CN106756878A - 一种氧化物介质的原子层沉积方法 - Google Patents

一种氧化物介质的原子层沉积方法 Download PDF

Info

Publication number
CN106756878A
CN106756878A CN201611244141.3A CN201611244141A CN106756878A CN 106756878 A CN106756878 A CN 106756878A CN 201611244141 A CN201611244141 A CN 201611244141A CN 106756878 A CN106756878 A CN 106756878A
Authority
CN
China
Prior art keywords
atomic layer
layer deposition
medium
oxides
deposition method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611244141.3A
Other languages
English (en)
Other versions
CN106756878B (zh
Inventor
孙兵
刘洪刚
王盛凯
常虎东
苏玉玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201611244141.3A priority Critical patent/CN106756878B/zh
Publication of CN106756878A publication Critical patent/CN106756878A/zh
Application granted granted Critical
Publication of CN106756878B publication Critical patent/CN106756878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种氧化物介质的原子层沉积方法,属于半导体集成技术领域。所述氧化物介质的原子层沉积方法将多种氧前驱体源依次通入原子层沉积系统的反应腔,利用原子层沉积系统生长氧化物介质,从而获得高质量的高介电常数的氧化物介质薄膜,所述氧化物介质可以是镧基、钇基、铪基和铍基的一种或多种组合。本发明所述的一种氧化物介质的原子层沉积方法,可应用于CMOS栅介质的生长过程中,可以有效减小栅介质的漏电流,同时提高栅介质的击穿电压,从而提高CMOS器件的性能。

Description

一种氧化物介质的原子层沉积方法
技术领域
本发明涉及氧化物电介质的制备方法,尤其涉及一种氧化物介质的原子层沉积方法,属于半导体集成技术领域。
背景技术
半导体技术作为信息产业的核心和基础,是衡量一个国家科学技术进步和综合国力的重要标志。在过去的40多年中,硅基集成技术遵循摩尔定律通过缩小器件的特征尺寸来提高器件的工作速度、增加集成度以及降低成本,硅基CMOS器件的特征尺寸已经由微米尺度缩小到纳米尺度。然而当MOS器件的栅长缩小到90纳米以下,传统硅基CMOS集成技术开始面临来自物理与技术方面的双重挑战。二氧化硅已经不能满足当前半导体器件对电介质的要求,高介电常数氧化物作为栅介质材料在CMOS集成技术中获得了越来越多的应用。
采用高迁移率沟道材料替代传统硅材料将是半导体集成技术在“后摩尔时代”的重要发展方向,其中锗与III-V族化合物半导体材料最有可能实现大规模应用,寻找适用于锗与III-V族化合物半导体材料的高介电常数氧化物也成为近期国内外研究热点。
原子层沉积的方法具有均匀性高、表面覆盖好、自限制表面吸附反应及生长速度精确可控等优点,已经应用于当前CMOS技术栅介质的生长过程中。基于原子层沉积的方法,开发高性能高介电常数氧化物的沉积方法具有重要的应用前景。
发明内容
(一)要解决的技术问题
本发明目的在于优化高介电常数氧化物的原子层沉积的生长条件和方式,从而提供一种氧化物介质的原子层沉积方法。
(二)技术方案
本发明提供一种氧化物介质的原子层沉积方法,利用原子层沉积系统进行所述氧化物介质的原子层沉积,该方法包括:
S101:设定原子层沉积系统生长参数;
S102:向原子层沉积系统反应腔体中通入氧化物介质的金属前驱体源脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;
S103:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;
S104:向原子层沉积系统反应腔体中通入氧等离子体脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的氧等离子体;
S105:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;
S106:向原子层沉积系统反应腔体中通入臭氧脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的臭氧;
S107:依次重复进行步骤S101~S106,获得高介电常数的氧化物介质薄膜。
进一步,所述氧化物介质的金属前驱体源是La(iPr2fmd)3、Hf[N(CH3)(C2H5)]4、Hf[N(CH3)2]4、Hf[N(C2H5)2]4、Hf[O-C(CH3)3]4、Y(iPr2amd)3和Be(CH3)2中的一种或多种。
进一步,步骤S101中,所述原子层沉积系统的反应腔温度为20-500摄氏度,反应腔压力为0.5-10毫巴,所述高纯氮气的流量为10-1000标准毫升每分钟。
进一步,步骤S102中,所述金属前驱体源的温度为50-300摄氏度,金属前驱体源脉冲时间为1毫秒-10分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
进一步,所述步骤S103中,所述水脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
进一步,步骤S104中,所述氧等离子体是由氧气、臭氧、二氧化碳、一氧化二氮中的一种或多种,与氮气、氦气、氩气中的一种或多种混合后的气体,经过等离子体发生器离化形成的等离子体;所述等离子体发生器工作功率在0-200瓦每平方厘米之间,所述氧等离子体脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-10分钟。
进一步,步骤S105中,所述水脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
进一步,步骤S106中,所述臭氧是由臭氧,或臭氧与氮气、氦气、氩气中的一种或多种混合后的气体,所述臭氧脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-10分钟。
进一步,所述步骤S107中,所述高介电常数的氧化物介质为三氧化二镧、二氧化铪、三氧化二钇、氧化铍的一种或多种组合。
(三)有益效果
从上述技术方案可以看出,本发明具有一下有益效果:
1、本发明所提供的氧化物介质的原子层沉积方法,可应用于硅基、锗基和化合物半导体基MOS器件栅介质的制备。
2、本发明所提供的氧化物介质的原子层沉积方法,将传统原子层沉积方法中两种反应前驱体源增加为四种反应前驱体源,用水做前驱体源确保了反应在低温生长且反应产物中碳杂质含量低,然后用氧等离子体将因为位阻效应而没有反应的金属前驱体源的有机基配位体氧化,再次通入水脉冲形成金属和羟基的化学键,最后利用臭氧分解的氧自由基有效减小氧化物介质中的氧空位等缺陷,且可以填充因位阻效应引起的空位,从而生成氧空位少、致密性高的高介电常数得氧化物介质,减小栅介质漏电和提高栅介质击穿电压。
3、本发明所提供的氧化物介质的原子层沉积方法,在后摩尔时代CMOS集成技术栅介质沉积中具备广阔的应用前景和市场前景。
附图说明
图1是本发明的一种氧化物介质的原子层沉积方法流程图;
图2是本发明的一种具体实施例三氧化二镧的制备流程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
图1是本发明的一种氧化物介质的原子层沉积方法流程图,如图1所示,一种氧化物介质的原子层沉积方法,利用原子层沉积系统进行所述氧化物介质的原子层沉积,氧化物介质的原子层沉积方法具体包括如下几个步骤:
S101:设定原子层沉积系统生长参数;
进一步,原子层沉积系统的反应腔温度为20-500摄氏度,反应腔压力为0.5-10毫巴,所述高纯氮气的流量为10-1000标准毫升每分钟。
S102:向原子层沉积系统反应腔体中通入氧化物介质的金属前驱体源脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;
进一步,金属前驱体源的温度为50-300摄氏度,金属前驱体源脉冲时间为1毫秒-10分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
S103:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;
进一步,水脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
S104:向原子层沉积系统反应腔体中通入氧等离子体脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的氧等离子体;
进一步,氧等离子体是由氧气、臭氧、二氧化碳、一氧化二氮中的一种或多种,与氮气、氦气、氩气中的一种或多种混合后的气体,经过等离子体发生器离化形成的等离子体;其中,等离子体发生器工作功率在0-200瓦每平方厘米之间,其中,氧等离子体脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-10分钟。
S105:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;
进一步,水脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
S106:向原子层沉积系统反应腔体中通入臭氧脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的臭氧;
进一步,臭氧是由臭氧,或臭氧与氮气、氦气、氩气中的一种或多种混合后的气体,所述臭氧脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-10分钟。
S107:依次重复进行步骤S101~S106,获得高介电常数的氧化物介质薄膜;高介电常数的氧化物介质为三氧化二镧、二氧化铪、三氧化二钇、氧化铍或氧化锌的一种或多种组合。
实施例
图2是本发明的一种具体实施例三氧化二镧的制备流程示意图,如图2一种氧化物介质三氧化二镧(La2O3)的原子层沉积方法,具体包括如下步骤:
S201:设定原子层沉积系统生长参数;所述原子层沉积系统的反应腔温度为300摄氏度,反应腔压力为1.5毫巴,所述高纯氮气的流量为300标准毫升每分钟。
S202:向原子层沉积系统反应腔体中通入氧化物介质的金属前驱体源脉冲三(N,N’-二异丙基甲脒)镧后,用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;所述金属前驱体源的温度为130摄氏度,所述金属前驱体源脉冲时间为3秒,所述高纯氮气的清洗时间为5秒。
S203:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;所述水脉冲时间为100毫秒,所述高纯氮气的清洗时间为3秒。
S204:向原子层沉积系统反应腔体中通入氧等离子体脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的氧等离子体;所述氧等离子体是由氧气经过等离子体发生器离化形成的等离子体,所述等离子体发生器工作功率为100瓦每平方厘米,所述氧等离子体脉冲时间为3秒,所述高纯氮气的清洗时间为10秒。
S205:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;所述水脉冲时间为100毫秒,所述高纯氮气的清洗时间为3秒。
S206:向原子层沉积系统反应腔体中通入臭氧脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的臭氧;所述臭氧是由臭氧与氮气混合后的气体,所述臭氧脉冲时间为1秒,所述高纯氮气的清洗时间为10秒。
所述步骤S201~S206组成一个完整的生长周期,通过增加和控制生长周期数,不断依次重复所述S201~S206,通过控制三氧化二镧的生长周期数,可精确控制薄膜的生长厚度,获得高介电常数的氧化物介质三氧化二镧。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种氧化物介质的原子层沉积方法,利用原子层沉积系统进行所述氧化物介质的原子层沉积,其特征在于,该方法包括:
S101:设定原子层沉积系统生长参数;
S102:向原子层沉积系统反应腔体中通入氧化物介质的金属前驱体源脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;
S103:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;
S104:向原子层沉积系统反应腔体中通入氧等离子体脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的氧等离子体;
S105:向原子层沉积系统反应腔体中通入水脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的水;
S106:向原子层沉积系统反应腔体中通入臭氧脉冲后,用高纯氮气清洗,冲掉反应副产物和残留的臭氧;
S107:依次重复进行步骤S101~S106,获得高介电常数的氧化物介质薄膜。
2.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述氧化物介质的金属前驱体源是La(1Pr2fmd)3、Hf[N(CH3)(C2H5)]4、Hf[N(CH3)2]4、Hf[N(C2H5)2]4、Hf[O-C(CH3)3]4、Y(1Pr2amd)3和Be(CH3)2中的一种或多种。
3.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,步骤S101中,所述原子层沉积系统的反应腔温度为20-500摄氏度,反应腔压力为0.5-10毫巴,所述高纯氮气的流量为10-1000标准毫升每分钟。
4.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,步骤S102中,所述金属前驱体源的温度为50-300摄氏度,金属前驱体源脉冲时间为1毫秒-10分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
5.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤S103中,所述水脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
6.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,步骤S104中,所述氧等离子体是由氧气、臭氧、二氧化碳、一氧化二氮中的一种或多种,与氮气、氦气、氩气中的一种或多种混合后的气体,经过等离子体发生器离化形成的等离子体;所述等离子体发生器工作功率在0-200瓦每平方厘米之间,所述氧等离子体脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-10分钟。
7.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,步骤S105中,所述水脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-120秒。
8.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,步骤S106中,所述臭氧是由臭氧,或臭氧与氮气、氦气、氩气中的一种或多种混合后的气体,所述臭氧脉冲时间为1毫秒-3分钟,所述高纯氮气的清洗时间为10毫秒-10分钟。
9.如权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤S107中,所述高介电常数的氧化物介质为三氧化二镧、二氧化铪、三氧化二钇、氧化铍的一种或多种组合。
CN201611244141.3A 2016-12-29 2016-12-29 一种氧化物介质的原子层沉积方法 Active CN106756878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611244141.3A CN106756878B (zh) 2016-12-29 2016-12-29 一种氧化物介质的原子层沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611244141.3A CN106756878B (zh) 2016-12-29 2016-12-29 一种氧化物介质的原子层沉积方法

Publications (2)

Publication Number Publication Date
CN106756878A true CN106756878A (zh) 2017-05-31
CN106756878B CN106756878B (zh) 2019-04-02

Family

ID=58927564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611244141.3A Active CN106756878B (zh) 2016-12-29 2016-12-29 一种氧化物介质的原子层沉积方法

Country Status (1)

Country Link
CN (1) CN106756878B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382778A (zh) * 2017-08-04 2017-11-24 苏州复纳电子科技有限公司 一种(n,n′‑二异丙基甲基碳酰亚胺)钇的合成方法
CN109680262A (zh) * 2019-02-20 2019-04-26 江苏微导纳米装备科技有限公司 一种原子层沉积镀膜的方法、装置及应用
CN111074235A (zh) * 2018-10-19 2020-04-28 北京北方华创微电子装备有限公司 进气装置、进气方法及半导体加工设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033698A1 (en) * 2002-08-17 2004-02-19 Lee Yun-Jung Method of forming oxide layer using atomic layer deposition method and method of forming capacitor of semiconductor device using the same
CN102892921A (zh) * 2010-05-10 2013-01-23 贝尼科公司 生成沉积物的方法和硅基底表面上的沉积物
CN103628037A (zh) * 2013-12-10 2014-03-12 中国科学院微电子研究所 一种高介电常数氧化物的制备方法
CN103668108A (zh) * 2013-12-10 2014-03-26 中国科学院微电子研究所 一种氧化物介质的原子层沉积方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033698A1 (en) * 2002-08-17 2004-02-19 Lee Yun-Jung Method of forming oxide layer using atomic layer deposition method and method of forming capacitor of semiconductor device using the same
CN102892921A (zh) * 2010-05-10 2013-01-23 贝尼科公司 生成沉积物的方法和硅基底表面上的沉积物
CN103628037A (zh) * 2013-12-10 2014-03-12 中国科学院微电子研究所 一种高介电常数氧化物的制备方法
CN103668108A (zh) * 2013-12-10 2014-03-26 中国科学院微电子研究所 一种氧化物介质的原子层沉积方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382778A (zh) * 2017-08-04 2017-11-24 苏州复纳电子科技有限公司 一种(n,n′‑二异丙基甲基碳酰亚胺)钇的合成方法
CN111074235A (zh) * 2018-10-19 2020-04-28 北京北方华创微电子装备有限公司 进气装置、进气方法及半导体加工设备
CN109680262A (zh) * 2019-02-20 2019-04-26 江苏微导纳米装备科技有限公司 一种原子层沉积镀膜的方法、装置及应用

Also Published As

Publication number Publication date
CN106756878B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US20130078793A1 (en) Method for depositing a gate oxide and a gate electrode selectively
CN106756878B (zh) 一种氧化物介质的原子层沉积方法
CN103668108A (zh) 一种氧化物介质的原子层沉积方法
CN102122614B (zh) 一种氮氧化硅栅氧化层制造方法
JP2007504652A5 (zh)
CN102931068A (zh) 一种锗基mosfet栅介质的制备方法
CN103628037A (zh) 一种高介电常数氧化物的制备方法
CN102306625B (zh) 一种锗基mos器件衬底的表面钝化方法
CN110649092A (zh) 二维材料异质结背栅负电容隧穿晶体管及制备方法
CN103295890B (zh) 淀积在锗基或三五族化合物基衬底上的栅介质的处理方法
CN110760818A (zh) 一种用原子层沉积技术生长氧化铝的工艺
TW201003915A (en) Transistor device
CN101728257B (zh) 一种栅介质/金属栅集成结构的制备方法
CN107527803B (zh) SiC器件栅介质层及SiC器件结构的制备方法
CN110783173A (zh) 一种在碳化硅材料上制造栅氧化层的方法
WO2012145952A1 (zh) 沉积栅介质的方法、制备mis电容的方法及mis电容
CN109037340A (zh) T型栅Ge/SiGe异质结隧穿场效应晶体管及制备方法
CN101800178A (zh) 一种铪硅铝氧氮高介电常数栅介质的制备方法
TW201246308A (en) Method for band gap tuning of metal oxide semiconductors
CN107425053A (zh) 一种用ald构建同心核壳三维纳米多铁异质结阵列的方法
US20120273861A1 (en) Method of depositing gate dielectric, method of preparing mis capacitor, and mis capacitor
WO2023178914A1 (zh) 超薄氮氧化硅界面材料、遂穿氧化钝化结构及其制备方法和应用
CN111430228A (zh) 一种超高介电常数介质薄膜的制备方法
CN112349792B (zh) 一种单晶硅钝化接触结构及其制备方法
CN112599408A (zh) 具有复合氧化层的碳化硅金属氧化物半导体制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant