CN106772303A - Mtd雷达的通道级杂波抑制方法 - Google Patents

Mtd雷达的通道级杂波抑制方法 Download PDF

Info

Publication number
CN106772303A
CN106772303A CN201611195159.9A CN201611195159A CN106772303A CN 106772303 A CN106772303 A CN 106772303A CN 201611195159 A CN201611195159 A CN 201611195159A CN 106772303 A CN106772303 A CN 106772303A
Authority
CN
China
Prior art keywords
passage
clutter
channel
low pass
doppler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611195159.9A
Other languages
English (en)
Other versions
CN106772303B (zh
Inventor
王旭
蔡兴雨
高剑
朱思桥
高恒
郗蕴天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Electronic Engineering Research Institute
Original Assignee
Xian Electronic Engineering Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Electronic Engineering Research Institute filed Critical Xian Electronic Engineering Research Institute
Priority to CN201611195159.9A priority Critical patent/CN106772303B/zh
Publication of CN106772303A publication Critical patent/CN106772303A/zh
Application granted granted Critical
Publication of CN106772303B publication Critical patent/CN106772303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种MTD雷达通道级杂波抑制方法,主要解决现有FIR滤波器在积累脉冲数较多时计算量过大的问题。其实现过程是:1.根据先验信息,设定杂波谱宽,并根据谱宽划分低通道与高通道;2.在设定信噪比损失和旁瓣电平约束下,计算高通道对应的对消权系数;3.在设定信噪比损失和旁瓣电平约束下,计算低通道对应的权系数;对慢时间回波进行处理,得到各多普勒通道输出;按高低通道,分别对多普勒通道输出进行通道级杂波抑制。本发明能够在多普勒零频附近产生较深的凹口,计算量小,可用于MTD雷达的杂波抑制。

Description

MTD雷达的通道级杂波抑制方法
技术领域
本发明属于雷达技术领域,涉及雷达杂波抑制,可用于雷达的动目标检测,并满足工程要求。
背景技术
现代雷达特别是军用雷达需要在复杂的工作环境中,完成目标检测的任务。而雷达回波中通常包含建筑物、树木等各种杂波,会导致弱小目标的丢失、产生虚警。而且雷达系统的不稳定工作、杂波的内部运动,会导致杂波谱的展宽,从而减弱杂波抑制性能,影响低速目标的检测。因此杂波抑制是雷达技术领域的重要研究内容。
目前有效的杂波抑制方式主要有MTI和MTD等,MTD多采用加窗FFT或者在零频附近具有凹口的FIR滤波器。MTI技术,基于固定杂波短时间内回波相同而运动目标回波具有多普勒频移的特性,从时域对相邻脉冲的回波进行加权对消的方式,消除固定杂波的影响。具有计算量小,易于工程实现的特点,随着阶数的增加其在零频附近的凹口变宽,但是对低速目标具有较大的信噪比(SNR)损失,而且杂波抑制特性固定,较难根据环境特性进行改变。
MTD技术采用多个带通滤波器组成的滤波器组对雷达回波进行滤波处理,使之更接近于最佳(匹配)线性滤波,当回波输入频率恰好等于滤波器组的某一中心频率,该滤波器输出最大的功率。与MTI相比,进一步改善了信噪比,提高了在复杂背景中检测目标的能力。
加窗FFT方式的MTD,滤波器旁瓣较低,对较高通道可以在一定程度上降低杂波功率。由于采用FFT,计算量较小,易于工程实现。但进入滤波器副瓣的杂波也会降低滤波器的杂波改善性能,而且其频率响应特性具有较宽的主瓣,导致杂波位于低速目标所在通道的主瓣内,不利于低速目标的检测。
FIR滤波器可以灵活设计每个滤波器的权系数,使其幅度频率响应在零频附近有较深的零陷,可以根据要求设计凹口的深度以及宽度,用于抑制不同谱宽的杂波。但是具有较高的计算量,尤其是在积累脉冲数较多时,不易于工程实现。而且如果凹口宽度设计不合适,也会降低杂波抑制性能。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种MTD雷达通道级杂波抑制方法,根据杂波谱宽划分多普勒高通道与低通道,通过对低通道进行多普勒域加权,实现杂波抑制。
技术方案
一种MTD雷达通道级杂波抑制方法,其特征在于步骤如下:
步骤1:将序号i满足i/N∈Uf的多普勒通道定义为低通道,将序号i满足的多普勒通道定义为高通道;其中,Uf=[-αΩf,αΩf]为辅助通道覆盖区域,Ωf为杂波谱宽度,α为扩展系数,其范围为1≤α≤1/(2Ωf),i=-N/2,…,N/2-1,N为脉冲积累数;
步骤2:以低通道作为辅助通道,依次以各高通道为主通道,在SNR损失约束和旁瓣约束下,以最小化剩余杂波功率为准则,通过如下模型求解对消权vi和对消系数βi
其中,βi为对消系数,vi为对消权,其维数为K×1,G表示杂波数据矩阵,B表示低通道对应的滤波器系数矩阵,bi表示第i个多普勒通道对应的滤波器系数,di表示第i个多普勒通道对应的多普勒导向矢量,SLi表示旁瓣约束电平,SNRLoss(i)表示信噪比损失,表示第i个通道的旁瓣区域,si(η)表示序号为i的通道对应的旁瓣区域多普勒导向矢量,η表示位于旁瓣区域的多普勒频率;
步骤3:在SNR损失约束和旁瓣约束下,以最小化剩余杂波功率为准则,通过如下模型求解各低通道对应的杂波抑制权向量ui
其中,ui为杂波抑制权向量,其维数为K×1,Ci表示序号为i的低通道对应的杂波数据矩阵,i/N∈Uf
步骤4:对脉压后的N个脉冲回波,沿慢时间维进行N点加窗FFT,得到各多普勒通道的输出为xi,i=-N/2,…,N/2-1,定义低通道的输出为y=[x-(k-1)/2,…,x(K-1)/2]T,K为低通道个数,N-K为高通道个数;
步骤5:经过通道对消后,高通道的输出为
经过通道加权后,低通道的输出为
步骤4所述的沿慢时间维进行N点加窗FFT,其中加窗FFT方式可以替换为MTI级联加窗FFT方式。
有益效果
本发明提出的一种MTD雷达通道级杂波抑制方法,具有以下有益效果:
(1)本发明具有FIR滤波器灵活设计凹口的特性,而且比FIR滤波器具有更低的计算量,易于工程实现;
(2)本发明基于加窗FFT后的通道进行杂波对消,而且在权系数优化中添加了低副瓣的约束,所获得的幅频响应具有低旁瓣的特性;
(3)本发明对低通道和高通道分别进行权优化,避免了加窗FFT在低通道杂波抑制性变差的缺点。
附图说明
图1是本发明的实现流程图;
图2是本发明与加窗FFT在序号为15的高通道的幅频响应;
图3是本发明与加窗FFT在序号为40的高通道的幅频响应;
图4是本发明与加窗FFT在序号为4的低通道的幅频响应;
图5是本发明与2阶MTI级联加窗FFT在序号为15的高通道的幅频响应;
图6是本发明与2阶MTI级联加窗FFT在序号为40的高通道的幅频响应;
图7是本发明与2阶MTI级联加窗FFT在序号为4的低通道的幅频响应;
图8是本发明方法、加窗FFT以及2阶MTI级联加窗FFT在各通道中心频率处的信噪比损失对比图;
图9是本发明方法、FIR滤波器、MTI级联加窗FFT的计算复杂度对比图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
参照图1,本实施例的具体实现步骤如下:
步骤1.根据先验信息,设定杂波谱宽,划分低通道与高通道。
设MTD雷达可积累的脉冲数为N,杂波谱宽度为Ωf,设定辅助通道覆盖区域为Uf=[-αΩf,αΩf],α为扩展系数,其范围为1≤α≤1/(2Ωf);
定义多普勒通道序号为i=-N/2,…,N/2-1,序号为i的多普勒通道对应的多普勒导向矢量数为
di=[1,exp(j2πi/N),…,exp(j2π(N-1)i/N)]T,i=-N/2,…,N/2-1
其中(·)T表示转置,则序号为i的多普勒通道对应的滤波器系数为
bi=Wdi,i=-N/2,…,N/2-1
其中W表示由于MTI或加窗产生的系数矩阵;
将序号满足i/N∈Uf的通道定义为低通道,将序号满足的通道定义为高通道,为低通道个数,N-K为高通道个数,表示向上取整。因此,低通道对应的滤波器系数矩阵为
B=[b-(K-1)/2,…,b(K-1)/2]T
步骤2.对于各高通道,计算对消权和对消系数。
2.1)构造杂波数据G=[a-P,…,aP],ap是位于杂波谱宽内均匀分布的多普勒导向矢量,具体形式为
ap=[1,exp(j2πfp),…,exp(j2π(N-1)fp)]Tp=0,±1,…,±P
其中 表示向下取整;
2.2)对于序号为i的高通道,设定旁瓣约束电平SLi和信噪比(SNR)损失SNRLoss(i);定义序号为i的通道对应的旁瓣区域多普勒导向矢量为
其中表示第i个通道的旁瓣区域,η表示位于旁瓣区域的多普勒频率。
2.3)以低通道作为辅助通道,以序号为i的高通道为主通道,在SNR损失约束和旁瓣约束下,以最小化剩余杂波功率为准则,建立如下数学模型:
其中βi为对消系数,vi为对消权,其维数为K×1,
2.4)利用凸优化工具包cvx求解式<2>。
步骤3.对于低通道,计算杂波抑制权向量。
3.1)对于序号为i的低通道,i/N∈Uf,构造杂波数据Ci=[a-q,…,aq],aq是位于杂波谱宽内均匀分布的多普勒导向矢量,具体形式为
aq=[1,exp(j2πfq),…,exp(j2π(N-1)fq)]Tq=Q1,…,Q2
其中
3.2)对于序号为i的低通道,设定旁瓣约束SLi和SNR损失SNRLoss(i);按照式<1>定义序号为i的通道的旁瓣区域多普勒导向矢量;
3.3)在SNR损失约束和旁瓣约束下,以最小化杂波输出功率为准则,建立如下数学模型:
其中ui为杂波抑制权向量,其维数为K×1;
3.4)利用凸优化工具包cvx求解式<3>。
步骤4.对慢时间回波进行处理,得到各多普勒通道输出。
对脉压后的N个脉冲回波,沿慢时间维进行N点加窗FFT,或者MTI后级联加窗FFT,各多普勒通道的输出为xi,i=-N/2,…,N/2-1,定义低通道输出为y=[x-(K-1)/2,…,x(k-1)/2]T,K为低通道个数,N-K为高通道个数;
步骤5.对多普勒通道输出进行通道级杂波抑制。
经过通道对消后,高通道的输出为
经过通道加权后,低通道的输出为
本发明的效果通过以下仿真对比试验进一步说明:
1.实验场景:假设MTD雷达的相干积累时间(CPI)中包含128个脉冲,杂波谱宽为Ωf=0.03,扩展系数为α=3,则低通道个数为K=25。
2.仿真内容:
实验1:对加窗FFT输出结果进行通道级杂波抑制,其中窗函数选为40dB切比雪夫窗,由于加窗引起的SNR损失为1.03dB,因此设高通道信噪比损失为1.03dB,旁瓣约束为-35dB,则序号为15和40的高通道幅频响应如图2和图3所示。低通道信噪比损失设定为旁瓣约束为其中i表示多普勒通道的序号,则序号为4的低通道幅频响应如图4所示。
实验2:对2阶MTI级联加窗FFT输出结果进行通道级杂波抑制,其中窗函数选为40dB切比雪夫窗,设高通道信噪比损失为1.03dB,旁瓣约束为-35dB,则序号为15和40的高通道幅频响应如图5和图6所示。低通道信噪比损失设定方式与实验1相同,则序号为4的低通道幅频响应如图7所示。
通道级杂波抑制前后的SNR损失如图8所示。
对于MTI级联加窗FFT,其复数乘法的计算量为FIR滤波器的复数乘法计算量为N2,本方明方法的复数乘法计算量为对于杂波谱宽为Ωf=0.03,扩展系数为α=3,图9比较了MTI级联加窗FFT、FIR滤波器及本发明方法的计算复杂度。
3.仿真结果分析:
从图2、3可以看出,对加窗FFT的输出采用本发明方法处理后,高通道的幅频响应在旁瓣区域有一定抬高,但在零频附近产生明显的凹口。
从图4可以看出,对加窗FFT的输出采用本发明方法处理后,低通道的幅频响应在旁瓣区域有一定抬高,但在零频附近仍然具有一定凹口。
从图5、6可以看出,对MTI级联加窗FFT的输出采用本发明方法处理后,高通道的幅频响应在零频附近的凹口更深,杂波抑制性能提高。
从图7可以看出,对MTI级联加窗FFT的输出采用本发明方法处理后,低通道的杂波抑制性能提高了。
从图8可以看出,各种方法在高通道中心频率处的SNR损失基本相同,MTI级联加窗FFT在低通道中心频率处信噪比损失较大,且不易控制。而本发明方法在各通道中心频率处的SNR损失可控,具有比加窗FFT更好的杂波抑制性能,甚至与MTI级联加窗FFT在杂波抑制方面相比,也有一定优势。
从图9可以看出,本发明方法的计算量虽然比MTI级联加窗FFT方法有一定增加,但杂波抑制性能灵活可控(如图2-8所示)。FIR滤波器也可以设计较灵活的凹口,但在脉冲数较多时,计算量复杂,不易工程应用。

Claims (2)

1.一种MTD雷达通道级杂波抑制方法,其特征在于步骤如下:
步骤1:将序号i满足i/N∈Uf的多普勒通道定义为低通道,将序号i满足的多普勒通道定义为高通道;其中,Uf=[-αΩf,αΩf]为辅助通道覆盖区域,Ωf为杂波谱宽度,α为扩展系数,其范围为1≤α≤1/(2Ωf),i=-N/2,…,N/2-1,N为脉冲积累数;
步骤2:以低通道作为辅助通道,依次以各高通道为主通道,在SNR损失约束和旁瓣约束下,以最小化剩余杂波功率为准则,通过如下模型求解对消权vi和对消系数βi
m i n v i , β i | | β i b i T G - v i T B T G | | 2 2
s . t . β i b i T d i - v i T B T d i = 1
N | | β i b i - Bv i | | ≤ 10 SNR l o s s ( i ) 20
| | β i b i T s i ( η ) - v i T B T s i ( η ) | | ≤ 10 SL i , η ∈ Ω s ( i )
其中,βi为对消系数,vi为对消权,其维数为K×1,G表示杂波数据矩阵,B表示低通道对应的滤波器系数矩阵,bi表示第i个多普勒通道对应的滤波器系数,di表示第i个多普勒通道对应的多普勒导向矢量,SLi表示旁瓣约束电平,SNRLoss(i)表示信噪比损失,表示第i个通道的旁瓣区域,si(η)表示序号为i的通道对应的旁瓣区域多普勒导向矢量,η表示位于旁瓣区域的多普勒频率;
步骤3:在SNR损失约束和旁瓣约束下,以最小化剩余杂波功率为准则,通过如下模型求解各低通道对应的杂波抑制权向量ui
m i n u i | | u i T B T C i | | 2 2
s . t . u i T B T d i = 1
N | | Bu i | | ≤ 10 SNR l o s s ( i ) 20
| | u i T B T s i ( η ) | | ≤ 10 SL i , η ∈ Ω s ( i )
其中,ui为杂波抑制权向量,其维数为K×1,Ci表示序号为i的低通道对应的杂波数据矩阵,i/N∈Uf
步骤4:对脉压后的N个脉冲回波,沿慢时间维进行N点加窗FFT,得到各多普勒通道的输出为xi,i=-N/2,…,N/2-1,定义低通道的输出为y=[x-(K-1)/2,…,x(K-1)/2]T,K为低通道个数,N-K为高通道个数;
步骤5:经过通道对消后,高通道的输出为
z i = β i x i - v i T y , i / N ∉ U f
经过通道加权后,低通道的输出为
z i = u i T y , i / N ∈ U f .
2.根据权利要求1所述的一种MTD雷达通道级杂波抑制方法,其特征在于步骤4所述的沿慢时间维进行N点加窗FFT,其中加窗FFT方式可以替换为MTI级联加窗FFT方式。
CN201611195159.9A 2016-12-22 2016-12-22 Mtd雷达的通道级杂波抑制方法 Active CN106772303B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611195159.9A CN106772303B (zh) 2016-12-22 2016-12-22 Mtd雷达的通道级杂波抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611195159.9A CN106772303B (zh) 2016-12-22 2016-12-22 Mtd雷达的通道级杂波抑制方法

Publications (2)

Publication Number Publication Date
CN106772303A true CN106772303A (zh) 2017-05-31
CN106772303B CN106772303B (zh) 2019-02-01

Family

ID=58900138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611195159.9A Active CN106772303B (zh) 2016-12-22 2016-12-22 Mtd雷达的通道级杂波抑制方法

Country Status (1)

Country Link
CN (1) CN106772303B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462878A (zh) * 2017-07-31 2017-12-12 西安电子科技大学 基于频域离散采样约束凸优化的mtd滤波器组设计方法
CN109061594A (zh) * 2018-08-03 2018-12-21 中国航空工业集团公司雷华电子技术研究所 一种强杂波环境下基于子阵空时自适应处理的测角方法
CN109613505A (zh) * 2018-12-13 2019-04-12 航天南湖电子信息技术股份有限公司 一种抑制双重杂波的装置及其抑制方法
CN109856602A (zh) * 2018-11-27 2019-06-07 重庆秦嵩科技有限公司 一种适用于慢速目标监视雷达的杂波抑制方法
CN112485772A (zh) * 2020-11-28 2021-03-12 中国电子科技集团公司第二十研究所 一种脉间捷变频雷达杂波抑制方法
CN113219413A (zh) * 2021-04-20 2021-08-06 中国电子科技集团公司第二十研究所 一种零陷展宽的脉间捷变频雷达杂波抑制方法
CN116366199A (zh) * 2023-05-15 2023-06-30 成都中科合迅科技有限公司 数字相控阵天线多方向的噪声调制方法
CN117269928A (zh) * 2023-11-21 2023-12-22 零八一电子集团有限公司 基于动目标检测雷达的多普勒过采样投影杂波抑制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481270A (en) * 1994-03-04 1996-01-02 Martin Marietta Corporation Radar with adaptive range sidelobe suppression
CN103116154A (zh) * 2013-01-25 2013-05-22 西安电子科技大学 基于杂波环境下的发射与接收联合优化自适应滤波方法
CN103728606A (zh) * 2014-01-16 2014-04-16 西安电子科技大学 机载mimo雷达的多普勒通道关联两级降维方法
CN104076343A (zh) * 2014-06-25 2014-10-01 西安电子科技大学 星载三通道sar-gmti自适应杂波抑制方法
CN104297735A (zh) * 2014-10-23 2015-01-21 西安电子科技大学 基于先验道路信息的杂波抑制方法
CN105223557A (zh) * 2015-10-29 2016-01-06 西安电子科技大学 基于辅助通道的机载预警雷达杂波抑制方法
CN105319538A (zh) * 2015-11-24 2016-02-10 西安电子科技大学 基于辅助通道的空时自适应杂波抑制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481270A (en) * 1994-03-04 1996-01-02 Martin Marietta Corporation Radar with adaptive range sidelobe suppression
CN103116154A (zh) * 2013-01-25 2013-05-22 西安电子科技大学 基于杂波环境下的发射与接收联合优化自适应滤波方法
CN103728606A (zh) * 2014-01-16 2014-04-16 西安电子科技大学 机载mimo雷达的多普勒通道关联两级降维方法
CN104076343A (zh) * 2014-06-25 2014-10-01 西安电子科技大学 星载三通道sar-gmti自适应杂波抑制方法
CN104297735A (zh) * 2014-10-23 2015-01-21 西安电子科技大学 基于先验道路信息的杂波抑制方法
CN105223557A (zh) * 2015-10-29 2016-01-06 西安电子科技大学 基于辅助通道的机载预警雷达杂波抑制方法
CN105319538A (zh) * 2015-11-24 2016-02-10 西安电子科技大学 基于辅助通道的空时自适应杂波抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王万林等: "相控阵AEW 雷达杂波抑制的辅助通道方法研究", 《电路与系统学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462878A (zh) * 2017-07-31 2017-12-12 西安电子科技大学 基于频域离散采样约束凸优化的mtd滤波器组设计方法
CN109061594A (zh) * 2018-08-03 2018-12-21 中国航空工业集团公司雷华电子技术研究所 一种强杂波环境下基于子阵空时自适应处理的测角方法
CN109061594B (zh) * 2018-08-03 2022-10-28 中国航空工业集团公司雷华电子技术研究所 一种强杂波环境下基于子阵空时自适应处理的测角方法
CN109856602A (zh) * 2018-11-27 2019-06-07 重庆秦嵩科技有限公司 一种适用于慢速目标监视雷达的杂波抑制方法
CN109613505A (zh) * 2018-12-13 2019-04-12 航天南湖电子信息技术股份有限公司 一种抑制双重杂波的装置及其抑制方法
CN112485772A (zh) * 2020-11-28 2021-03-12 中国电子科技集团公司第二十研究所 一种脉间捷变频雷达杂波抑制方法
CN112485772B (zh) * 2020-11-28 2023-11-10 中国电子科技集团公司第二十研究所 一种脉间捷变频雷达杂波抑制方法
CN113219413A (zh) * 2021-04-20 2021-08-06 中国电子科技集团公司第二十研究所 一种零陷展宽的脉间捷变频雷达杂波抑制方法
CN116366199A (zh) * 2023-05-15 2023-06-30 成都中科合迅科技有限公司 数字相控阵天线多方向的噪声调制方法
CN117269928A (zh) * 2023-11-21 2023-12-22 零八一电子集团有限公司 基于动目标检测雷达的多普勒过采样投影杂波抑制方法
CN117269928B (zh) * 2023-11-21 2024-01-30 零八一电子集团有限公司 基于动目标检测雷达的多普勒过采样投影杂波抑制方法

Also Published As

Publication number Publication date
CN106772303B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN106772303A (zh) Mtd雷达的通道级杂波抑制方法
CN103364764B (zh) 一种机载雷达非平稳杂波抑制方法
CN104076353B (zh) 一种面目标回波波束中心速度测量方法
CN103399309B (zh) 基于迭代加权最小方差的空时二维杂波谱估计方法
CN106093888B (zh) 基于先验信息的变凹口宽度mtd滤波器设计方法
CN103176168A (zh) 一种机载非正侧视阵雷达近程杂波对消方法
CN104502898B (zh) 将修正rft和修正mdcft相结合的机动目标参数估计方法
CN103439692A (zh) 基于协方差矩阵广对称特性的stap方法
CN102866388B (zh) 一种空时自适应处理中的自适应权值迭代计算方法
CN104793194B (zh) 基于改进的自适应多脉冲压缩的距离‑多普勒估计方法
CN103018727A (zh) 一种基于样本训练的机载雷达非平稳杂波抑制方法
CN103954942A (zh) 机载mimo雷达三维波束空间的部分联合杂波抑制方法
CN103728607A (zh) 机载mimo雷达空时码三维自适应杂波对消方法
CN107367715A (zh) 基于稀疏表示的杂波抑制方法
CN106772304A (zh) 基于空域多级分解的机载mimo雷达后多普勒自适应处理方法
CN106772253A (zh) 一种非均匀杂波环境下的雷达杂波抑制方法
CN107490790A (zh) 一种连续多脉冲相参海杂波的仿真方法
CN107153178A (zh) 外辐射源雷达参考信号含有多径干扰时的目标检测方法
CN106199549A (zh) 一种采用谱减法提升lfmcw雷达信噪比的方法
CN106324596A (zh) 基于压缩感知的随机脉冲多普勒雷达角度‑多普勒成像方法
CN106772302A (zh) 一种复合高斯背景下的知识辅助stap检测方法
CN104698446A (zh) 基于动目标检测的雷达回波滤波方法
CN103811017A (zh) 一种基于Welch法的冲床噪声功率谱估计改进方法
CN105445703A (zh) 一种机载雷达空时回波数据的两级空时自适应处理方法
CN106199539A (zh) 基于白化滤波器的地杂波抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant