CN106777806A - 高强度等偏频三级渐变刚度板簧接触载荷的验算法 - Google Patents

高强度等偏频三级渐变刚度板簧接触载荷的验算法 Download PDF

Info

Publication number
CN106777806A
CN106777806A CN201710023307.7A CN201710023307A CN106777806A CN 106777806 A CN106777806 A CN 106777806A CN 201710023307 A CN201710023307 A CN 201710023307A CN 106777806 A CN106777806 A CN 106777806A
Authority
CN
China
Prior art keywords
spring
leaf spring
high intensity
offset frequency
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710023307.7A
Other languages
English (en)
Other versions
CN106777806B (zh
Inventor
周长城
汪晓
马驰骋
赵雷雷
杨腾飞
王凤娟
邵明磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201710023307.7A priority Critical patent/CN106777806B/zh
Publication of CN106777806A publication Critical patent/CN106777806A/zh
Application granted granted Critical
Publication of CN106777806B publication Critical patent/CN106777806B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)

Abstract

本发明涉及高强度等偏频三级渐变刚度板簧接触载荷的验算法,属于车辆悬架钢板弹簧技术领域。本发明可根据各片板簧的结构参数,弹性模量,主簧夹紧刚度及其与各级副簧的复合夹紧刚度,主簧及第一级副簧的初始切线弧高,对高强度等偏频三级渐变刚度板簧的接触载荷进行验算。通过实例验算和样机试验测试可知,本发明所提供的高强度等偏频三级渐变刚度板簧接触载荷的验算法是正确的,为高强度等偏频三级渐变刚度板簧特性仿真及验证奠定了可靠的技术基础。利用该方法可确保接触载荷满足板簧设计要求,提高产品设计水平、质量和性能及车辆行驶平顺性和安全性;同时,降低设计及试验费用,加快产品开发速度。

Description

高强度等偏频三级渐变刚度板簧接触载荷的验算法
技术领域
本发明涉及车辆悬架板簧,特别是高强度等偏频三级渐变刚度板簧接触载荷的验算法。
背景技术
随着高强度钢板材料的出现,可采用高强度等偏频三级渐变板簧,从而满足在不同载荷下的悬架偏频保持不变的设计要求,进一步提高车辆行驶平顺性。三级渐变间隙的接触载荷对板簧的挠度、应力大小、渐变刚度、悬架偏频及车辆平顺性具有重要影响,并且对于给定设计结构板簧的特性仿真和验证,必须首先对接触载荷进行验算,其中,接触载荷验算不仅与切线弧高及曲率半径有关,还与板簧在一定载荷下的挠度有关。然而,由于主簧挠度计算非常复杂,因此,据所查资料可知,目前国内外尚未给出可靠的高强度等偏频三级渐变刚度板簧接触载荷的验算法。随着车辆行驶速度及其对平顺性要求的不断提高,对车辆悬架系统设计提出了更高要求,因此,必须建立一种精确、可靠的高强度等偏频三级渐变刚度板簧接触载荷的验算法,以满足车辆行业快速发展、车辆行驶平顺性不断提高及对高强度三级渐变板簧的设计及特性仿真验算的要求,提高产品的设计水平、质量和性能及车辆行驶平顺性和安全性;同时,降低设计及试验费用,加快产品开发速度。
发明内容
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种简便、可靠的高强度等偏频三级渐变刚度板簧接触载荷的验算法,其设计流程如图1所示。高强度等偏频三级渐变板簧的一半对称结构如图2所示,是由主簧1、第一级副簧2和第二级副簧3和第三级副簧4所组成的,高强度等偏频三级渐变刚度板簧的宽度为b,各片板簧采用高强度钢板,弹性模量为E,骑马螺栓夹紧距的一半为L0。主簧1的片数为n,主簧各片的厚度为hi,一半作用长度LiT,一半夹紧长度Li=LiT-L0/2,i=1,2,…,n;第一级副簧2的片数为n1,第一级副簧各片的厚度为hA1j,一半作用长度LA1jT,一半夹紧长度LA1j=LA1jT-L0/2,j=1,2,…,n1;第二级副簧3的片数为n2,第二级副簧各片的厚度为hA2j,一半作用长度LA2kT,一半夹紧长度LA2k=LA2kT-L0/2,k=1,2,…,n2;第三级副簧4的片数为n3,第三级副簧各片的厚度为hA3l,一半作用长度LA3lT,一半夹紧长度LA3l=LA3lT-L0/2,l=1,2,…,n3。主副簧的总片数N=n+n1+n2+n3,主簧与各级副簧之间共设有三级渐变间隙δMA1、δA12和δA23,即在主簧末片下表面与第一级副簧首片上表面之间设有第一级渐变间隙δMA1;第一级副簧末片下表面与第二级副簧首片上表面之间设有第二级渐变间隙δA12;第二级副簧的末片下表面与第三级副簧首片上表面之间设有第三级渐变间隙δA23。通过主簧和各级副簧初始切线弧高及三级渐变间隙,以满足渐变刚度钢板弹簧的各次接触载荷及渐变刚度和悬架系统偏频的设计要求。根据各片板簧的结构参数,弹性模量,主簧夹紧刚度及主簧与各级副簧的复合夹紧刚度,主簧及各级副簧的初始切线弧高,对高强度等偏频三级渐变刚度板簧的接触载荷进行验算。
为解决上述技术问题,本发明所提供的高强度等偏频三级渐变刚度板簧接触载荷的验算法,其特征在于采用以下验算步骤:
(1)高强度等偏频三级渐变刚度板簧的主簧末片下表面初始曲率半径RM0b的计算:
根据主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,主簧首片的一半夹紧长度L1,主簧的切线弧高设计值HgM0,对主簧末片下表面初始曲率半径RM0b进行计算,即
(2)高强度等偏频三级渐变刚度板簧的第一级副簧首片上表面初始曲率半径RA10a的计算:
根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高设计值HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即
(3)高强度等偏频三级渐变刚度板簧的第1次开始接触载荷Pk1的验算:
根据高强度等偏频三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1,主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,步骤(1)中计算得到的RM0b,步骤(2)中计算得到的RA10a,对第1次开始接触载荷Pk1进行验算,即
式中,hMe为主簧根部重叠部分的等效厚度,
(4)高强度等偏频三级渐变刚度板簧的其他各次接触载荷的验算:
根据主簧夹紧刚度KM,主簧与三级副簧的复合夹紧刚度KMA1、KMA2和KMA3,及步骤(3)中验算得到的Pk1,对第2次开始接触载荷Pk2、第3次开始接触Pk3和第3次完全接触Pw3进行验算,即
本发明比现有技术具有的优点
由于高强度等偏频三级渐变板簧的挠度计算非常复杂,且受挠度、弧高及曲率半径与载荷之间关系的制约,先前国内外一直未给出高强度等偏频三级渐变刚度板簧接触载荷的验算法。本发明可根据所设计的高强度等偏频三级渐变刚度板簧的主簧各片和副簧的结构参数,弹性模量,主簧及各级副簧的初始切线弧高设计值,主簧夹紧刚度及主簧与各级副簧的复合夹紧刚度,对各次接触载荷进行验算。过样机试验测试可知,接触载荷的验算值与样机试验加载值相吻合,表明所提供的高强度等偏频三级渐变刚度板簧接触载荷的验算法是正确的,为高强度三级渐变刚度板簧的特性仿真及验证奠定了的技术基础。利用该方法可得到可靠的接触载荷验算值,确保满足接触载荷的设计要求,提高产品设计水平、质量和性能及车辆行驶平顺性和安全性;同时,降低设计和试验费用,加快产品开发速度。
附图说明
为了更好地理解本发明,下面结合附图做进一步的说明。
图1是高强度等偏频三级渐变刚度板簧接触载荷的验算流程图;
图2是高强度等偏频三级渐变刚度板簧的一半对称结构示意图;
图3是实施例一的高强度等偏频三级渐变刚度板簧的切线弧高随载荷P的变化曲线及在额定载荷剩余切线弧高验证值;
图4是实施例二的高强度等偏频三级渐变刚度板簧的切线弧高随载荷P的变化曲线及在额定载荷剩余切线弧高验证值。
具体实施方案
下面通过实施例对本发明作进一步详细说明。
实施例一:某高强度三级渐变刚度钢板弹簧的宽度b=63mm,骑马螺栓夹紧距的一半L0=50mm,弹性模量E=200GPa。主簧夹紧刚度KM=51.44N/mm,主簧与各级副簧的复合夹紧刚度KMA1=75.41N/mm,KMA2=144.46N/mm、KMA3=172.9N/mm。主簧初始切线弧高设计值为HgM0=114.1mm,第一副簧的初始切线弧高设计值HgA10=21.1mm。主簧的片数n=2,主簧各片的厚度h1=h2=8mm;主簧首片的一半作用长度分别为L1T=525mm,一半夹紧长度L1=L1T-L0/2=500mm。第一级副簧的片数n1=1,厚度hA11=8mm,一半作用长度为LA11T=350mm,一半夹紧长度为LA11=LA11T-L0/2=325mm。第二级副簧的片数n2=1,厚度hA21=13mm,一半作用长度为LA21T=250mm,一半夹紧长度为LA21=LA21T-L0/2=225mm。第三级副簧的片数n3=1,厚度hA31=13mm,一半作用长度为LA31T=150mm,一半夹紧长度为LA31=LA31T-L0/2=125mm。根据高强度三级渐变刚度板簧的结构参数,弹性模量,主簧夹紧刚度及主簧与各级副簧的副簧夹紧刚度,主簧及第一级副簧的初始切线弧高设计值,对该高强度等偏频三级渐变刚度板簧的各次接触载荷进行验算。
本发明实例所提供的高强度等偏频三级渐变刚度板簧接触载荷的验算法,其验算流程如图1所示,具体验算步骤如下:
(1)高强度等偏频三级渐变刚度板簧的主簧末片下表面曲率半径RM0b的计算:
根据主簧片数n=2,主簧首片的一半夹紧长度L1=500mm,主簧各片的厚度h1=h2=8mm,主簧的切线弧高设计值HgM0=114.1mm,对主簧末片下表面曲率半径RM0b进行计算,即
(2)高强度等偏频三级渐变刚度板簧的第一级副簧首片上表面曲率半径RA10a的计算:
根据第一级副簧首片的一半夹紧长度LA11=325mm,第一级副簧的初始切线弧高设计值HgA10=21.1mm,对第一级副簧首片上表面曲率半径RA10a进行计算,即
(3)高强度等偏频三级渐变刚度板簧的第1次开始接触载荷Pk1的验算:
根据高强度等偏频三级渐变刚度板簧的宽度b=63mm,弹性模量E=200GPa;主簧首片的一半夹紧跨长度L1=500mm,主簧的片数n=2,主簧各片的厚度h1=h2=8mm,步骤(1)中计算得到的RM0b=1168.6mm,步骤(2)中计算得到的RA10a=2513.5mm,对第1次开始接触载荷Pk1进行验算,即
式中,hMe为主簧根部重叠部分的等效厚度,
(4)高强度等偏频三级渐变刚度板簧的其他各次接触载荷的验算:
根据主簧夹紧刚度KM=51.44N/mm,主簧与各级副簧的复合夹紧刚度KMA1=75.41N/mm,KMA2=144.46N/mm、KMA3=172.9N/mm,及步骤(3)中验算得到的Pk1=1969.3N,对高强度等偏频三级渐变刚度板簧的第2次开始接触载荷Pk2、第3次开始接触Pk3和第3次完全接触Pw3进行验算,即
可知,各次接触载荷的验算值Pk1=1969N,Pk2=2887N、Pk3=5530N和Pw3=6619N,与各次开始接触载荷设计要求值Pk1=1966N,Pk2=2882N、Pk3=5522N和Pw3=6609N相吻合。
根据该高强度等偏频三级渐变刚度板簧的主簧初始切线弧高HgM0=114.1mm及额定载荷PN=7227N,利用Matlab计算程序,仿真计算所得到的切线弧高HgMP随载荷P的变化曲线及在额定载荷下的剩余切线弧高验证值,如图3所示,其中,在额定载荷PN=7227N下的剩余切线弧高HgMsy=26mm,满足设计要求值。表明所提提供的高强度等偏频三级渐变刚度板簧的接触载荷验算法是正确的,同时,说明该高强度等偏频三级渐变刚度板簧的主簧及各级副簧的初始切线弧高设计值是准确可靠的。利用该方法可得到准确可靠的接触载荷验算值,为高强度等偏频三级渐变刚度板簧的特性仿真及验证,奠定了可靠的技术基础。
实施例二:某高强度等偏频三级渐变刚度钢板弹簧的宽度b=63mm,骑马螺栓夹紧距的一半L0=50mm,弹性模量E=200GPa。主簧夹紧刚度KM=51.44N/mm,主簧与各级副簧的复合夹紧刚度分别为KMA1=75.67N/mm、KMA2=138.29N/mm和KMA3=181.93N/mm。主簧的初始切线弧高HgM0=113.1mm,第一副簧的初始切线弧HgA10=22.8mm。主簧的片数n=2,主簧各片的厚度h1=h2=8mm,主簧首片的一半作用长度L1T=525mm,一半夹紧长度L1=L1T-L0/2=500mm。第一级副簧片数n1=1,厚度hA11=8mm,一半作用长度LA11T=360mm,一半夹紧长度LA11=LA11T-L0/2=335mm。第二级副簧片数n2=1片,厚度hA21=12mm,一半作用长度LA21T=275mm,一半夹紧长度LA21=LA21T-L0/2=250mm。第三级副簧片数n3=1,厚度hA31=12mm,一半作用长度LA31T=245mm,一半夹紧长度LA31=LA31T-L0/2=220mm。根据板簧的结构参数,弹性模量,主簧夹紧刚度,主簧与各级副簧的复合夹紧刚度,主簧的初始切线弧高和第一级副簧的初始切线弧高设计值,对该高强度等偏频三级渐变刚度钢板弹簧的接触载荷进行验算。
采用与实施例一相同的步骤,对该实施例的高强度等偏频三级渐变刚度钢板弹簧的接触载荷进行验算,即:
(1)高强度等偏频三级渐变刚度板簧的主簧末片下表面曲率半径RM0b的计算:
根据主簧片数n=2,主簧各片的厚度h1=h2=8mm,主簧首片的一半夹紧长度L1=500mm,主簧的切线弧高设计值HgM0=113.1mm,对主簧末片下表面曲率半径RM0b进行计算,即
(2)高强度等偏频三级渐变刚度板簧的第一级副簧首片上表面曲率半径RA10a的计算
根据第一级副簧首片的一半夹紧长度LA11=335mm,第一级副簧的初始切线弧高设计值HgA10=22.8mm,对第一级副簧首片上表面曲率半径RA10a,即
(3)高强度等偏频三级渐变刚度板簧的第1次开始接触载荷Pk1的验算:
根据高强度等偏频三级渐变刚度板簧的宽度b=63mm,弹性模量E=200GPa;主簧片数n=2,主簧各片的厚度h1=h2=8mm,主簧首片的一半夹紧跨长度L1=500mm,步骤(1)的中计算得到的RM0b=1177.8mm,步骤(2)中计算得到的RA10a=2472.5mm,对第1次开始接触载荷Pk1进行验算,即
式中,hMe为主簧根部重叠部分的等效厚度,
(4)高强度等偏频三级渐变刚度板簧的其他各次接触载荷的验算:
根据主簧夹紧刚度KM=51.44N/mm,主簧与各级副簧的复合夹紧刚度KMA1=75.67N/mm、KMA2=138.29N/mm和KMA3=181.93N/mm,步骤(3)中验算得到的Pk1=1912N,对高强度等偏频三级渐变刚度板簧的第2次和第3次接触载荷,及第3次完全接触载荷进行验算,即
可知,各次接触载荷的验算值Pk1=1912N,Pk2=2813N、Pk3=5141N和Pw3=6763N,与各次开始接触载荷的设计要求值相吻合。
根据主簧初始切线弧高设计值HgM0=113.1mm,通过加载仿真所得到该高强度三级渐变刚度板簧在不同载荷下的主簧切线弧高HgMP随载荷P的变化曲线,如图4所示,其中,在额定载荷下的主簧剩余切线弧高HgMsy=26.1mm,满足在额定载荷下的剩余切线胡搞的设计要求。说明该等渐变偏频高强度三级渐变刚度板簧的切线弧高设计值是准确可靠的,同时,表明所提供的高强度等偏频三级渐变刚度板簧接触载荷的验算法是正确的,为高强度等偏频三级渐变刚度板簧的仿真验算提供了可靠的技术基础。利用该方法可得到准确可靠的接触载荷验算值,确保接触载荷满足板簧设计要求,可提高产品的设计水平、质量和性能及车辆行驶平顺性;同时,降低设计和试验测试费用,加快产品开发速度。

Claims (1)

1.高强度等偏频三级渐变刚度板簧接触载荷的验算法,其中,板簧采用高强度钢板,各片板簧为以中心穿装孔对称的结构,安装夹紧距的一半为骑马螺栓夹紧距的一半;板簧由主簧和三级副簧构成,通过主簧和三级副簧的初始切线弧高及三级渐变间隙,确保满足板簧接触载荷、渐变刚度、悬架偏频及车辆行驶平顺性的设计要求,即高强度等偏频三级渐变刚度板簧;根据所设计的高强度等偏频三级渐变刚度板簧的主簧各片和副簧的结构参数,主簧及各级副簧的初始切线弧高,弹性模量,主簧夹紧刚度及主簧与各级副簧的复合夹紧刚度,对给定设计结构的高强度等偏频三级渐变刚度板簧的接触载荷进行验算,具体验算步骤如下:
(1)高强度等偏频三级渐变刚度板簧的主簧末片下表面初始曲率半径RM0b的计算:
根据主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,主簧首片的一半夹紧长度L1,主簧的切线弧高设计值HgM0,对主簧末片下表面初始曲率半径RM0b进行计算,即
R M 0 b = L 1 2 + H g M 0 2 2 H g M 0 + Σ i = 1 n h i ;
(2)高强度等偏频三级渐变刚度板簧的第一级副簧首片上表面初始曲率半径RA10a的计算:根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高设计值HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即
R A 10 a = L A 11 2 + H g A 10 2 2 H g A 10 ;
(3)高强度等偏频三级渐变刚度板簧的第1次开始接触载荷Pk1的验算:
根据高强度等偏频三级渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧跨长度L1,主簧的片数n,主簧各片的厚度hi,i=1,2,…,n,步骤(1)中计算得到的RM0b,步骤(2)中计算得到的RA10a,对第1次开始接触载荷Pk1进行验算,即
P k 1 = Ebh M e 3 ( R A 10 a - R M 0 b ) 6 L 1 R M 0 b R A 10 a ;
式中,hMe为主簧根部重叠部分的等效厚度,
(4)高强度等偏频三级渐变刚度板簧的其他各次接触载荷的验算:
根据主簧夹紧刚度KM,主簧与三级副簧的复合夹紧刚度KMA1、KMA2和KMA3,及步骤(3)中验算得到的Pk1,对第2次开始接触载荷Pk2、第3次开始接触Pk3和第3次完全接触Pw3进行验算,即
P k 2 = P k 1 K M A 1 K M , P k 3 = P k 2 K M A 2 K M A 1 , P w 3 = P k 3 K M A 3 K M A 2 .
CN201710023307.7A 2017-01-12 2017-01-12 高强度等偏频三级渐变刚度板簧接触载荷的验算方法 Expired - Fee Related CN106777806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710023307.7A CN106777806B (zh) 2017-01-12 2017-01-12 高强度等偏频三级渐变刚度板簧接触载荷的验算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710023307.7A CN106777806B (zh) 2017-01-12 2017-01-12 高强度等偏频三级渐变刚度板簧接触载荷的验算方法

Publications (2)

Publication Number Publication Date
CN106777806A true CN106777806A (zh) 2017-05-31
CN106777806B CN106777806B (zh) 2019-09-10

Family

ID=58948354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710023307.7A Expired - Fee Related CN106777806B (zh) 2017-01-12 2017-01-12 高强度等偏频三级渐变刚度板簧接触载荷的验算方法

Country Status (1)

Country Link
CN (1) CN106777806B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085318A1 (en) * 2007-09-28 2009-04-02 Brian Scott Guthrie Vehicle leaf spring suspension with radius arms
CN104443258A (zh) * 2014-11-12 2015-03-25 南通中远川崎船舶工程有限公司 一种车辆滚装船防扭转变形结构及工艺方法
CN105843988A (zh) * 2016-03-15 2016-08-10 周长城 端部接触式斜线型主副簧的副簧起作用载荷的验算方法
CN105946489A (zh) * 2016-06-30 2016-09-21 吉林大学 一种具有复合材料主副簧的汽车板弹簧总成及其装配方法
US20160338857A1 (en) * 2005-03-31 2016-11-24 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
CN106326605A (zh) * 2016-10-18 2017-01-11 山东理工大学 非端部接触式少片抛物线型主副簧挠度的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160338857A1 (en) * 2005-03-31 2016-11-24 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US20090085318A1 (en) * 2007-09-28 2009-04-02 Brian Scott Guthrie Vehicle leaf spring suspension with radius arms
CN104443258A (zh) * 2014-11-12 2015-03-25 南通中远川崎船舶工程有限公司 一种车辆滚装船防扭转变形结构及工艺方法
CN105843988A (zh) * 2016-03-15 2016-08-10 周长城 端部接触式斜线型主副簧的副簧起作用载荷的验算方法
CN105946489A (zh) * 2016-06-30 2016-09-21 吉林大学 一种具有复合材料主副簧的汽车板弹簧总成及其装配方法
CN106326605A (zh) * 2016-10-18 2017-01-11 山东理工大学 非端部接触式少片抛物线型主副簧挠度的计算方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周长城 等: "《车辆悬架弹簧力学解析计算理论》", 30 April 2016 *
宋群 等: "《钢板弹簧重叠部分应力及许用厚度计算理论的研究》", 《山东理工大学学报(自然科学版)》 *
徐宏波 等: "《莫尔定理在钢板弹簧刚度计算中的应用》", 《轻型汽车技术》 *
韦进光 等: "《渐变刚度板簧(多片副簧)的经验算法》", 《装备制造技术》 *

Also Published As

Publication number Publication date
CN106777806B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN106777806B (zh) 高强度等偏频三级渐变刚度板簧接触载荷的验算方法
CN106682357B (zh) 高强度三级渐变刚度板簧悬架系统偏频特性的仿真计算方法
CN106777804B (zh) 基于偏频仿真的三级渐变刚度板簧接触载荷的调整设计法
CN106802996A (zh) 两级副簧式非等偏频型渐变刚度板簧接触载荷的验算方法
CN106844925A (zh) 基于偏频仿真的两级副簧式渐变刚度板簧接触载荷的调整设计法
CN106709206A (zh) 高强度三级渐变刚度板簧的主簧挠度的计算方法
CN106812849B (zh) 非等偏频型三级渐变刚度板簧的接触载荷的验算方法
CN106838087B (zh) 高强度三级渐变刚度板簧的挠度特性的仿真计算方法
CN106650174A (zh) 高强度三级渐变刚度板簧的各次接触载荷的仿真计算方法
CN106812850A (zh) 高强度三级渐变刚度板簧夹紧刚度特性的仿真计算方法
CN106777803B (zh) 高强度两级渐变刚度板簧的接触载荷的仿真计算方法
CN107228146B (zh) 高强度三级渐变刚度板簧的各级渐变间隙的设计方法
CN106802995A (zh) 等渐变偏频高强度两级渐变刚度板簧接触载荷的验算方法
CN106709204A (zh) 高强度两级渐变刚度板簧的挠度特性的仿真计算法
CN106548003B (zh) 非等偏频型三级渐变刚度板簧根部最大应力的仿真计算法
CN106763384A (zh) 两级副簧式非等偏频型渐变刚度板簧切线弧高的设计方法
CN106599525B (zh) 非等偏频型三级渐变刚度板簧悬架偏频特性的仿真计算法
CN106777793A (zh) 两级副簧式非等偏频型渐变刚度板簧刚度特性的计算方法
CN106802998B (zh) 非等偏频型三级渐变刚度板簧夹紧刚度特性的仿真计算法
CN106682360B (zh) 高强度两级渐变刚度主副簧的最大应力特性的仿真计算法
CN106763387A (zh) 高强度三级渐变刚度板簧最大限位挠度的仿真验算法
CN106802999A (zh) 高强度三级渐变刚度板簧的主簧初始切线弧高的设计方法
CN106682338A (zh) 高强度等偏频型一级渐变刚度板簧的接触载荷的验算方法
CN106838088A (zh) 高强度三级渐变刚度板簧各级副簧切线弧高的设计方法
CN106529107A (zh) 高强度三级渐变刚度板簧根部最大应力特性的仿真计算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190910

Termination date: 20220112

CF01 Termination of patent right due to non-payment of annual fee