
在本实例中,超高纯氮是使用图1所示的方法和设备而收得的。按此方法获得的氮产品包含在一以约1115.0Nm3/hr的流速流动的产品流62中,该产品流含有约0.5ppb氧,0.57ppm氖和5.0ppb氦。须知:图1至5所示的方法和设备也从高纯氮分离出氢。这种分离是在预纯化装置14以及精馏塔24中进行的。实际上,在各实例中的氢浓度居于氦与氖之间。另外,本例和下面一些例子中的压力是用绝对压力表示的。
进入主换热器18的空气流16的温度为约278.7°K,压力为11.7kg/cm2,流速为约2462.0Nm3/hr。离开该主换热器时,空气流16的温度为约109.9°K,压力为约11.00kg/cm2。在空气流16分开为两部分后,其中分流20的流速为约2370Nm3/hr,分流22的流速为约92Nm3/hr。液化后,分流22的温度为约107.4°K,压力为约10.98kg/cm2
废流30的流速为约1347Nm3/hr,温度和压力大致等于该塔的温度和压力,即分别为109.9°K和11.01kg/cm2。止回阀25在废流30中产生温度降和压降,使之分别降至约101°K和约6kg/cm2。加热后,所得的热废流36的温度为约106.6°K,压力为约5.87kg/cm2。热废流36的分流38的流速为约870Nm3/hr,分流40的流速为约1321Nm3/hr。通过压缩机42后,所得被压缩的废流44的温度为约142.9°K,压力为约11.08kg/cm2,而当通过主换热器18后,被压缩的废流44的压力为约11.01kg/cm2,温度为约112.7°K。
表示从塔顶馏出物流46中除去的汽相部分的气流52的温度为约104.5°K,压力为约10.7kg/cm2,流速为约26Nm3/hr。当与废流36合并后,合成流54的流速为约1347Nm3/hr。当合成流54通过主换热器18后,其温度为约142°K,压力为约5.77kg/cm2。所得膨胀后的废流58的温度为约106°K,压力为约1.53kg/cm2。膨胀后的废流58离开空气液化器时的温度为约106.6°K。随后在离开主换热器18时,其温度为约274°K,压力为约1.50kg/cm2。产品流62以汽形式离开空气液化器34,其温度为约104.6°K,压力为约9.67kg/cm2。止回阀64在产品流62中产生压降和温度降,使之分别降至约9.79kg/cm2和约103.2°K。在通过主换热器18后,产品流的温度为约274°K,压力为约9.55kg/cm2
例2
在本实例中,超高纯氮是使用图2所示的方法和设备而收得的。按此方法获得的氮产品包含在以约1115Nm3/hr的流速流动的产品流66的分流74中,该分流含有约0.5ppb的氧,31ppb的氖和约0.03ppb的氦。在本实例中,由于使用了汽提塔68,产品流74中含有的轻元素的浓度比前一实例的产品流66中的低。
进入主换热器18的空气流16的温度为约278.7°K,压力为11.17kg/cm2,流速为约2661Nm3/hr。离开该主换热器时,空气流16的温度为约109.9°K,压力为约11kg/cm2。在空气流16分开为两部分后,其中分流20的流速为约2553Nm3/hr,分流22的流速为约108Nm3/hr。液化后,分流22的温度为约107.4°K,压力为约10.98kg/cm2
废流30的流速约为2405Nm3/hr,温度为约109.9°K,压力为约11.01kg/cm2。止回阀25将废流30的温度和压力减小到100.9°K和约6kg/cm2。在汽化和加热后,所得的热废流36的温度为约106.6°K,压力为约5.87kg/cm2。在热废流36被分开后,形成的分流38和40的流速分别为约987Nm3/hr和1418Nm3/hr。分流38在压缩机42中被加压,以形成压缩的废流44,该气流的温度为约142.9°K,压力为约11.08kg/cm2。在通过主换热器18后,压缩的废流44的压力为约11.02kg/cm2,温度为约112.7°K。
表示从塔顶馏出物流46中除去的汽相部分的气流52的温度为约104.6°K,压力为约10.71kg/cm2,流速为约26Nm3/hr。汽提塔顶馏出物流78的流速为约102.2Nm3/hr,温度为约102.8°K,压力为约9.53kg/cm2。当塔顶馏出物流78加入气流52和被加热的废流36的分流40后,合成流54的流速为约1546Nm3/hr,温度为约105.7°K,压力为约5.87kg/cm2。在合成流54通过主换热器18后,其温度提高至约141°K。膨胀后的废流58的温度为约105°K,压力为约1.63kg/cm2。膨胀后的废流58离开空气液化器34时的温度为约106.6°K,压力为约1.55kg/cm2,接着离开主换热器18时的温度为约274°K,压力为约1.30kg/cm2
产品流62送入汽提塔68时的流速为约1217Nm3/hr,温度为约103°K,压力为约9.67kg/cm2,从该汽提塔68的底部引出的更纯的产品流66的流速为约1183Nm3/hr,温度为约103°K,压力为约9.67kg/cm2。该更纯的产品流66经汽化和加热,离开空气液化器34时的温度为约106.6°K,压力为约9.67kg/cm2。分流72的流速为约68Nm3/hr,它作为汽提气送入汽提塔68。在主换热器18中,分流74被加热至约274°K,其压力为约9.55kg/cm2,作为产品传送出去。
例3
回收的超高纯氮产品的纯度基本上与实例2制取的产品的相同。通过用如图3所示的方式和设备压缩汽提塔顶馏出物流78并将它送入塔24,产品氮的回收率比实例2的要高。在这点上,含有超高纯氮产品的分流74,和前面两实例一样,以约1115Nm3/hr的流速流动。但是,在本实例中进入的空气流的流速为约2467Nm3/hr,而实例2中的流速为2661Nm3/hr。大体上,除了在下面讨论中另作说明的以外,各料流的压力和温度与实例2中的相等。
在空气流16分开后,其分流20的流速为约2373Nm3/hr,而分流22的流速为约94Nm3/hr。
废流30的流速为约2199Nm3/hr,在分开后,形成的分流38和40的流速分别为约873Nm3/hr和约1326Nm3/hr。
表示从塔顶馏出物流46中除去的汽相部分的气流52的流速为约26Nm3/hr,该气流52加入到被加热的废流36的分流40中,以形成具有流速为约1352Nm3/hr的合成流54。在该合成流54通过主换热器18后,其温度提高到约142.3°K,而通过膨胀机56后,所得膨胀后的废流58的温度为约105.9°K。
产品流62以约1212Nm3/hr的流速送入汽提塔68中,而更纯的产品流66以约1177Nm3/hr的流速从汽提塔68的底部引出。在更纯的产品流分开后,分流72的流速为约62Nm3/hr,它作为汽提气送入汽提塔68中。汽提塔顶馏出物流78的流速为约97Nm3/hr。在通过压缩机80后,该汽提塔顶馏出物流78的温度为约108.5°K,压力为约10.73kg/cm2,并送入精馏塔24中。
例4
利用如图4所示之方法和设备制取了一种超高纯氮产品。该产品的纯度基本与实例2的相等,其中含有约0.5ppb的氧,38ppb的氖和0.03ppb的氦。其回收率大于实例2的,但无需如在实例3中由于再压缩汽提塔顶馏出物而付出额外的功耗。在这点上,更纯的产品以约1115Nm3/hr的流速流动,而是从以约2539Nm3/hr的流速进入主换热器18的空气流16制得的。
空气流16进入主换热器18时的温度为278.7°K,其压力为11.17kg/cm2。在主换热器18中,空气流16的压力和温度分别下降至约11kg/cm2和约109.9°K。在空气流16分开后,其中分流20的流速为约2443Nm3/hr,而分流22的流速为约96Nm3/hr。在液化后,分流22的温度为约107.4°K,压力为约10.98kg/cm2
从精馏塔24底部排出的废流30的流速为约2188Nm3/hr,而温度和压力大致与该塔的相等,即为109.9°K和11.01kg/cm2。废流30中分出废流支流30a,该废流支流以约67Nm3/hr的流速流动。废流30进入冷凝器32时的温度为约100.8°K,压力为约6kg/cm2;离开空气液化器34的、含有热汽的废流36的温度为约106.6°K,压力为约5.87kg/cm2。该热废流36分为两部分,其中分流38的流速为约880Nm3/hr,而分流40的流速为约1308Nm3/hr。在通过压缩机42后,形成的被压缩的废流44进入主换热器18时的温度为约143°K,压力为约11.09kg/cm2;此后,该废流44又送回到精馏塔24中,此时的压力为约11.01kg/cm2,温度为约112.7°K。
表示从塔顶馏出物流46除去的汽相部分的气流52的温度为约104.6°K,压力为约10.70kg/cm2,流速为约27Nm3/hr。当与热废流36的分流40和气流86(其流速为约23Nm3/hr,温度为约102.8°K,压力为约9.52kg/cm2)相合并后,合成流54的流速为约1358Nm3/hr,温度为约106.2°K,压力为约5.87kg/cm2。在该合成流54通过主换热器18后,其温度为约142°K,压力为约5.78kg/cm2。膨胀后,废流支流30a加入温度为约105.8°K、压力为约1.61kg/cm2的膨胀后的废流58中。膨胀后的废流58离开空气液化器34时的温度为约106.6°K,压力为约1.55kg/cm2,然后离开主换热器18时的温度为约274°K,压力为约1.3kg/cm2
产品流62从精馏塔24中取出,其流速为约1138Nm3/hr,温度为约104.6°K,压力为约10.72kg/cm2
流速为约97Nm3/hr、温度为约102.8°K及压力为约9.53kg/cm2的汽提塔顶馏出物流78相对于充分汽化的废流30a发生部分冷凝。废流支流30a进入汽提再冷凝器82时的温度为约98.7°K,压力为约5.11kg/cm2。在分相器84中气相与液相分离开,液相流86与产品流62合并并送入汽提塔68中,以提高更纯产品的回收率。该合成流送入汽提塔68时的流速为约1212Nm3/hr,温度为约102.8°K,压力为约9.53kg/cm2
更纯产品流66从汽提塔68的底部提取出来时的流速为约1180Nm3/hr,温度为约103°K,压力为约9.67kg/cm2。更纯产品流66离开空气液化器34时的温度为约106.6°K,压力为约9.67kg/cm2。流速为约65Nm3/hr的更纯产品流66的分流72作为汽提气送入汽提塔68。更纯产品流66的分流74在主换热器18中被加热,以将产品传送给用户,此时产品的温度为约274°K,压力为约9.55kg/cm2
例5
在本实例中,利用如图5所示的方法和设备可制取超高纯氮产品。收得的产品含有约0.5ppb氧,1.0ppb氖和约0.003ppb氦。该方法耗用的空气的流速为约2513Nm3/hr,产品流的流速为约1115Nm3/hr。所以,本实例的方法和设备的效率比实例4的高。之所以效率提高,是因为在本实例中的压缩和膨胀程度比其它实例的要高。
空气流16进入主换热器18时的温度为278.7°K,压力为11.17kg/cm2。在主换热器18中,空气流16的压力和温度分别降至约11kg/cm2和约109.9°K。在空气流16分开后,分流20的流速为约2415Nm3/hr,而分流22的流速为约98Nm3/hr。液化后,分流22的温度为约107.4°K,压力为约10.98kg/cm2
从精馏塔24底部排出的废流30的流速为约2246Nm3/hr,而温度和压力与该塔的近似相等,即分别为109.9°K和11kg/cm2。废流支流30a从废流30中分出来,且以约366Nm3/hr的流速流动。含有来自部分地汽化的废流30a的液体的料流90重又加入到废流30中,以形成废流30b。在这样的掺合后,废流30b在冷凝器32中在温度为约100.9°K和压力为约6kg/cm2的条件下汽化,并在空气液化器34中被加热。形成的热废流36a的温度为约106.6°K,压力为约5.87kg/cm2。热废流36a与含有流30a的汽相部分的气流92合并,以形成流速为约2246Nm3/hr的热废流36。该热废流36分为两部分,其中分流38的流速为约897Nm3/hr,而分流40的流速为约1349Nm3/hr。在通过压缩机42后,形成的被压缩的废流44进入主换热器18时的温度为约143°K,压力为约11.09kg/cm2。此后,该被压缩的废流44在主换热器18中冷却,并在约11kg/cm2压力和约112.7°K温度条件下送入精馏塔24。
表示从塔顶馏出物流46除去的汽相部分的气流52的温度为约104.5°K,压力为约10.7kg/cm2,流速为约27Nm3/hr。在通过止回阀89后,该气流52与热废流36的分流40和表示部分冷凝的汽提塔顶馏出物的汽相的气流87(其流速为约22Nm3/hr,温度为约102.8°K,压力为约9.53kg/cm2)相合并。形成的合成流54的流速为约1398Nm3/hr,温度为约106°K,压力为约5.87kg/cm2。在通过主换热器18后,合成流54的温度为约141.5°K,压力为约5.78kg/cm2。膨胀后,形成的膨胀后的废流的温度为约105.3°K,压力为约1.63kg/cm2。膨胀后的废流58离开空气液化器34时的温度为约106.5°K,压力为约1.53kg/cm2,然后离开主换热器18时的温度为约274°K,压力为约1.30kg/cm2
产品流62在约1138Nm3/hr流速、约104.6°K温度和约10.72kg/cm2压力的条件下从精馏塔24中引出,并送至汽提塔68。流速为约125Nm3/hr、温度为约102.8°K和压力为约9.53kg/cm2的汽提塔顶馏出物78,相对于部分汽化的废流30a发生部分冷凝。废流支流30a进入汽提再冷凝器82时的温度为约100.9°K,压力为约6kg/cm2。在分相器84中气相和液相分离,液相流86与产品流62相合并送入汽提塔68中,以提高更纯产品的回收率。送入汽提塔68中的合成流的流速为约1240Nm3/hr,温度为约103°K,压力为约9.67kg/cm2
部分汽化的废流支流30a然后送入分相器88,以分离液相和汽相。从分相器88底部引出流速为约238Nm3/hr、温度为约101.5°K和压力为约6kg/cm2的液流90加入废流30中。从分相器88顶部引出的、流速为约128Nm3/hr、温度为约101.2°K和压力为约5.87kg/cm2的气流92,在气流36a通过空气液化器34后与流36a相合并,以形成热废流36。这样合并的结果是回收了部分地汽化的废流支流30b的制冷潜能,并有更多的物料被加入待压缩的废料中。上述运行与实例4的运行情况相比,则实例4中的充分冷凝的废流支流30a的压力太低,以致不能回收任何有意义数量的制冷潜能。
从汽提塔68底部引出的更纯产品流66的流速为约1207Nm3/hr,温度为约103°K,压力为约9.67kg/cm2。再纯产品流70离开空气液化器34时的温度为约106.6°K,压力为约9.67kg/cm2。流速为约92Nm3/hr的更纯产品流66的分流72作为汽提气送入汽提塔68。在主换热器18中更纯产品流66的分流74被加热,以便在温度为约274°K,压力为约9.55kg/cm2的情况下传送给用户。
尽管图示并描述了本发明的一些较佳实施例,在不脱离本发明的精神和范围情况下,可作些修改和补充,这些是为熟悉此领域技术的人所理解的。

Claims (21)

1、一种制取超高纯氮的方法包括:
在一精馏塔中利用低温精馏工艺精馏空气,以制取一种包含其中内含丰富轻元素的高纯氮汽的塔顶馏出物(tower overhead);
部分地冷凝一塔顶馏出物流,使该料流包含一内含很少轻元素的液相和一内含丰富轻元素的气相;
从塔顶馏出物流中分离出气相;
在从塔顶馏出物流分离气相后,将该塔顶馏出物流作为回流返回到精馏塔,并在精馏塔中从该回流中将轻元素汽提掉,以制取超高纯液氮;以及
从该精馏塔引出由超高纯液氮组成产品流(Product stream)。
2、如权利要求1所述的方法,其特征在于,用一种汽提气(stripper  gas)从产品流中汽提掉更多的轻元素,以进一步纯化产品流,从而产生一种更纯的产品流。
3、如权利要求2所述的方法,其特征在于,
通过将产品流送入汽提塔(Stripper  column)之顶部,和将气提气从产品流下方送入汽提塔而从产品流中汽提掉更多的轻元素,从而在汽提塔之底部产生更纯的超高纯液氮,还产生一种汽提塔顶馏出物(stripper  tower  overhead);以及
从汽提塔之底部引出更纯的超高纯液氮,形成更纯的产品流。
4、如权利要求3所述的方法,其特征在于,还包括:
从汽提塔之顶部引出汽提塔顶馏出物流(stripper  tower  overhead  stream);以及
将汽提塔顶馏出物流再压缩至精馏塔压力,并将它送入精馏塔中,以提高更纯的产品流的回收率。
5、如权利要求3所述的方法,其特征在于,还包括:
从汽提塔引出汽提塔顶馏出物流;
部分地冷凝汽提塔顶馏出物流,以在该汽提塔顶馏出物流中产生分别含很少轻元素和富丰轻元素的液相和气相;
从汽提塔顶馏出物流中分离气相;以及
在从汽提塔顶馏出物流中分离出气相之后,将汽提塔顶馏出物流送入汽提塔,在汽提塔中用汽提气汽提,以提高产品流的生产率。
6、如权利要求3所述的方法,其特征在于,
精馏塔还产生一种工作液体(Process  liquid);以及
该方法还包括:
从汽提塔引出汽提塔顶馏出物流;
从精馏塔引出由工作液体组成的工作液流;
在部分地汽化工作液流的同时,部分地冷凝汽提塔顶馏出物流,以在汽提塔顶馏出物流内产生分别内含很少轻元素和丰富轻元素的液相和气相;
从汽提塔顶馏出物流中分离气相;
在从汽提塔顶馏出物流中分离出气相后,将汽提塔顶馏出物送到汽提塔,在汽提塔中用汽提气汽提,以提高更纯产品流的生产率;
从部分地汽化的液态产品流中回收制冷潜能(refrigeration  potential);以及
将回收的制冷潜能送回到低温精馏工艺中,以提高产品流的生产率,因此也提高更纯的产品流的生产率。
7、如权利要求1所述的方法,其特征在于,低温精馏工艺包括:
在精馏塔中产生一种包括富氧液(Oxygen  rich  liquid)的塔残渣(column  bottom);
从精馏塔引出由塔残渣组成的废流;以及
一废流再压缩循环,它包括:
将该废流分成两个废流支流(partial  waste  stream);
压缩两个中的一个废流支流,冷却该被压缩的废流支流,并将该被压缩的废流支流送入精馏塔中,以提高在精馏塔中的超高纯液氮的生产率,从而提高产品流的生产率;
将另一废流支流与一由从塔顶馏出物流分离出的气相组成的富含轻元素的气流(light  elemaent  rich  stream)相合并,以形成一合成的废流;
部分地加热该合成的废流,然后使该部分地加热的合成废流经发动机而膨胀(ergine  expanding),通过作功来产生低温精馏工艺所需的制冷作用;
在压缩该部分地被加热的合成废流的过程中回收一部分膨胀功;以及
将来自低温精馏工艺的膨胀功的剩余部分耗散掉。
8、如权利要求7所述的方法,其特征在于,
在从精馏塔引出产品流之后,将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,使产品流得以进一步纯化,从而在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物;
从汽提塔之底部引出更纯的超高纯液氮,产生更纯的产品流;以及
合成废流还可通过将汽提塔顶馏出物与另一部分废流和富含轻元素的气流相合并而形成。
9、如权利要求7所述的方法,其特征在于,
在从精馏塔引出产品流后,将该液流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,使产品流得以进一步纯化,从而在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物;以及
从汽提塔之底部引出更纯的超高纯液氮,制得产品流;以及还包括:
从汽提塔顶部引出汽提塔顶馏出物流;以及
将汽提塔顶馏出物再压缩至精馏塔压力,并将它送入精馏塔中,以提高更纯的产品流的回收率。
10、如权利要求7所述的方法,其特征在于,还包括:
将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,以进一步纯化产品流而产生更纯的产品流,从而在汽提塔底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物;
从汽提塔之底部引出更纯的超高纯液氮,形成更纯的产品流;
从废流中引出一废流支流(side  waste  stream);
从汽提塔引出汽提塔顶馏出物流;
在充分汽化该废流支流的同时,部分地冷凝汽提塔顶馏出物流,以在汽提塔顶馏出物流内产生分别含有很少轻元素和丰富的轻元素的液相和气相;
从汽提塔顶馏出物流中分离出气相;
为了提高产品流的生产,将汽提塔顶馏出物液送入汽提塔,以便用汽提气在该塔中进行汽提。
11、如权利要求7所述的方法,其特征在于,还包括:
通过将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,以进一步纯化产品流而产生更纯的产品流,从而在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物;
从汽提塔之底部引出更纯的超高纯液氮,形成更纯的产品流;
从废流中引出一废流支流;
从汽提塔引出一汽提塔顶馏出物流;
在部分地汽化该废流支流的同时,部分地冷凝汽提塔顶馏出物流,以在汽提塔顶馏出物流内产生分别含有很少轻元素和丰富的轻元素的液相和气相;
从汽提塔顶馏出物流中分离出气相;
为了提高产品流的生产率,将汽提塔顶馏出物送入汽提塔,以便用汽提气在该塔中进行汽提;
从部分地冷凝的液态产品流中回收制冷潜能;以及
将回收的制冷潜能送回到低温精馏工艺中,以提高产品流的生产率,从而进一步提高了更纯的产品流的生产率。
12、如权利要求7所述的方法,其特征在于,其中的精馏工艺还包括:
在压缩和纯化空气之后,将空气冷却到适合在精馏塔中进行其精馏的温度;
将该空气分为两个冷却的空气支流(partial  air  stream);
将两个冷却的空气支流中的一个支流送入精馏塔中;
液化两个冷却的空气支流中的另一支流,然后将该空气支流送入精馏塔;
在废流分开之前,废流同产品流一道与塔顶馏出物流建立传热关系,以部分地冷凝塔顶馏出物流;
为了液化另一冷却的空气支流,在将塔顶馏出物流部分地冷凝之后,废流、液流和经发动机而膨胀的合成废流一起,与另一冷却的空气支流建立传热关系;以及
为了将空气冷却到适于精馏的温度而同时冷却一压缩的废流支流和汽化产品流,在另一冷却的空气支流液化之后,通过涡轮膨胀(turboexpanded)过的合成的废流同产品流和合成流一起,在被部分地加热前,与输入空气和一压缩过的废流支流建立传热关系。
13、如权利要求11所述的方法,其特征在于,
将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,以进一步纯化产品流而产生更纯的产品流,从而在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物;
从汽提塔之底部引出更纯的超高纯液氮,产生更纯的产品流;
还将汽提塔顶馏出物与另一废流支流和富含轻元素气流相结合,形成合成的废流;以及
在产品流以传热关系流过另一冷却的空气支流之后,从产品流中引出一部分产品流,形成汽提气。
14、如权利要求11所述的方法,其特征在于,
将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,以进一步纯化产品流而产生更纯的产品流,从而在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物;
从汽提塔之底部引出更纯的超高纯液氮,产生产品流;以及
在进一步纯化的产品流以传热关系流过另一冷却的空气支流之后;从更纯的产品流引出一部分产品流,以形成汽提气;以及
还包括:
从汽提塔顶部引出汽提塔顶馏出物流;以及
将该汽提塔顶馏出物流再压缩至精馏塔压力,并将它送入精馏塔中,以提高更纯的产品流的回收率。
15、如权利要求11所述的方法,其特征在于,
还包括:
通过将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,以在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物,从而进一步纯化产品流而产生更纯的产品流;
通过从汽提塔之底部引出更纯的超高纯液氮,产生更纯的产品流;
从废流中引出废流支流;
从汽提塔中引出汽提塔顶馏出物流;
在充分地汽化该废流支流的同时,部分地冷凝汽提塔顶馏出物流,以在汽提塔内产生分别含有很少轻元素和丰富的轻元素的液相和气相;
从部分地冷凝的汽提塔顶馏出物流中分离出气相,
为了提高产品流的生产率,在从部分地冷凝的汽提塔顶馏出物中分离出气相之后,将该部分地冷凝的汽提塔顶馏出物流送入汽提塔,以便用汽提气在该塔中汽提;
形成一分离出的气相流,并将该气相流与富含轻元素流和另一废流支流相合并,以形成合成流;以及
在经膨胀后的合成废流以传热关系流过另一冷却的空气支流之前,将充分地冷凝的废流支流送入经膨胀、部分地被加热的合成废流中,以回收充分地冷凝的废流支流的冷却潜能;以及
其中:在一部分产品流以传热关系流过另一冷却的空气支流之后,从更纯的产品流引出一部分产品流,以形成汽提气。
16、如权利要求11所述的方法,其特征在于,
还包括:
通过将产品流送入汽提塔之顶部并将汽提气从产品流下方送入汽提塔,以在汽提塔之底部产生更纯的超高纯液氮,还产生汽提塔顶馏出物,从而进一步纯化产品流而产生更纯的产品流;
通过从汽提塔之底部引出更纯的超高纯液氮,生产更纯的产品流;
从废流中引出废流支流;
从汽提塔中引出汽提塔顶馏出物流;
在部分地汽化该废流支流的同时,部分地冷凝该汽提塔顶馏出物流,以在该汽提塔顶馏出物流中产生分别含有丰富和很少轻元素的富气相和贫液相,并在废流支流中产生汽相(vapor  phase)和非汽化相(unvaporized  phase);
从该部分地冷凝的汽提塔顶馏出物流中分离出富气相;
为了提高产品流的生产率,在从部分地冷凝的汽提塔顶馏出物流中分离出富气相之后,将该部分地冷凝的汽提塔顶馏出物流送入汽提塔,以便用汽提气在该塔中汽提;
形成一分离出的汽提塔顶馏出物的富气相流,并将该富气相流与富含轻元素流和另一废流支流相结合,以形成合成流;
在废流和产品流以传热关系流过塔顶馏出物流之前,将废流支流的非汽化相送入废流中;
在废流以传热关系流过另一冷却的空气支流之后,将废流支流的汽相送入废流中;以及
其中:在一部分产品流以传热关系流过另一冷却的空气支流之后,从产品流引出一产品流支流,以形成汽提气。
17、一种制取超高纯氮的设备包括:
低温精馏装置,它具有一精馏塔,以在该精馏塔中精馏空气,使氮和轻元素以内含丰富轻元素的汽态高纯氮形式浓聚为塔顶馏出物;
冷凝装置,它与精馏塔顶部相连接,以部分地冷凝塔顶馏出物流,使该流包含一内含丰富的轻元素的气相和一内含很少轻元素的液相;
分相装置,它接收来自冷凝装置的塔顶馏出物流,以便从该塔顶馏出物流中分离出该气相;
该分相装置连接于精馏塔顶部,使当气相从塔顶馏出物流分离出后,该塔顶馏出物流作为回流返回到精馏塔顶部;该精馏塔的尺寸设定得使该回流的轻元素被汽提掉而在塔顶部之下方形成超高纯液氮;以及
传送装置,它用于从精馏塔引出由超高纯液氮组成的产品流,并传送来自该设备的超高纯氮。
18、如权利要求17所述的设备,其特征在于,传送装置还具有用于进一步纯化产品流,以形成一更纯的产品流,及传送来自该设备的该更纯的产品流的装置。
19、如权利要求17所述的设备,其特征在于,进一步纯化装置包括:
用于产生一种内含轻元素比超高纯氮中的含量更少的汽提气的装置;
一汽提塔,它与汽提气产生装置相连结,使汽提气在汽提塔中上升;
该汽提塔与精馏塔相连结,使产品流落于汽提塔内并由汽提气进行汽提,以在汽提塔底部产生更纯的超高纯液氮;以及
用于从汽提塔底部引出更纯的超高纯液氮,并从被引出的超高纯液氮形成更纯的产品流的装置。
20、如权利要求18所述的设备,其特征在于,还包括:
一循环压缩机,它连接于汽提塔顶部与精馏塔的一合适点之间,用以将一由汽提塔顶馏出物组成的汽提塔顶馏出物流加压至精馏塔压力,并将该被加压的汽提塔顶馏出物流送入塔中,以提高超高纯氮的生产率。
21、如权利要求18所述的设备,其特征在于,还包括:
与汽提塔顶部相连,用于部分地冷凝一由汽提塔顶馏出物组成的汽提塔顶馏出物流,从而在该汽提塔顶馏出物流中产生分别内含丰富轻元素的富气相和很少轻元素的贫液相的装置;以及
分离装置,它用于从贫液相中分离富气相;
该分离装置连接于汽提塔,使贫液相在塔内降落,并由汽提气进行汽提,以提高更纯的产品流的生产率。
CN92103555A 1991-06-24 1992-05-12 制造超高纯氮的方法和设备 Expired - Fee Related CN1065621C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/720,144 1991-06-24
US07/720144 1991-06-24
US07/720,144 US5170630A (en) 1991-06-24 1991-06-24 Process and apparatus for producing nitrogen of ultra-high purity

Publications (2)

Publication Number Publication Date
CN1067956A true CN1067956A (zh) 1993-01-13
CN1065621C CN1065621C (zh) 2001-05-09

Family

ID=24892824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92103555A Expired - Fee Related CN1065621C (zh) 1991-06-24 1992-05-12 制造超高纯氮的方法和设备

Country Status (16)

Country Link
US (1) US5170630A (zh)
EP (1) EP0520738B2 (zh)
JP (1) JP2677486B2 (zh)
KR (1) KR950006222B1 (zh)
CN (1) CN1065621C (zh)
AT (1) ATE136358T1 (zh)
AU (1) AU646574B2 (zh)
CA (1) CA2064674A1 (zh)
CZ (1) CZ167992A3 (zh)
DE (1) DE69209572T3 (zh)
HU (1) HUT63247A (zh)
IE (1) IE75689B1 (zh)
MX (1) MX9202693A (zh)
SG (1) SG52370A1 (zh)
TW (1) TW217388B (zh)
ZA (1) ZA922607B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123203A (zh) * 2013-02-22 2013-05-29 河南开元空分集团有限公司 利用含氮废气进行再低温精馏制取纯氮的方法
CN108731378A (zh) * 2017-04-19 2018-11-02 乔治洛德方法研究和开发液化空气有限公司 用于制造纯度不同的氮气的氮气制造系统和该氮气制造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694383B1 (fr) * 1992-07-29 1994-09-16 Air Liquide Production et installation de production d'azote gazeux à plusieurs puretés différentes.
JP2838623B2 (ja) * 1992-08-06 1998-12-16 日本エア・リキード株式会社 超高純度窒素製造方法及びその装置
US5385646A (en) * 1993-09-03 1995-01-31 Farmland Industries, Inc. Method of treating chemical process effluent
US5779861A (en) * 1993-09-03 1998-07-14 Farmland Industries, Inc. Method for treating process condensate
US5643420A (en) * 1993-09-03 1997-07-01 Farmland Industries, Inc. Method for treating process condensate
IL115348A (en) * 1994-10-25 1999-11-30 Boc Group Inc Method and apparatus for air separation to produce nitrogen
US5711167A (en) * 1995-03-02 1998-01-27 Air Liquide Process & Construction High efficiency nitrogen generator
US5582033A (en) * 1996-03-21 1996-12-10 Praxair Technology, Inc. Cryogenic rectification system for producing nitrogen having a low argon content
EA000800B1 (ru) * 1996-03-26 2000-04-24 Филлипс Петролеум Компани Способ извлечения конденсацией и отгонкой ароматических и/или высокомолекулярных углеводородов из сырья на основе метана и устройство для его осуществления
US5906113A (en) * 1998-04-08 1999-05-25 Praxair Technology, Inc. Serial column cryogenic rectification system for producing high purity nitrogen
DE19929798A1 (de) * 1998-11-11 2000-05-25 Linde Ag Verfahren zur Gewinnung von ultrareinem Stickstoff
DE102005006408A1 (de) * 2005-02-11 2006-08-24 Linde Ag Verfahren zum Abtrennen von Spurenkomponenten aus einem Stickstoff-reichen Strom
US20110100055A1 (en) * 2008-06-19 2011-05-05 Innovative Nitrogen Systems Inc. Hybrid Air Separation Method with Noncryogenic Preliminary Enrichment and Cryogenic Purification Based on a Single Component Gas or Liquid Generator
EP2662653A1 (de) * 2012-05-08 2013-11-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von wasserstofffreiem Stickstoff
WO2021242308A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit
WO2021242309A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit
US11674750B2 (en) 2020-06-04 2023-06-13 Praxair Technology, Inc. Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210947A (en) * 1961-04-03 1965-10-12 Union Carbide Corp Process for purifying gaseous streams by rectification
US3605422A (en) * 1968-02-28 1971-09-20 Air Prod & Chem Low temperature frocess for the separation of gaseous mixtures
GB1325166A (en) * 1969-10-20 1973-08-01 Kobe Steel Ltd Air rectification process for the production of gaseous or liquid nitrogen
US4416677A (en) * 1982-05-25 1983-11-22 Union Carbide Corporation Split shelf vapor air separation process
US4566887A (en) * 1982-09-15 1986-01-28 Costain Petrocarbon Limited Production of pure nitrogen
GB2129115B (en) * 1982-10-27 1986-03-12 Air Prod & Chem Producing gaseous nitrogen
WO1984003554A1 (en) * 1983-03-08 1984-09-13 Daido Oxygen Apparatus for producing high-purity nitrogen gas
JPS61110872A (ja) * 1984-11-02 1986-05-29 日本酸素株式会社 窒素製造方法
US4594085A (en) * 1984-11-15 1986-06-10 Union Carbide Corporation Hybrid nitrogen generator with auxiliary reboiler drive
US4617036A (en) * 1985-10-29 1986-10-14 Air Products And Chemicals, Inc. Tonnage nitrogen air separation with side reboiler condenser
JPS62116887A (ja) * 1986-08-12 1987-05-28 大同ほくさん株式会社 高純度窒素ガス製造装置
US4777803A (en) * 1986-12-24 1988-10-18 Erickson Donald C Air partial expansion refrigeration for cryogenic air separation
DE3871220D1 (de) * 1987-04-07 1992-06-25 Boc Group Plc Lufttrennung.
JPH0410546Y2 (zh) * 1987-10-30 1992-03-16
GB8828133D0 (en) * 1988-12-02 1989-01-05 Boc Group Plc Air separation
US4902321A (en) * 1989-03-16 1990-02-20 Union Carbide Corporation Cryogenic rectification process for producing ultra high purity nitrogen
US4966002A (en) * 1989-08-11 1990-10-30 The Boc Group, Inc. Process and apparatus for producing nitrogen from air
EP0485612B1 (en) * 1990-05-31 1995-10-18 Kabushiki Kaisha Kobe Seiko Sho Method of and device for producing nitrogen of high purity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123203A (zh) * 2013-02-22 2013-05-29 河南开元空分集团有限公司 利用含氮废气进行再低温精馏制取纯氮的方法
CN103123203B (zh) * 2013-02-22 2015-03-04 河南开元空分集团有限公司 利用含氮废气进行再低温精馏制取纯氮的方法
CN108731378A (zh) * 2017-04-19 2018-11-02 乔治洛德方法研究和开发液化空气有限公司 用于制造纯度不同的氮气的氮气制造系统和该氮气制造方法
CN108731378B (zh) * 2017-04-19 2021-11-05 乔治洛德方法研究和开发液化空气有限公司 用于制造纯度不同的氮气的氮气制造系统和该氮气制造方法

Also Published As

Publication number Publication date
DE69209572T2 (de) 1996-09-19
HUT63247A (en) 1993-07-28
HU9201842D0 (en) 1992-09-28
MX9202693A (es) 1992-12-01
EP0520738B2 (en) 1999-03-17
CN1065621C (zh) 2001-05-09
CA2064674A1 (en) 1992-12-25
JP2677486B2 (ja) 1997-11-17
DE69209572T3 (de) 1999-06-02
KR930000377A (ko) 1993-01-15
AU1839592A (en) 1993-01-07
EP0520738A1 (en) 1992-12-30
TW217388B (zh) 1993-12-11
SG52370A1 (en) 1998-09-28
US5170630A (en) 1992-12-15
EP0520738B1 (en) 1996-04-03
DE69209572D1 (de) 1996-05-09
JPH05187765A (ja) 1993-07-27
IE922022A1 (en) 1992-12-30
IE75689B1 (en) 1997-09-10
AU646574B2 (en) 1994-02-24
ATE136358T1 (de) 1996-04-15
CZ167992A3 (en) 1993-01-13
ZA922607B (en) 1993-02-24
KR950006222B1 (ko) 1995-06-12

Similar Documents

Publication Publication Date Title
CN1065621C (zh) 制造超高纯氮的方法和设备
CN1103041C (zh) 制备低纯氧气的副塔低温精馏系统
CN101501431B (zh) 空气分离方法
CN1089427C (zh) 用于生产低纯度氧的低温精馏系统
CA1320679C (en) Air separation
CN1050418C (zh) 空气分离
KR970004728B1 (ko) 일산화탄소-부재 질소의 생산을 위한 증류방법
CN1057380C (zh) 低温空气分离方法和设备
CN1083098C (zh) 空气分离
NZ260393A (en) Air separation: liquid nitrogen reflux obtained from intermediate mass transfer region of low pressure rectifier
CN1091867C (zh) 空气分离
PL178373B1 (pl) Sposób rozdzielania powietrza i urządzenie do rozdzielania powietrza
CN1044156C (zh) 低温精馏分离空气的方法和装置
JP2776461B2 (ja) 超高純度酸素を製造する低温蒸留による空気分別方法
CA2082291C (en) Inter-column heat integration for multi-column distillation system
JPH067601A (ja) 多成分流の分離方法
CN1210964A (zh) 生产低纯氧的高压高效低温精馏系统
KR950006408A (ko) 액체 산소 펌핑 방법 및 장치
AU666407B2 (en) Cryogenic air separation process and apparatus
AU706680B2 (en) Air separation
CN1084870C (zh) 分离空气的方法和设备
JPH11325717A (ja) 空気の分離
US5092132A (en) Separation of air: improved heylandt cycle
CN1123752C (zh) 用于生产高压氧的低温精馏系统
CN1050260A (zh) 低温空分方法和设备

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
FG4A Grant of patent
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee