CN106768994B - Multi-physical-field composite loading electric spindle reliability test device - Google Patents
Multi-physical-field composite loading electric spindle reliability test device Download PDFInfo
- Publication number
- CN106768994B CN106768994B CN201710164434.9A CN201710164434A CN106768994B CN 106768994 B CN106768994 B CN 106768994B CN 201710164434 A CN201710164434 A CN 201710164434A CN 106768994 B CN106768994 B CN 106768994B
- Authority
- CN
- China
- Prior art keywords
- loading
- electric spindle
- dynamometer
- spindle
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 title claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims abstract description 74
- 238000005520 cutting process Methods 0.000 claims abstract description 38
- 230000008878 coupling Effects 0.000 claims abstract description 37
- 238000010168 coupling process Methods 0.000 claims abstract description 37
- 238000005859 coupling reaction Methods 0.000 claims abstract description 37
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 238000009434 installation Methods 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000000110 cooling liquid Substances 0.000 claims description 3
- 238000005452 bending Methods 0.000 abstract description 25
- 238000003754 machining Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于机械试验设备技术领域,涉及一种多物理场复合加载的电主轴可靠性试验装置,具体的涉及一种能够模拟切削过程中主轴产生热弯曲变形、力弯曲变形、切削力导致的切削振动以及模拟切削扭矩,实现复合加载的可靠性试验装置。The invention belongs to the technical field of mechanical test equipment, and relates to a multi-physics-field compound-loaded electric spindle reliability test device, in particular to a cutting tool capable of simulating the thermal bending deformation, force bending deformation, and cutting force of the spindle during the cutting process. Vibration and simulated cutting torque to realize the reliability test device of compound loading.
背景技术Background technique
数控机床是实现工业现代化的重要基石,其质量、性能和拥有量已经成为衡量一个国家工业化水平以及综合国力的重要标志。电主轴是数控机床的关键部件之一,由于其内部结构复杂,它在带来高效加工的同时故障频频发生。其可靠性水平直接影响高档机床整机的可靠性。CNC machine tools are an important cornerstone of industrial modernization, and their quality, performance and ownership have become an important symbol to measure a country's industrialization level and comprehensive national strength. The electric spindle is one of the key components of the CNC machine tool. Due to its complex internal structure, it brings high-efficiency machining and frequent failures. Its reliability level directly affects the reliability of high-end machine tools.
目前国内外电主轴可靠性试验装置在对电主轴进行可靠性试验的过程中,大都采用主轴与测功机相连后,直接在受试主轴施加轴向力与径向力,未出现能够模拟切削过程电主轴产生热弯曲变形与力弯曲变形的试验装置。在电主轴的放置方式上,大都采用卧式或立式两种状态,不能全方位模拟电主轴在空间的布置方式。这些因素都阻碍了电主轴可靠性试验的发展过程。At present, in the process of reliability testing of electric spindles at home and abroad, most of the reliability test devices of electric spindles at home and abroad adopt the method of directly applying axial force and radial force to the tested spindle after the spindle is connected with the dynamometer, and there is no simulation of the cutting process. The test device for thermal bending deformation and force bending deformation of electric spindle. In terms of the placement of the electric spindle, most of them adopt two states of horizontal or vertical, which cannot fully simulate the arrangement of the electric spindle in space. These factors have hindered the development process of electric spindle reliability test.
发明内容Contents of the invention
本发明所要解决的技术问题是克服了现有技术无法全面模拟加工过程中电主轴产生热弯曲变形、力弯曲变形、切削振动及切削扭矩的情况,以及不能模拟电主轴任意空间布置方式的问题,因此设计了一种能够模拟切削过程中主轴产生热弯曲变形、力弯曲变形、切削力导致的切削振动以及扭矩的复合加载的电主轴可靠性试验装置。The technical problem to be solved by the present invention is to overcome the problems that the existing technology cannot comprehensively simulate the thermal bending deformation, force bending deformation, cutting vibration and cutting torque of the electric spindle during the machining process, and cannot simulate the arbitrary spatial arrangement of the electric spindle. Therefore, an electric spindle reliability test device that can simulate thermal bending deformation, force bending deformation, cutting vibration caused by cutting force and composite loading of torque in the cutting process is designed.
电主轴可靠性试验装置可按照特定的加载规律对主轴进行可靠性试验,最大程度模拟受试主轴的真实工况。针对电主轴铣削加工过程中发生弯曲,研发一套模拟电主轴弯曲工况的装置,并采用可控热源模拟的方式,对主轴刀柄前端进行加热,从而更好地模拟主轴产生热弯曲变形后对动静态应力的影响。The electric spindle reliability test device can conduct reliability tests on the spindle according to specific loading rules, simulating the real working conditions of the tested spindle to the greatest extent. In view of the bending that occurs during the milling process of the electric spindle, a device for simulating the bending condition of the electric spindle has been developed, and the controllable heat source simulation method is used to heat the front end of the spindle tool handle, so as to better simulate the thermal bending deformation of the spindle Effect on dynamic and static stress.
为解决上述技术问题,本发明是采用如下技术方案实现的,结合附图说明如下:In order to solve the above-mentioned technical problems, the present invention is realized by adopting the following technical solutions, which are described as follows in conjunction with the accompanying drawings:
一种多物理场复合加载的电主轴可靠性试验装置,包括加载单元、电主轴位置调节装置、性能检测装置和辅助设备装置;An electric spindle reliability test device with multi-physical field composite loading, including a loading unit, an electric spindle position adjustment device, a performance detection device and an auxiliary equipment device;
所述加载单元包括电液伺服加载装置2、轴承联轴器混合加载单元6、轴承加载旋转单元9和测功机调整机构10;The loading unit includes an electro-hydraulic servo loading device 2, a bearing coupling
所述电主轴位置调节装置包括主支架5和电主轴安装台8;The electric spindle position adjustment device includes a main bracket 5 and an electric spindle installation platform 8;
所述的性能检测装置包括激光位移传感器7;The performance detection device includes a laser displacement sensor 7;
所述激光位移传感器7、电主轴安装台8和测功机调整机构10固定在主支架5中的旋转台13上;The laser displacement sensor 7, the electric spindle mounting table 8 and the
所述电液伺服加载装置2和主支架5安装在辅助设备装置中的地平铁1上;The electro-hydraulic servo loading device 2 and the main support 5 are installed on the
所述轴承联轴器混合加载单元6和轴承加载旋转单元9安装在电主轴安装台8和测功机调整机构10之间。The bearing coupling
技术方案中所述主支架5还包括驱动轴12、固定支架14和旋转电机15;固定支架14固定在旋转台13上,固定支架14上安装有激光位移传感器7、电主轴安装台8和测功机调整机构10;驱动电机15驱动旋转台13绕驱动轴12转动,从而带动固定在旋转台13上的激光位移传感器7、电主轴安装台8和测功机调整机构10转动,实现整套试验装置绕驱动轴12的旋转,从而模拟主轴切削时不同倾斜状态的受力情况。The main support 5 described in the technical solution also includes a
技术方案中所述电主轴安装台8包括电主轴16、角度指示盘17、电主轴支架18和主轴抱夹19和锁紧螺栓20;The motorized spindle installation platform 8 described in the technical solution includes a motorized
主轴抱夹19安装在整个电主轴16的外圈,实现对电主轴16的固定;电主轴支架18安装在旋转台13上;角度指示盘17安装在电主轴16端部。The spindle clamp 19 is installed on the outer ring of the
技术方案中所述测功机调整机构10包括测功机21、测功机固定板22、旋转盘23、测功机旋转固定台24和位置调整器25;The
所述测功机21安装在测功机固定板22上,测功机固定板22安装在测功机旋转固定台24内的旋转盘23上,电机驱动旋转盘23转动,从而带动测功机21和测功机固定板22一起转动;The
所述位置调整器25固定在测功机旋转固定台24后部,并安装在主支架5的旋转台13上。The
技术方案中所述电液伺服加载装置2包括弧形导轨26、电液伺服加载机构27、加载角度调整机构28和底座29;The electro-hydraulic servo loading device 2 described in the technical solution includes an
弧形导轨26安装在地平铁1上,底座29能够在弧形导轨26上滑动,加载角度调整机构28固定在底座29上,加载角度调整机构28上设有弧形槽,电液伺服加载机构27的下底板两侧安装在加载角度调整机构28的弧形槽内,通过在弧形槽内的转动来实现电液伺服加载机构27的角度调整。The
技术方案中所述轴承联轴器混合加载单元6包括加载机构外壳30、模拟刀柄31、加热环34、膜片联轴器35;The bearing coupling
所述加载机构外壳30面上设有凹坑43;A
所述模拟刀柄31与膜片联轴器35连接,加热环34安装在膜片联轴器35外侧;The simulated
所述膜片联轴器35一端连接电主轴16,另一端连接测功机21。One end of the
技术方案中所述轴承加载旋转单元9包括涡轮40、蜗杆41、驱动电机42;The bearing-loaded rotating
所述驱动电机42输出端直接与蜗杆41相连,带动涡轮40旋转;The output end of the
所述涡轮40与轴承联轴器混合加载单元6的底部套盖Ⅱ38配合。The
技术方案中所述电主轴16轴线的水平投影在电液伺服加载装置2中的弧形导轨26的圆心上,底座29沿着弧形导轨26滑动的过程中,电液伺服加载装置2中电液伺服加载机构27前端的加载点44始终与轴承联轴器混合加载单元6中加载机构外壳30面上的凹坑43保持接触。The horizontal projection of the axis of the
技术方案中所述激光位移传感器7利用磁力吸座固定在主支架5表面,调整位置使激光位移传感器7激光头对准电主轴16靠近激光位移传感器7最近端,使得所检测的位移值最小,实现对电主轴16径向跳动以及回转精度等参数的检测。The laser displacement sensor 7 described in the technical solution is fixed on the surface of the main support 5 by using a magnetic suction seat, and the position is adjusted so that the laser head of the laser displacement sensor 7 is aligned with the
技术方案中所述辅助设备装置还包括冷却控制柜3、液压站4和工控机11;The auxiliary equipment device described in the technical solution also includes a cooling control cabinet 3, a hydraulic station 4 and an industrial computer 11;
所述冷却控制柜3、液压站4、工控机11放置在地面;The cooling control cabinet 3, the hydraulic station 4, and the industrial computer 11 are placed on the ground;
所述冷却控制柜3为主轴提供冷却液,并设有流量控制阀,能够控制冷却液的流量;The cooling control cabinet 3 provides coolant for the main shaft, and is provided with a flow control valve, which can control the flow of coolant;
所述液压站4为电主轴16内部的拉刀机构提供拉力;The hydraulic station 4 provides pulling force for the broach mechanism inside the
所述工控机11实现对整个可靠性试验系统的参数采集与控制功能,同时能够在显示器中显示试验装置的运行状况。The industrial computer 11 realizes the parameter acquisition and control functions of the entire reliability test system, and can display the operating status of the test device on the display.
本发明与现有技术相比的有益技术效果:The beneficial technical effects of the present invention compared with prior art:
1、整个电主轴可靠性试验装置可以绕着切削力加载端在竖直面内旋转,从而模拟电主轴实际加工过程卧式、立式以及各个角度倾斜的状态,更有利于对电主轴真实工况的模拟。1. The entire electric spindle reliability test device can rotate in the vertical plane around the cutting force loading end, thereby simulating the state of horizontal, vertical and tilted at various angles in the actual machining process of the electric spindle, which is more conducive to the real working of the electric spindle. simulation of the situation.
2、本专利针对电主轴实际工作中受到的切削力、切削扭矩、弯曲变形以及热载荷这四大载荷分别设计了可控的加载装置,并利用轴承联轴器混合加载单元将这四大载荷同时施加到电主轴的刀柄前端,较为真实地模拟电主轴实际切削过程中受到的所有载荷。2. This patent designs a controllable loading device for the four major loads of cutting force, cutting torque, bending deformation and thermal load in the actual work of the electric spindle, and uses the bearing coupling mixed loading unit to combine these four loads At the same time, it is applied to the front end of the tool handle of the electric spindle to more realistically simulate all the loads that the electric spindle receives during the actual cutting process.
3、根据电主轴铣削加工过程中主轴发生弯曲的现象,设计了对电主轴施加弯曲载荷的装置,从而更好地模拟切削过程电主轴刀杆前段受到弯曲变形后对电主轴自身的影响;采用可控热源模拟的方式,对主轴刀柄前端进行加热,能更好地模拟电主轴受到热变形后对性能指标的影响。3. According to the bending phenomenon of the spindle during the milling process of the electric spindle, a device for applying a bending load to the electric spindle is designed, so as to better simulate the impact on the electric spindle itself after the front section of the electric spindle tool rod is bent and deformed during the cutting process; The controllable heat source simulation method heats the front end of the spindle tool holder, which can better simulate the influence of the electric spindle on the performance index after thermal deformation.
附图说明Description of drawings
下面结合附图对本发明作进一步的说明:Below in conjunction with accompanying drawing, the present invention will be further described:
图1为本发明所述的多物理场复合加载的电主轴可靠性试验装置的轴侧投影图;Fig. 1 is the axial side projection diagram of the electric spindle reliability test device of multi-physics field compound loading according to the present invention;
图2为本发明所述的主支架轴测图;Fig. 2 is a main support axonometric view of the present invention;
图3为本发明所述的电主轴安装台轴测图;Fig. 3 is an axonometric view of the electric spindle mounting table according to the present invention;
图4为本发明所述的测功机调整机构轴测图;Fig. 4 is the axonometric view of the adjustment mechanism of the dynamometer according to the present invention;
图5为本发明所述的电液伺服加载装置轴测图;Fig. 5 is an axonometric view of the electro-hydraulic servo loading device according to the present invention;
图6为本发明所述的轴承联轴器混合加载单元轴测图;Fig. 6 is an axonometric view of the hybrid loading unit of the bearing coupling according to the present invention;
图7为本发明所述的轴承加载旋转单元轴测图;Fig. 7 is an axonometric view of a bearing-loaded rotating unit according to the present invention;
图8为本发明所述的电主轴可靠性试验装置工作原理图;Fig. 8 is a working principle diagram of the electro-spindle reliability test device according to the present invention;
图9为本发明所述的点液伺服加载装置加载原理图;Fig. 9 is a schematic diagram of the loading principle of the liquid point servo loading device according to the present invention;
图10为本发明所述的电主轴弯曲工况加载原理示意图;Fig. 10 is a schematic diagram of the loading principle of the electro-spindle in bending condition according to the present invention;
图中:In the picture:
1.地平铁,2.电液伺服加载装置,3.冷却控制柜,4.液压站,5.主支架,6.轴承联轴器混合加载单元,7.激光位移传感器,8.电主轴安装台,9.轴承加载旋转单元,10.测功机调整机构,11.工控机,12.驱动轴,13.旋转台,14.固定支架,15.旋转电机,16.电主轴,17.角度指示盘,18.电主轴支架,19.主轴抱夹,20.锁紧螺栓,21.测功机,22.测功机固定板,23.旋转盘,24.测功机旋转固定台,25.位置调整器,26.弧形导轨,27.电液伺服加载机构,28.加载角度调整机构,29.底座,30.加载机构外壳,31.模拟刀柄,32.套盖Ⅰ,33.轴承,34.加热环,35.膜片联轴器,36.套筒,37.轴承密封圈,38.套盖Ⅱ,39.轴承加载旋转单元外壳,40.涡轮,41.蜗杆,42.驱动电机,43.凹坑,44.加载点。1. Horizontal iron, 2. Electro-hydraulic servo loading device, 3. Cooling control cabinet, 4. Hydraulic station, 5. Main support, 6. Bearing coupling hybrid loading unit, 7. Laser displacement sensor, 8. Electric spindle installation Table, 9. Bearing-loaded rotating unit, 10. Dynamometer adjustment mechanism, 11. Industrial computer, 12. Drive shaft, 13. Rotary table, 14. Fixed bracket, 15. Rotary motor, 16. Electric spindle, 17. Angle Indicating plate, 18. Electric spindle support, 19. Spindle clamp, 20. Locking bolt, 21. Dynamometer, 22. Dynamometer fixing plate, 23. Rotary disk, 24. Dynamometer rotating fixed table, 25 .Position adjuster, 26. Arc guide rail, 27. Electro-hydraulic servo loading mechanism, 28. Loading angle adjustment mechanism, 29. Base, 30. Loading mechanism shell, 31. Analog knife handle, 32. Cover I, 33. Bearing, 34. Heating ring, 35. Diaphragm coupling, 36. Sleeve, 37. Bearing sealing ring, 38. Cover II, 39. Bearing loaded rotating unit shell, 40. Turbine, 41. Worm, 42. Drive motor, 43. Dimple, 44. Loading point.
具体实施例specific embodiment
本发明所述的一种多物理场复合加载的电主轴可靠性试验装置,由加载单元、电主轴位置调节装置、性能检测装置以及辅助设备装置四大部分组成。The electric spindle reliability test device with multi-physical field composite loading according to the present invention is composed of four parts: a loading unit, an electric spindle position adjustment device, a performance detection device and an auxiliary equipment device.
所述加载单元包括电液伺服加载装置2、轴承联轴器混合加载单元6、轴承加载旋转单元9和测功机调整机构10;The loading unit includes an electro-hydraulic servo loading device 2, a bearing coupling
所述电主轴位置调节装置包括主支架5和电主轴安装台8;The electric spindle position adjustment device includes a main bracket 5 and an electric spindle installation platform 8;
所述性能检测装置包括激光位移传感器7等检测设备;The performance detection device includes detection equipment such as a laser displacement sensor 7;
所述辅助设备装置包括地平铁1、冷却控制柜3、液压站4以及工控机11。The auxiliary equipment includes a
参阅图1,电液伺服加载装置2和主支架5安装在地平铁1上,激光位移传感器7、电主轴安装台8、测功机调整机构10竖直安装在主支架5上,轴承联轴器混合加载单元6和轴承加载旋转单元9安装在电主轴安装台8和测功机调整机构10之间,冷却控制柜3、液压站4、工控机11放置在地面。主要部件的功能如下:Referring to Fig. 1, the electro-hydraulic servo loading device 2 and the main support 5 are installed on the
电液伺服加载装置2实现对主轴模拟切削力大小及方向的加载;冷却控制柜3为主轴提供冷却液,其中有流量控制阀,能根据需求控制冷却液的流量;The electro-hydraulic servo loading device 2 realizes the loading of the magnitude and direction of the simulated cutting force on the spindle; the cooling control cabinet 3 provides coolant for the spindle, and there is a flow control valve in it, which can control the flow of coolant according to demand;
液压站4为电主轴16内部的拉刀机构提供拉力,实现更换或拆卸不同的轴承联轴器混合加载单元6;The hydraulic station 4 provides pulling force for the broach mechanism inside the
主支架5实现整个电主轴可靠性试验装置绕着切削力加载端在竖直面内旋转,从而模拟电主轴实际加工过程卧式、立式以及各个角度倾斜的工况;The main bracket 5 realizes the rotation of the entire electrical spindle reliability test device in the vertical plane around the cutting force loading end, thereby simulating the actual machining process of the electrical spindle in horizontal, vertical, and tilted working conditions at various angles;
激光位移传感器7利用磁力吸座固定在主支架5表面,调整位置使激光位移传感器7发射的检测光线对准电主轴16靠近激光位移传感器7最近端,使得所检测的位移值最小,可实现对电主轴16径向跳动以及回转精度等参数的检测。The laser displacement sensor 7 is fixed on the surface of the main support 5 by using a magnetic suction seat, and the position is adjusted so that the detection light emitted by the laser displacement sensor 7 is aligned with the
电主轴安装台8实现对电主轴16的安装并且具有位置的调整功能;The electric spindle mounting table 8 realizes the installation of the
测功机调整机构10实现对主轴模拟切削扭矩的弯曲工况;The
工控机11实现对整个可靠性试验系统的参数采集与控制功能,同时能够在显示器中显示试验装置的运行状况。The industrial computer 11 realizes the parameter acquisition and control function of the entire reliability test system, and can display the operating status of the test device on the display at the same time.
参阅图1、图2,所述的主支架5包含驱动轴12、旋转台13、固定支架14和旋转电机15。固定支架14上安装有激光位移传感器7、电主轴安装台8、测功机调整机构10,当驱动电机15驱动旋转台13绕驱动轴12转动时,即可模拟出电主轴实际加工过程卧式、立式以及各个角度倾斜的工况,更有利于对电主轴真实工况的模拟。Referring to FIGS. 1 and 2 , the main support 5 includes a
参阅图3,所述的主轴安装台8包含电主轴16、角度指示盘17、电主轴支架18、主轴抱夹19和锁紧螺栓20。主轴抱夹19安装在整个电主轴16的外圈,在其两侧通过锁紧螺栓20与电主轴支架18连接,实现对电主轴16的固定。电主轴支架18安装在旋转台13上。角度指示盘17安装在电主轴16端部。扳动手柄转动电主轴16到相应的刻度位置,再用锁紧螺栓20将主轴抱夹19固定,可以实现安装位置调整。Referring to FIG. 3 , the spindle installation platform 8 includes an
需要转动电主轴16时,松开锁紧螺栓20,根据角度指示盘17的刻度指示,利用角度刻度盘0°位置的手柄将电主轴16调整到适当转位后,固定主轴抱夹19并锁紧螺栓。When the
参阅图4,所述测功机调整机构10包括测功机21、测功机固定板22、旋转盘23、测功机旋转固定台24以及位置调整器25(四个)。测功机21通过螺栓固定在测功机固定板22上,而测功机固定板22安装在测功机旋转固定台24内的旋转盘23上,弯曲加载时,安装在测功机旋转固定台24内的旋转盘23驱动测功机固定板22转动,从而带动固定板上的测功机21进行转动。Referring to FIG. 4 , the
电机驱动旋转盘23转动,从而带动测功机21和测功机固定板22一起转动,模拟出主轴的弯曲工况并对主轴施加扭矩。The motor drives the
四个位置调整器25均匀固定在测功机旋转固定台24后部,并安装在主支架5的旋转台13上,可以将整个测功机调整机构10水平移动到合适的位置。测功机旋转固定台24的旋转运动加上沿水平方向的直线调整,可模拟任意角度不对中情况,从而施加弯矩,原理示意图参照图9。The four
参阅图5,所述的电液伺服加载装置2包括弧形导轨26、电液伺服加载机构27、加载角度调整机构28和底座29。弧形导轨26安装在地平铁1上,底座29可在弧形导轨26上滑动,加载角度调整机构28固定在底座29上,而加载角度调整机构28上有弧形槽,电液伺服加载机构27的下底板两侧安装在加载角度调整机构28的弧形槽内,通过在弧形槽内的转动来实现电液伺服加载机构27的角度调整,从而实现多自由的电主轴动态切削力加载。Referring to FIG. 5 , the electro-hydraulic servo loading device 2 includes an arc-shaped
首先,电液伺服加载机构27的下底板两侧安装在加载角度调整机构28上,通过在加载角度调整机构28轨道上转动,实现角度调整。Firstly, both sides of the lower bottom plate of the electro-hydraulic
其次,底座29可以在沿着弧形导轨26滑动,进而带动固定在底座上方的电液伺服加载机构27和加载角度调整机构28整体滑动,若需要调整电液伺服加载装置2的高度,可通过调整底座29的高度实现,进而实现多自由度的主轴动态切削力加载。加载方向与电主轴16轴线的交点在垂直地平铁1方向的投影线经过弧形导轨26的圆心,同时,其在垂直旋转台13方向的投影线经过旋转台13的中心,这样在底座29沿着弧形导轨26滑动的过程中,加载点44(即电液伺服加载机构27前端)始终与轴承联轴器混合加载单元6中加载机构外壳30面上的凹坑43保持接触,试验稳定的加载。同时当旋转台13转动时,加载点44也不会变动。Secondly, the
参阅图1、图4、图6,所述的轴承联轴器混合加载单元6包括加载机构外壳30、模拟刀柄31、加热环34、膜片联轴器35、轴承33、套筒36、轴承密封圈37以及套盖Ⅰ32、套盖Ⅱ38。Referring to Fig. 1, Fig. 4 and Fig. 6, the bearing coupling
模拟刀柄31与膜片联轴器35连接,加热环34安装在膜片联轴器35外侧,即模拟刀柄31的前端。轴承联轴器混合加载单元6可实现多种功能,包括连接电主轴16与测功机21并施加扭矩、传递电液伺服加载装置2施加的动态切削力到电主轴16、施加由于测功机调整机构10所产生的弯曲变形到电主轴16和对电主轴16前端施加热量这些功能。The simulated knife handle 31 is connected to the
电液伺服加载装置2与加载机构外壳30面上的凹坑43接触,实现切削力的加载。主轴安装台8所固定的电主轴16通过膜片联轴器35与测功机21连接,实现对电主轴16扭矩的加载。通过加热环34对模拟刀柄31前端进行加热,能更好地模拟电主轴16受到热变形后对动静态应力的影响,更好模拟实际工况。The electro-hydraulic servo loading device 2 is in contact with the
参阅图1、图6、图7,图9所述的轴承加载旋转单元9包括轴承加载旋转单元外壳39、涡轮40、蜗杆41和驱动电机42。Referring to FIG. 1 , FIG. 6 , and FIG. 7 , the bearing-loaded
当电液伺服加载装置2的加载方向改变时,为保证加载点44始终与加载机构外壳30面上的凹坑43相接触,需要驱动电机42涡轮传动,而轴承联轴器混合加载单元6的底部套盖Ⅱ38与涡轮40配合,使整个轴承联轴器混合加载单元6转动到与电液伺服加载装置2相对应的位置,实现电主轴16切削力的加载。When the loading direction of the electro-hydraulic servo loading device 2 changes, in order to ensure that the
轴承联轴器混合加载单元6中的套盖Ⅱ38与涡轮40过盈配合,驱动电机42输出端直接与蜗杆41相连,带动涡轮40旋转,从而使整个轴承联轴器混合加载单元6绕电主轴16转动。实现在电液伺服加载机构27的底座29沿着弧形导轨26滑动的过程中,根据角度关系自动校正加载点44的位置,确保加载点44(即电液伺服加载机构27前端)始终与轴承器混合加载单元保持接触,准确加载。The sleeve cover II38 in the
参阅图8,本专利所述的电主轴可靠性试验装置的工作原理可以分为加载、电主轴位置调节、性能检测和其它四大部分表述。Referring to Fig. 8, the working principle of the electro-spindle reliability test device described in this patent can be divided into four parts: loading, electro-spindle position adjustment, performance testing and other expressions.
分别阐述如下:They are described as follows:
加载部分包括切削力加载、切削扭矩加载、弯曲力加载以及热加载。切削力加载包括切削力大小控制和方向控制。切削力大小控制由电液伺服加载机构27实现;切削力方向控制由加载角度调整机构28和弧形导轨26共同实现;切削扭矩加载由测功机21完成;弯曲力加载是通过测功机调整机构10实现的。热加载部分通过加热环34对主轴刀柄前端进行加热来实现。The loading part includes cutting force loading, cutting torque loading, bending force loading and thermal loading. The cutting force loading includes cutting force size control and direction control. The cutting force is controlled by the electro-hydraulic
电主轴位置调节由旋转台13转动和主轴安装位置调节两部分实现。由旋转电机15驱动旋转台13绕驱动轴12转动,从而带动固定在旋转台13上的电主轴安装台8整体转动;主轴安装位置调节根据角度指示盘17的刻度指示,利用角度刻度盘0°位置的手柄调节电主轴16的位置。The position adjustment of the electric spindle is realized by two parts: the rotation of the rotary table 13 and the adjustment of the installation position of the spindle. The
性能检测部分包含激光位移传感器7及其它检测设备,实现对主轴径向跳动以及回转精度等参数的检测。The performance detection part includes a laser displacement sensor 7 and other detection equipment to realize the detection of parameters such as the radial runout of the main shaft and the rotation accuracy.
其它部分包括有冷却控制柜3提供冷却液、液压站4为电主轴16内部的拉刀机构提供拉力以及工控机11实现对整个可靠性试验系统的参数采集与控制功能。Other parts include the cooling control cabinet 3 to provide cooling liquid, the hydraulic station 4 to provide pulling force for the broach mechanism inside the
本发明中所述的实例是为了便于该领域技术人员能够理解和应用本发明。本发明只是一个优化的实例,或者说是一种较佳的具体技术方案,如果相关的技术人员在坚持本发明基本技术方案的情况下,作出不需要经过创造性劳动的等效结构变化或各种修改都在本发明的保护范围之内。The examples described in the present invention are for those skilled in the art to understand and apply the present invention. The present invention is only an example of optimization, or a better specific technical solution. If the relevant technical personnel adhere to the basic technical solution of the present invention, they can make equivalent structural changes or various technical solutions that do not require creative work. Modifications are within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710164434.9A CN106768994B (en) | 2017-03-20 | 2017-03-20 | Multi-physical-field composite loading electric spindle reliability test device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710164434.9A CN106768994B (en) | 2017-03-20 | 2017-03-20 | Multi-physical-field composite loading electric spindle reliability test device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106768994A CN106768994A (en) | 2017-05-31 |
CN106768994B true CN106768994B (en) | 2023-03-24 |
Family
ID=58966311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710164434.9A Active CN106768994B (en) | 2017-03-20 | 2017-03-20 | Multi-physical-field composite loading electric spindle reliability test device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106768994B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108072520B (en) * | 2018-01-19 | 2023-11-10 | 吉林大学 | Electric spindle reliability test bed based on opposite dragging loading |
CN109000903B (en) * | 2018-05-31 | 2020-03-31 | 东北大学 | Loading device and method for reliability test of rolling linear guide and ball screw system |
CN108507786A (en) * | 2018-06-22 | 2018-09-07 | 中国工程物理研究院机械制造工艺研究所 | A kind of main shaft test platform |
CN109307627B (en) * | 2018-10-25 | 2022-12-09 | 中国电力科学研究院有限公司 | A bending test device |
CN109870360A (en) * | 2019-03-18 | 2019-06-11 | 吉林大学 | A crankshaft reliability test device |
CN109932177A (en) * | 2019-04-18 | 2019-06-25 | 吉林大学 | A reliability test device for universal rotary loading of electric spindle of boring machine |
CN110082679B (en) * | 2019-05-29 | 2024-08-02 | 安徽工程大学 | Motor experimental device and application method thereof |
CN110954322B (en) * | 2019-07-16 | 2024-07-02 | 井冈山大学 | Main shaft simulated vibration loading test device |
CN110608873B (en) * | 2019-09-25 | 2020-12-22 | 吉林大学 | High-speed electric main shaft reliability test device based on ultrasonic vibrator loading |
CN110926670B (en) * | 2019-11-22 | 2021-08-20 | 华中科技大学 | A high-speed vertical loading dynamometer and its application |
CN111141515B (en) * | 2020-02-25 | 2020-12-22 | 吉林大学 | A simulation loading device for electric spindle reliability test |
CN111999046B (en) * | 2020-07-09 | 2021-05-11 | 东风汽车集团有限公司 | Fatigue endurance test bench and test bench |
CN114720099B (en) * | 2021-12-02 | 2023-01-31 | 中国农业大学 | A single-rod loading electric spindle reliability test device under all working conditions |
CN114264462B (en) * | 2021-12-15 | 2024-03-22 | 吉林大学 | Reliability test bed and method for double-motorized spindle broach mechanism |
CN114235454B (en) * | 2021-12-15 | 2023-10-20 | 吉林大学 | Five-axis numerical control machine tool rotary workbench reliability test device and method |
TWI838949B (en) * | 2022-11-09 | 2024-04-11 | 佳倡有限公司 | Precision spindle assembly rotation machine |
CN117074020B (en) * | 2023-07-17 | 2024-07-12 | 泰安海纳轴研科技有限公司 | Testing device and testing method for oil-gas lubrication bearing performance and lubricant flow |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5312917B2 (en) * | 2008-11-21 | 2013-10-09 | カヤバ システム マシナリー株式会社 | Oscillating rotation test equipment |
CN203519330U (en) * | 2013-09-04 | 2014-04-02 | 青海大学 | Numerical control machine tool main shaft loading device |
CN104833506B (en) * | 2015-04-16 | 2016-08-24 | 吉林大学 | Electrical spindle for machine tool reliability test bench centering adjusting device |
CN105716845B (en) * | 2016-02-01 | 2018-05-15 | 吉林大学 | Simulate the power knife rest performance detection and monitoring device and method of typical condition loading |
CN105527090B (en) * | 2016-02-05 | 2018-06-05 | 吉林大学 | Electro spindle reliability test bench and reliability test method |
CN106441886B (en) * | 2016-12-08 | 2018-08-21 | 吉林大学 | The main shaft reliability test and test method that cutting force automatically controls |
CN206710074U (en) * | 2017-03-20 | 2017-12-05 | 吉林大学 | A kind of electro spindle reliability test of multiple physical field Combined Loading |
-
2017
- 2017-03-20 CN CN201710164434.9A patent/CN106768994B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106768994A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106768994B (en) | Multi-physical-field composite loading electric spindle reliability test device | |
CN105588718B (en) | Machine tool chief axis combination property detection/monitoring test system and method | |
CN106441886B (en) | The main shaft reliability test and test method that cutting force automatically controls | |
CN205898449U (en) | Microminiature line gear transmission test bench | |
CN205898448U (en) | Line gear transmission test bench | |
CN206710074U (en) | A kind of electro spindle reliability test of multiple physical field Combined Loading | |
CN109143068A (en) | A kind of band environment storehouse high-speed motor test macro | |
CN101344457A (en) | High-speed spindle non-contact magnetic coupling dynamic test device and test method | |
CN111380698B (en) | Be used for new energy automobile to drive power assembly to dragging test bench structure | |
CN107238497B (en) | Horizontal reciprocating rotary speed reducer product comprehensive test testboard | |
CN105527090B (en) | Electro spindle reliability test bench and reliability test method | |
CN109932177A (en) | A reliability test device for universal rotary loading of electric spindle of boring machine | |
CN103383315B (en) | Automatic tool changer test bench for detecting comprehensive performance | |
CN103712791A (en) | Main shaft axial dynamic stiffness test device | |
CN205426517U (en) | Lathe main shaft comprehensive properties detection / monitoring testing system | |
CN109100135B (en) | Test bench for measuring comprehensive performance of high-speed electric spindle | |
CN115655710A (en) | Accelerated life test system for industrial robot precision speed reducer under real service working condition | |
CN105866686A (en) | Yoke iron actuation based oblique wing torque motor characteristic testing device | |
CN112881907A (en) | Test tool structure capable of simulating load operation of motor | |
CN111141515B (en) | A simulation loading device for electric spindle reliability test | |
CN106840644A (en) | Electromagnetism and electric pushrod mix-loaded knife rest reliability test bench | |
CN107655683A (en) | Gearbox test stand | |
CN209044035U (en) | A kind of band environment storehouse high-speed motor test macro | |
CN207570710U (en) | An on-line detection device for automobile brake dragging force | |
CN111397891B (en) | Electric spindle reliability test device with non-contact full working condition loading |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240329 Address after: No. 9 Wangjin Road, Kalun Industrial Park, Jiutai Economic Development Zone, Changchun City, Jilin Province, 130500 Patentee after: Huatie Testing Technology (Changchun) Co.,Ltd. Country or region after: China Address before: 130012 No. 2699 Qianjin Street, Jilin, Changchun Patentee before: Jilin University Country or region before: China |