CN106787790A - 一种长寿命智能降压转换装置 - Google Patents
一种长寿命智能降压转换装置 Download PDFInfo
- Publication number
- CN106787790A CN106787790A CN201611061814.1A CN201611061814A CN106787790A CN 106787790 A CN106787790 A CN 106787790A CN 201611061814 A CN201611061814 A CN 201611061814A CN 106787790 A CN106787790 A CN 106787790A
- Authority
- CN
- China
- Prior art keywords
- switch pipe
- unit
- voltage
- filter inductance
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F5/00—Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/443—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
- H02M5/45—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M5/452—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
- Ac-Ac Conversion (AREA)
Abstract
本发明公开了一种长寿命智能降压转换装置,其包括有高频调制单元、滤波电感滤波单元及逆变倒相单元,所述高频调制单元包括有第一开关管和第二开关管,所述第一开关管的漏极用于接入直流电压,所述第一开关管的源极与第二开关管的漏极相连,所述第二开关管的源极接地,所述第一开关管的栅极和第二开关管的栅极分别接入相位相反的两路PWM脉冲信号;所述滤波电感滤波单元包括有滤波电感,所述滤波电感的前端连接于第一开关管的源极;所述逆变倒相单元,其输入端连接于滤波电感的后端,所述逆变倒相单元用于将滤波电感后端输出的半波脉动电压逆变转换为正弦交流电压。本发明无需电解电容,可提高使用寿命、便于携带并且能避免对电网造成干扰。
Description
技术领域
本发明涉及电压转换器,尤其涉及一种无电解电容的长寿命智能降压转换装置。
背景技术
正弦波降压转换装置又被称为降压旅行排插,是一种正弦波AC/AC变换器,可以在AC/AC变换中实现降压并稳定电压与频率的功能。目前AC/AC便隽式设备市场大多数为修正波输出,降压电路都先整成直流然后用铝电解电容滤波再用BUCK降压,最后再进行逆变。但是这种降压转换装置输出的电压大多为修正波,对电器设备的伤害较大,而且内部大多用铝电解电容滤波,严重影响产品寿命,导致产品的安全可靠性降低。同时,这种降压转换装置的体积较大,不利于携带。此外,现有的降压转换装置PF值太低,容易对电网产生干扰。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种无需电解电容,可提高使用寿命、便于携带并且能避免对电网造成干扰的长寿命智能降压转换装置。
为解决上述技术问题,本发明采用如下技术方案。
一种长寿命智能降压转换装置,其包括有一高频调制单元、一滤波电感滤波单元及一逆变倒相单元,其中:所述高频调制单元包括有第一开关管和第二开关管,所述第一开关管的漏极用于接入直流电压,所述第一开关管的源极与第二开关管的漏极相连,所述第二开关管的源极接地,所述第一开关管的栅极和第二开关管的栅极分别接入相位相反的两路PWM脉冲信号;所述滤波电感滤波单元包括有滤波电感,所述滤波电感的前端连接于第一开关管的源极,当所述第一开关管导通而第二开关管截止时,所述第一开关管漏极接入的直流电压传输至滤波电感的后端,当所述第一开关管截止而第二开关管导通时,所述滤波电感的后端产生电动势,该电动势经由第二开关管向滤波电感的前端泄放,通过调整加载于第一开关管栅极和第二开关管栅极的两路PWM脉冲信号的占空比,以令滤波电感后端的电压降低至预设值;所述逆变倒相单元,其输入端连接于滤波电感的后端,所述逆变倒相单元用于将滤波电感后端输出的半波脉动电压逆变转换为正弦交流电压。
优选地,还包括有:一交流输入单元,其用于接入市电交流电压;一整流滤波单元,其输入端连接交流输入单元的输出端,其输出端连接第一开关管的漏极,所述整流滤波单元用于将市电交流电压进行整流和滤波后,形成直流电压并加载于第一开关管的漏极。
优选地,所述第一开关管和第二开关管均为N沟道MOS管。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极和逆变倒相单元的控制端分别连接于MCU控制单元,藉由所述MCU控制单元而输出相位相反的两路PWM脉冲信号以及控制逆变倒相单元的转换频率。
优选地,还包括有一交流采样单元,所述交流采样单元的输入端连接于交流输入单元,所述交流采样单元的输出端连接于MCU控制单元,所述交流采样单元用于采集市电交流电压的电压值和相位并传输至MCU控制单元,所述MCU控制单元用于:根据交流采样单元采集的电压值判断市电交流电压是否超过预设值,若超过预设值,则向所述第一开关管的栅极和第二开关管的栅极分别加载相位相反的两路PWM脉冲信号,若未超过预设值,则令所述第一开关管保持导通;根据交流采样单元采集的市电交流电压的相位而控制逆变倒相单元的转换频率,以令逆变倒相单元输出与市电交流电压相位相同的正弦交流电压。
优选地,所述交流采样单元包括有运放和比较器,所述运放的两个输入端分别通过限流电阻而连接于交流输入单元的火线和零线,所述运放的输出端连接于MCU控制单元,所述MCU控制单元对运放输出的电压信号运算后得出市电交流电压的电压值。
优选地,所述运放的输出端还连接于比较器的反相端,所述比较器的同相端用于接入基准电压,所述比较器的输出端连接于MCU控制单元,所述MCU控制单元根据比较器输出的电压信号而得出市电交流电压的相位。
优选地,所述滤波电感的后端连接有一电压采样单元,所述电压采样单元的输出端连接于MCU控制单元,所述电压采样单元用于采集滤波电感后端输出的直流电压并传输至MCU控制单元。
优选地,还包括有电流采样单元,所述电流采样单元包括有电流互感器,所述电流互感器的原边绕组串接于滤波电感的前端与第一开关管的源极之间,所述电流互感器副边绕组的电流信号经过整流后传输至MCU控制单元,当所述电流互感器副边绕组的电流超过预设值时,所述MCU控制单元控制第一开关管和第二开关管均截止。
优选地,所述逆变倒相单元包括由第三开关管、第四开关管、第五开关管和第六开关管组成的逆变桥,所述第三开关管的栅极、第四开关管的栅极、第五开关管的栅极和第六开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第三开关管、第四开关管、第五开关管和第六开关管导通或截止,以令所述逆变倒相单元输出正弦交流电压。
本发明公开的长寿命智能降压转换装置中:第一开关管的漏极用于接入直流电压,该直流电压可以是将市电进行整流、滤波后的电压,也可以是由其他方式获得的直流电压,工作时,通过向第一开关管的栅极和第二开关管的栅极分别接入相位相反的两路PWM脉冲信号,使得第一开关管和第二开关管交替导通,当第一开关管导通时,该直流电压依次经由第一开关管和滤波电感传输,当第二开关管导通时,滤波电感因电压突变而产生自感,使得滤波电感的后端产生电动势,滤波电感的电动势经由第二开关管向滤波电感的前端泄放,重复上述过程,使得滤波电感的输出电压降低,该过程中,通过调整两路PWM脉冲信号的占空比,可以调整第一开关管的导通时间,其中,第一开关管的导通时间越短,则滤波电感的输出电压越低,进而实现了正弦波智能降压转换。基于上述原理可见,本发明无需电解电容即能实现降压转换,不仅提高了使用寿命,而且便于携带,并能够避免对电网造成干扰。
附图说明
图1为长寿命智能降压转换装置的电路原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种长寿命智能降压转换装置,结合图1至图3所示,其包括有一高频调制单元30、一滤波电感滤波单元50及一逆变倒相单元60,其中:
所述高频调制单元30包括有第一开关管Q7和第二开关管Q10,所述第一开关管Q7的漏极用于接入直流电压,所述第一开关管Q7的源极与第二开关管Q10的漏极相连,所述第二开关管Q10的源极接地,所述第一开关管Q7的栅极和第二开关管Q10的栅极分别接入相位相反的两路PWM脉冲信号;
所述滤波电感滤波单元50包括有滤波电感L3,所述滤波电感L3的前端连接于第一开关管Q7的源极,当所述第一开关管Q7导通而第二开关管Q10截止时,所述第一开关管Q7漏极接入的直流电压传输至滤波电感L3的后端,当所述第一开关管Q7截止而第二开关管Q10导通时,所述滤波电感L3的后端产生电动势,该电动势经由第二开关管Q10向滤波电感的前端泄放,通过调整加载于第一开关管Q7栅极和第二开关管Q10栅极的两路PWM脉冲信号的占空比,以令滤波电感L3后端的电压降低至预设值;
所述逆变倒相单元60,其输入端连接于滤波电感L3的后端,所述逆变倒相单元60用于将滤波电感L3后端输出的半波脉动电压逆变转换为正弦交流电压。
上述长寿命智能降压转换装置的工作原理为:第一开关管Q7的漏极用于接入直流电压,该直流电压可以是将市电进行整流、滤波后的电压,也可以是由其他方式获得的直流电压,工作时,通过向第一开关管Q7的栅极和第二开关管Q10的栅极分别接入相位相反的两路PWM脉冲信号,使得第一开关管Q7和第二开关管Q10交替导通,当第一开关管Q7导通时,该直流电压依次经由第一开关管Q7和滤波电感L3传输,当第二开关管Q10导通时,滤波电感L3因电压突变而产生自感,使得滤波电感L3的后端产生电动势,滤波电感L3的电动势经由第二开关管Q10向滤波电感的前端泄放,重复上述过程,使得滤波电感L3的输出电压降低,该过程中,通过调整两路PWM脉冲信号的占空比,可以调整第一开关管Q7的导通时间,其中,第一开关管Q7的导通时间越短,则滤波电感L3的输出电压越低,进而实现了正弦波智能降压转换。基于上述原理可见,本发明无需电解电容即能实现降压转换,不仅提高了使用寿命,而且便于携带,并能够避免对电网造成干扰。
本实施例中,直流电压优选是将市电进行整流、滤波后的电压,所以该长寿命智能降压转换装置还包括有:
一交流输入单元10,其用于接入市电交流电压;
一整流滤波单元20,其输入端连接交流输入单元10的输出端,其输出端连接第一开关管Q7的漏极,所述整流滤波单元20用于将市电交流电压进行整流和滤波后,形成直流电压并加载于第一开关管Q7的漏极。
本实施例中,请参照图1,利用整流滤波单元20的整流作用,使得高频调制单元30的输入侧接入了直流电,该直流电经过高频调制单元30和电感滤波单元50处理后,输送至逆变倒相单元60的是半波脉动电压,逆变倒相单元60只需将相邻两个半波中的一个半波倒相处理后,即可形成正弦波交流电。本发明相比现有技术中,先利用电解电容滤成平滑直流电,再将平滑直流电逆变为交流电的方式而言,本发明仅需进行倒相处理即能获得交流电,因而大大提高了转换效率。
关于器件选型,所述第一开关管Q7和第二开关管Q10均为N沟道MOS管。
为了更好地实现智能控制,结合图1至图3所示,本实施例还包括有一MCU控制单元80,所述第一开关管Q7的栅极、第二开关管Q10的栅极和逆变倒相单元60的控制端分别连接于MCU控制单元80,藉由所述MCU控制单元80而输出相位相反的两路PWM脉冲信号以及控制逆变倒相单元60的转换频率。进一步地,该MCU控制单元80包括有单片机U1及其外围电路。
在实际应用中,对于旅行插排而言,仅当应用于较高市电电压的环境下,才需要进行降压转换,因此,需要对市电交流电压进行采样和判断,为了便于采样市电电压,本实施例还包括有一交流采样单元70,所述交流采样单元70的输入端连接于交流输入单元10,所述交流采样单元70的输出端连接于MCU控制单元80,所述交流采样单元70用于采集市电交流电压的电压值和相位并传输至MCU控制单元80,所述MCU控制单元80用于:
根据交流采样单元70采集的电压值判断市电交流电压是否超过预设值,若超过预设值,则向所述第一开关管Q7的栅极和第二开关管Q10的栅极分别加载相位相反的两路PWM脉冲信号,若未超过预设值,则令所述第一开关管Q7保持导通;
根据交流采样单元70采集的市电交流电压的相位而控制逆变倒相单元60的转换频率,以令逆变倒相单元60输出与市电交流电压相位相同的正弦交流电压。
关于交流采样单元70的具体组成,所述交流采样单元70包括有运放U9B和比较器U9A,所述运放U9B的两个输入端分别通过限流电阻而连接于交流输入单元10的火线和零线,所述运放U9B的输出端连接于MCU控制单元80,所述MCU控制单元80对运放U9B输出的电压信号运算后得出市电交流电压的电压值。所述运放U9B的输出端还连接于比较器U9A的反相端,所述比较器U9A的同相端用于接入基准电压,所述比较器U9A的输出端连接于MCU控制单元80,所述MCU控制单元80根据比较器U9A输出的电压信号而得出市电交流电压的相位。
上述交流采样单元70中,在对市电交流电压进行电压采样的同时,还进行相位采用,基于该相位的变化,MCU控制单元80可以相应控制逆变倒相单元60的转换频率,使得逆变倒相单元60输出的电压与市电交流电压相位相同,进而达到较高的PF值,以降低对电网的干扰。
为了实现输出采样,所述滤波电感L3的后端连接有一电压采样单元90,所述电压采样单元90的输出端连接于MCU控制单元80,所述电压采样单元90用于采集滤波电感L3后端输出的直流电压并传输至MCU控制单元80。该电压采样单元90可以由两个或者多个串联的采样电阻构成。
为了实现过流保护,本实施例还包括有电流采样单元40,所述电流采样单元40包括有电流互感器CS1,所述电流互感器CS1的原边绕组串接于滤波电感L3的前端与第一开关管Q7的源极之间,所述电流互感器CS1副边绕组的电流信号经过整流后传输至MCU控制单元80,当所述电流互感器CS1副边绕组的电流超过预设值时,所述MCU控制单元80控制第一开关管Q7和第二开关管Q10均截止。上述预设值可以预先写入MCU控制单元80,以供对比。
关于逆变倒相单元60的组成,所述逆变倒相单元60包括由第三开关管Q1、第四开关管Q2、第五开关管Q3和第六开关管Q4组成的逆变桥,所述第三开关管Q1的栅极、第四开关管Q2的栅极、第五开关管Q3的栅极和第六开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第三开关管Q1、第四开关管Q2、第五开关管Q3和第六开关管Q4导通或截止,以令所述逆变倒相单元60输出正弦交流电压。
将上述各单元整合后构成本发明的优选实施例,结合图1至图3所示,该实施例整体的工作原理为:
电网电压通过交流插座、保险F2、防雷电阻RV1、共模抑制滤波电感L1与CX1组滤波电路,将交流电压送给整流滤波单元。控制芯片U1通过R126、R127、R128、R38、R129、R130、R131、R45、C39、R39、R47、C41、U9、R44、D15组成的交流输入电压采样,以及R46、C40、R33、R34、D1、R31、R32组成的交流输入相位采样电路,用来判定高频调制电路的工作模式。D3与C1组成整流滤波电路,D3将电网电压整成两个半波通过CBB电容C1滤除杂波干扰。
在降压的关键部分,高频调制电路由Q7和Q10组成,当交流采样电路采样到电网电压高于AC120V电网电压时,控制芯片U1输出高频PWM1、PWM2信号分别经驱动电路D4、R8、R22、D2、R90、R95送给Q7的GAT与Q10的GAT极,Q7与Q10的控制脉宽按照交流采样电路采到的正弦变化方式进行调节且Q7与Q10的相位为180度倒相;当交流采样电路采样到电网电压等于或小于AC110电网电压时,Q7将会一直导通,Q10一直关闭,整流滤波后的交流半波电压直接经Q7流到滤波单元50。具体降压的原理是:Q7导通时,将C1上的直流高压变成脉冲电平,脉冲电平通过滤波电路的降压滤波电感L3,利用滤波电感对高频电压电流形成的高阻抗进行降压,从而达到高电压变换为低电压,且经过L3滤除高频脉冲留下低频半波电压。
本实施例中,高频滤波电路由L3组成,经过Q7与Q10调制后的高频电压与电流经过L3滤波后变成交流半波电压;如果Q7是工频方式工作则滤波电路不起作用,相当于直通。L3滤波后的电压由R13、R15组成的电压采样电路送到U1控制芯片,由U1来确定Q7与Q10的PWM的占空比。即高频调制电路、电流采样、滤波电路与电压采样电路形成闭环,来调节Q7与Q10的占空比达到滤波后的输出电压的稳定。
作为一些扩展功能,在过流保护电路中,CS1、BD2、R91、R93组成电流采样电路串接在调制电路输出端,用来采样电路的输出电流,当后电路发生过流、过载、短路时将会关闭Q7使后级电路没有输出。
逆变倒相电路由Q1、Q2、Q3、Q4组成,当经过L3滤波电感的第一个输出半波交流电压经Q1与Q4送给负载;当经过L3滤波电感的第二个输出半波交流电压经Q2与Q3送给负载,这样在负载上就形成了一个完整的工频正弦交流电压。控制芯片U1输出的PWM信号经驱动电路后分别送出PWM1H、PWM2H、PWM1L、PWM2L给Q1、Q2、Q3、Q4的GATE极。逆变倒相电路的相位是按照输入采样电路采到的相位来锁定逆变倒相电路,即逆变倒相电路的频率和相位将与输电压的频率与相位一致。
本发明公开的长寿命智能降压转换装置,具有体抧小、重量轻、方便推带等特点,在输入全电压范围内能够能自动调节输出电压,输出电压是以纯正弦模式输出,对负载设损害较小,兼容强;同时,本发明没有使用铝电解电容滤波,使用的是长寿命的CBB电容,所以产品的寿命更长,此外,输出电压会跟随交流电网变化,使得本发明具有高PF值,对电网干扰较小。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。
Claims (10)
1.一种长寿命智能降压转换装置,其特征在于,包括有一高频调制单元、一滤波电感滤波单元及一逆变倒相单元,其中:
所述高频调制单元包括有第一开关管和第二开关管,所述第一开关管的漏极用于接入直流电压,所述第一开关管的源极与第二开关管的漏极相连,所述第二开关管的源极接地,所述第一开关管的栅极和第二开关管的栅极分别接入相位相反的两路PWM脉冲信号;
所述滤波电感滤波单元包括有滤波电感,所述滤波电感的前端连接于第一开关管的源极,当所述第一开关管导通而第二开关管截止时,所述第一开关管漏极接入的直流电压传输至滤波电感的后端,当所述第一开关管截止而第二开关管导通时,所述滤波电感的后端产生电动势,该电动势经由第二开关管向滤波电感的前端泄放,通过调整加载于第一开关管栅极和第二开关管栅极的两路PWM脉冲信号的占空比,以令滤波电感后端的电压降低至预设值;
所述逆变倒相单元的输入端连接于滤波电感的后端,所述逆变倒相单元用于将滤波电感后端输出的半波脉动电压逆变转换为正弦交流电压。
2.如权利要求1所述的长寿命智能降压转换装置,其特征在于,还包括有:
一交流输入单元,其用于接入市电交流电压;
一整流滤波单元,其输入端连接交流输入单元的输出端,其输出端连接第一开关管的漏极,所述整流滤波单元用于将市电交流电压进行整流和滤波后,形成直流电压并加载于第一开关管的漏极。
3.如权利要求1所述的长寿命智能降压转换装置,其特征在于,所述第一开关管和第二开关管均为N沟道MOS管。
4.如权利要求2所述的长寿命智能降压转换装置,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极、第二开关管的栅极和逆变倒相单元的控制端分别连接于MCU控制单元,藉由所述MCU控制单元而输出相位相反的两路PWM脉冲信号以及控制逆变倒相单元的转换频率。
5.如权利要求4所述的长寿命智能降压转换装置,其特征在于,还包括有一交流采样单元,所述交流采样单元的输入端连接于交流输入单元,所述交流采样单元的输出端连接于MCU控制单元,所述交流采样单元用于采集市电交流电压的电压值和相位并传输至MCU控制单元,所述MCU控制单元用于:
根据交流采样单元采集的电压值判断市电交流电压是否超过预设值,若超过预设值,则向所述第一开关管的栅极和第二开关管的栅极分别加载相位相反的两路PWM脉冲信号,若未超过预设值,则令所述第一开关管保持导通;
根据交流采样单元采集的市电交流电压的相位而控制逆变倒相单元的转换频率,以令逆变倒相单元输出与市电交流电压相位相同的正弦交流电压。
6.如权利要求5所述的长寿命智能降压转换装置,其特征在于,所述交流采样单元包括有运放和比较器,所述运放的两个输入端分别通过限流电阻而连接于交流输入单元的火线和零线,所述运放的输出端连接于MCU控制单元,所述MCU控制单元对运放输出的电压信号运算后得出市电交流电压的电压值。
7.如权利要求6所述的长寿命智能降压转换装置,其特征在于,所述运放的输出端还连接于比较器的反相端,所述比较器的同相端用于接入基准电压,所述比较器的输出端连接于MCU控制单元,所述MCU控制单元根据比较器输出的电压信号而得出市电交流电压的相位。
8.如权利要求4所述的长寿命智能降压转换装置,其特征在于,所述滤波电感的后端连接有一电压采样单元,所述电压采样单元的输出端连接于MCU控制单元,所述电压采样单元用于采集滤波电感后端输出的直流电压并传输至MCU控制单元。
9.如权利要求4所述的长寿命智能降压转换装置,其特征在于,还包括有电流采样单元,所述电流采样单元包括有电流互感器,所述电流互感器的原边绕组串接于滤波电感的前端与第一开关管的源极之间,所述电流互感器副边绕组的电流信号经过整流后传输至MCU控制单元,当所述电流互感器副边绕组的电流超过预设值时,所述MCU控制单元控制第一开关管和第二开关管均截止。
10.如权利要求5所述的长寿命智能降压转换装置,其特征在于,所述逆变倒相单元包括由第三开关管、第四开关管、第五开关管和第六开关管组成的逆变桥,所述第三开关管的栅极、第四开关管的栅极、第五开关管的栅极和第六开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第三开关管、第四开关管、第五开关管和第六开关管导通或截止,以令所述逆变倒相单元输出正弦交流电压。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611061814.1A CN106787790B (zh) | 2016-11-25 | 2016-11-25 | 一种长寿命智能降压转换装置 |
US15/571,841 US10291143B2 (en) | 2016-11-25 | 2017-02-28 | Voltage converter without electrolytic capacitor |
CA3021232A CA3021232A1 (en) | 2016-11-25 | 2017-02-28 | Long-life intelligent step-down conversion device |
PCT/CN2017/075080 WO2018094899A1 (zh) | 2016-11-25 | 2017-02-28 | 一种长寿命智能降压转换装置 |
JP2017559603A JP6545286B2 (ja) | 2016-11-25 | 2017-02-28 | 長寿命のスマート降圧コンバータ |
US16/357,335 US20190229638A1 (en) | 2016-11-25 | 2019-03-19 | Voltage converter without electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611061814.1A CN106787790B (zh) | 2016-11-25 | 2016-11-25 | 一种长寿命智能降压转换装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106787790A true CN106787790A (zh) | 2017-05-31 |
CN106787790B CN106787790B (zh) | 2021-04-13 |
Family
ID=58911010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611061814.1A Active CN106787790B (zh) | 2016-11-25 | 2016-11-25 | 一种长寿命智能降压转换装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10291143B2 (zh) |
JP (1) | JP6545286B2 (zh) |
CN (1) | CN106787790B (zh) |
CA (1) | CA3021232A1 (zh) |
WO (1) | WO2018094899A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106533192B (zh) * | 2016-11-25 | 2023-04-18 | 广东百事泰医疗器械股份有限公司 | 一种正弦波智能降压转换装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040012343A1 (en) * | 2002-07-19 | 2004-01-22 | Nostwick Allan Albert | Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply |
CN102005954A (zh) * | 2010-11-09 | 2011-04-06 | 特变电工新疆新能源股份有限公司 | 单相非隔离型光伏并网逆变器及控制方法 |
CN201945629U (zh) * | 2010-11-25 | 2011-08-24 | 江苏中澳光伏能源科技有限公司 | 光伏逆变器交流电压采样电路 |
CN208337419U (zh) * | 2016-11-25 | 2019-01-04 | 广东百事泰电子商务股份有限公司 | 一种长寿命智能降压转换装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59185157A (ja) * | 1983-03-31 | 1984-10-20 | Mitsubishi Electric Corp | チヨツパ装置 |
JPS61207132A (ja) * | 1985-03-12 | 1986-09-13 | 株式会社東芝 | 直流変流器の保護装置 |
JPS62217801A (ja) * | 1986-03-19 | 1987-09-25 | Toshiba Corp | 電気車の発電制動装置 |
US5633791A (en) * | 1995-04-26 | 1997-05-27 | Poon; Franki N. K. | Double modulation converter |
JP4311915B2 (ja) * | 2002-06-05 | 2009-08-12 | 株式会社リコー | 電圧検出機能付きdc−dcコンバータ |
US9077262B2 (en) * | 2008-04-29 | 2015-07-07 | Cirrus Logic, Inc. | Cascaded switching power converter for coupling a photovoltaic energy source to power mains |
JP5656378B2 (ja) * | 2009-08-26 | 2015-01-21 | 三菱電機株式会社 | 発光ダイオード点灯装置及び照明器具及び照明システム |
JP5699470B2 (ja) * | 2010-07-21 | 2015-04-08 | ソニー株式会社 | スイッチング電源装置 |
JP5504129B2 (ja) * | 2010-10-18 | 2014-05-28 | 東芝テック株式会社 | 電力変換装置 |
JP5601965B2 (ja) * | 2010-10-20 | 2014-10-08 | 東芝テック株式会社 | 電力変換装置 |
CN102255544A (zh) * | 2011-07-25 | 2011-11-23 | 无锡风光新能源科技有限公司 | Dc/ac逆变电路 |
CN102403922A (zh) * | 2011-12-21 | 2012-04-04 | 牟英峰 | Dc/ac并网逆变电路及功率因数调节方法 |
GB2524102A (en) * | 2014-03-14 | 2015-09-16 | Eisergy Ltd | A switched mode AC-DC converter |
JP2015204637A (ja) * | 2014-04-10 | 2015-11-16 | 山洋電気株式会社 | 電力変換装置 |
JP6393169B2 (ja) * | 2014-11-27 | 2018-09-19 | エイブリック株式会社 | Dc−dcコンバータ |
CN106533192B (zh) * | 2016-11-25 | 2023-04-18 | 广东百事泰医疗器械股份有限公司 | 一种正弦波智能降压转换装置 |
US10097102B1 (en) * | 2017-03-16 | 2018-10-09 | Kabushiki Kaisha Toshiba | Power conversion circuit |
US10038390B1 (en) * | 2017-03-16 | 2018-07-31 | Kabushiki Kaisha Toshiba | Power conversion circuit |
-
2016
- 2016-11-25 CN CN201611061814.1A patent/CN106787790B/zh active Active
-
2017
- 2017-02-28 US US15/571,841 patent/US10291143B2/en active Active
- 2017-02-28 WO PCT/CN2017/075080 patent/WO2018094899A1/zh active Application Filing
- 2017-02-28 JP JP2017559603A patent/JP6545286B2/ja active Active
- 2017-02-28 CA CA3021232A patent/CA3021232A1/en not_active Abandoned
-
2019
- 2019-03-19 US US16/357,335 patent/US20190229638A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040012343A1 (en) * | 2002-07-19 | 2004-01-22 | Nostwick Allan Albert | Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply |
CN102005954A (zh) * | 2010-11-09 | 2011-04-06 | 特变电工新疆新能源股份有限公司 | 单相非隔离型光伏并网逆变器及控制方法 |
CN201945629U (zh) * | 2010-11-25 | 2011-08-24 | 江苏中澳光伏能源科技有限公司 | 光伏逆变器交流电压采样电路 |
CN208337419U (zh) * | 2016-11-25 | 2019-01-04 | 广东百事泰电子商务股份有限公司 | 一种长寿命智能降压转换装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2018538769A (ja) | 2018-12-27 |
US20190229638A1 (en) | 2019-07-25 |
JP6545286B2 (ja) | 2019-07-17 |
US10291143B2 (en) | 2019-05-14 |
US20180351471A1 (en) | 2018-12-06 |
CN106787790B (zh) | 2021-04-13 |
CA3021232A1 (en) | 2018-05-31 |
WO2018094899A1 (zh) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106533195A (zh) | 基于pfc与llc谐振的智能全桥正弦波电压转换电路 | |
CN106533194A (zh) | 一种基于pfc正激全桥的智能型修正波电压转换电路 | |
CN106533193A (zh) | 一种基于pfc双全桥的智能型正弦波电压转换电路 | |
CN106856378A (zh) | 基于pfc交错反激的智能型半桥正弦波电压转换电路 | |
CN106655801A (zh) | 一种基于pfc正激全桥的智能型正弦波电压转换电路 | |
CN106787792A (zh) | 一种基于pfc反激全桥的智能型正弦波电压转换电路 | |
CN106787798A (zh) | 基于pfc交错反激全桥的智能型正弦波电压转换电路 | |
CN106787799A (zh) | 一种基于pfc正激半桥的智能型正弦波电压转换电路 | |
CN106849690A (zh) | 基于pfc与llc谐振的智能半桥正弦波电压转换电路 | |
CN106787794A (zh) | 一种基于pfc反激全桥的智能型修正波电压转换电路 | |
CN206422704U (zh) | 基于pfc交错反激的智能型半桥正弦波电压转换电路 | |
CN106787754A (zh) | 基于pfc交错反激全桥的智能型修正波电压转换电路 | |
CN206620058U (zh) | 基于pfc与llc谐振的智能半桥正弦波电压转换电路 | |
CN106787807A (zh) | 基于pfc、全桥和半桥的智能型修正波电压转换电路 | |
CN106602907A (zh) | 一种基于pfc双全桥的智能型修正波电压转换电路 | |
CN106787806A (zh) | 基于pfc、全桥和半桥的智能型正弦波电压转换电路 | |
CN106533192A (zh) | 一种正弦波智能降压转换装置 | |
CN206364708U (zh) | 基于pfc交错反激全桥的智能型修正波电压转换电路 | |
CN206364710U (zh) | 基于pfc与llc谐振的智能半桥修正波电压转换电路 | |
CN206364711U (zh) | 基于pfc、全桥和半桥的智能型正弦波电压转换电路 | |
CN106505870A (zh) | 一种长寿命智能升压转换装置 | |
CN206379887U (zh) | 一种基于mos管全桥整流的智能型正弦波电压转换电路 | |
CN203574903U (zh) | 高功率因数恒流控制电路及led照明设备 | |
CN208508805U (zh) | 基于pfc与llc谐振的智能全桥正弦波电压转换电路 | |
CN106787780A (zh) | 基于pfc与llc谐振的智能半桥修正波电压转换电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: No.358 Baotian 1st Road, Tiegang community, Xixiang street, Baoan District, Shenzhen City, Guangdong Province Applicant after: Guangdong best medical equipment Co., Ltd Address before: 518000 east part of the third floor, no.258, Baotian 1st Road, Tiegang community, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province Applicant before: Guangdong BESTEK E-commerce Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |