CN106756788B - 一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法 - Google Patents

一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法 Download PDF

Info

Publication number
CN106756788B
CN106756788B CN201611052072.6A CN201611052072A CN106756788B CN 106756788 B CN106756788 B CN 106756788B CN 201611052072 A CN201611052072 A CN 201611052072A CN 106756788 B CN106756788 B CN 106756788B
Authority
CN
China
Prior art keywords
laser
titanium dioxide
black titanium
target
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611052072.6A
Other languages
English (en)
Other versions
CN106756788A (zh
Inventor
魏强
卢红
黄欢欢
张立宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201611052072.6A priority Critical patent/CN106756788B/zh
Publication of CN106756788A publication Critical patent/CN106756788A/zh
Application granted granted Critical
Publication of CN106756788B publication Critical patent/CN106756788B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法,步骤是:首先,将白色二氧化钛粉末压片,得到压强为140~200Mpa的靶材;然后,将靶材置于真空罐,抽真空使真空罐内压力达到1×10‑6‑1×104Pa;调节脉冲激光器的入射激光束与靶材之间的角度为10~45°,激光器的基片基底与靶材的距离为15~50mm;开启脉冲激光器,调节激光脉宽、激光能量、激光波长和频率,激光聚焦辐照真空罐中的靶材,处理一定时间,在基片上得到黑色二氧化钛薄膜,将黑色二氧化钛薄膜上的黑色二氧化钛刮下即得到黑色二氧化钛粉末。本发明制备过程简单快速,原材料费用低,反应时间短。

Description

一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的 方法
技术领域
本发明属于无机材料制备的技术领域,具体涉及一种真空环境下通过脉冲激光溅射沉积法制备黑色二氧化钛粉末或薄膜的方法。
背景技术
二氧化钛作为一种应用广泛的半导体催化剂,目前可以应用于太阳能电池,光催化裂解水释放氢气和氧气,也可以用来降解环境污染物。由于二氧化钛属于宽带隙半导体(3.0-3.2eV),所以其只能吸收太阳光谱内的紫外线区域,而这一部分只有整个太阳能的3%~5%,这就大大降低了二氧化钛的应用范围和催化效率。因此,要想提高二氧化钛的光催化活性,就需要增强其对可见光的吸收,拓宽其光响应范围。
为了提高二氧化钛对可见光的吸收,提高其光催化效率,研究者们尝试了很多方法对二氧化钛进行改性(如离子掺杂、贵金属沉积、半导体复合、染料敏化等)。然而,改进后的二氧化钛对可见光的吸收仍然不足。2011年,Chen等通过高压下氢化处理二氧化钛5天得到了氢掺杂的核壳结构的黑色二氧化钛,大大提高了二氧化钛对可见光的吸收及其光催化性能,为二氧化钛的改性提供了另一条途径(Chen,X.,Liu,L.,Yu,P.Y.&Mao,S.S.Increasing solar absorption for photocatalysis with black hydrogenatedtitanium dioxide nanocrystals.Science 331,746-750)。此后,研究者们还探索出了氢等离子体辅助氢化法、化学还原法、化学氧化法等来制备黑色二氧化钛。其中,氢还原法涉及到了高温高压,存在易燃易爆等不安全因素且对设备要求比较高;氢等离子体辅助氢化法有氢气的加入,与此同时还需要加热,同样增加了实验的风险;化学法制备过程复杂,耗时比较长。这些方法涉及的还原、高温高压等制备原理,限制了黑色二氧化钛的制备效率。
发明内容
针对黑色二氧化钛制备方法复杂且制备效率较低的问题,本发明提出了一种真空环境下通过脉冲激光溅射沉积法制备黑色二氧化钛的方法。该方法操作简单、成本低、反应时间短,能够高效快速的合成黑色二氧化钛。所得黑色二氧化钛大大提高了对可见光的吸收,拓宽了光响应范围。
为了解决上述技术问题,本发明提出的一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法,步骤是:首先,将白色二氧化钛粉末压片,得到压强为140~200Mpa的白色二氧化钛靶材;然后,将制得的白色二氧化钛靶材置于真空罐,抽真空使真空罐内压力达到1×10-6-1×104Pa;调节脉冲激光器的入射激光束与所述白色二氧化钛靶材之间的角度为10~45°,激光器的基片基底与所述白色二氧化钛靶材的距离为15~50mm;开启脉冲激光器,调节激光脉宽、激光能量、激光波长和频率,激光聚焦辐照真空罐中的白色二氧化钛靶材,处理一定时间,在基片上得到黑色二氧化钛薄膜,将黑色二氧化钛薄膜上的黑色二氧化钛刮下即得到黑色二氧化钛粉末。
上述负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法中,所述激光器的基片为耐高温基片,耐温不低于550℃;可以选用石英基或是K9玻璃基片。
所述激光脉宽为10ns-50ps,激光能量为450-1500mJ,激光波长为532-1064nm,频率为5~20Hz。激光聚焦辐照白色二氧化钛靶材每点处理时间为30~120s。
与现有技术相比,本发明的有益效果是:
(1)本发明中,只需要激光器和真空系统即可,真空环境下,利用激光聚焦辐照白色二氧化钛靶材,靶材吸收激光能量迅速升温气化产生高温等离子体,提高了常规热处理的热力学和动力学,从而快速制得黑色二氧化钛粉末,提高了黑色二氧化钛的制备效率;(2)室温条件下,激光溅射沉积过程中,粒子沉积到基底上迅速冷却,限制了晶体的长大;(3)调节激光电压(能量),能够控制产物中锐钛矿相和金红石相的比例;(4)与原有制备黑色二氧化钛的的方法相比,本发明操作简单,对设备要求低,反应时间短,避免了氢气等危险气体的使用,降低了实验的危险性;(5)本发明制备的黑色二氧化钛粉末大大提高了对可见光的吸收,拓宽了光响应范围,为其光催化效率的提高奠定了基础。
附图说明
图1为实施例1制备的黑色二氧化钛粉末与原始的白色二氧化钛粉末的实物对比图;
图2为实施例1制备的黑色二氧化钛粉末与原始的白色二氧化钛的X射线衍射谱图;
图3(a)为实施例1制备的黑色二氧化钛粉末的透射电镜照片;
图3(b)为原始的白色二氧化钛的透射电镜照片;
图4(a)为实施例1制备的黑色二氧化钛粉末的高分辨透射电镜照片及选区电子衍射图;
图4(b)为原始的白色二氧化钛的高分辨透射电镜照片及选区电子衍射图;
图5为实施例1制备的黑色二氧化钛粉末与原始的白色二氧化钛的紫外-可见-近红外的吸收谱图。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
实施例1:黑色二氧化钛粉末的制备,步骤是:
用压片机将购买的锐钛矿型的白色二氧化钛压成直径为2cm厚度为2mm的圆形靶材,压强为200MPa;将该圆形靶材置于真空罐中,抽真空使真空罐中的内压力为1×103Pa;调节脉冲激光器的入射激光束与圆形靶材之间的角度为10°,脉冲激光器的基片选用为耐高温的石英基片或是K9玻璃基片,调整基片基底与圆形靶材的距离为25mm,以确保产物可以溅射沉积到基片上;开启脉冲激光器,调节脉冲激光器的激光脉宽为8ns,波长为1064nm,能量为950mJ,频率为10Hz;激光聚焦为直径为2mm的光斑辐照真空罐中的白色二氧化钛的圆形靶材,聚焦点辐照时间每点30s,则在基片基底上得到黑色二氧化钛薄膜;关闭脉冲激光器,取出基片,将基片基底上的黑色二氧化钛轻轻刮下即得到黑色二氧化钛粉末。
图1为实施例1制备的黑色二氧化钛粉末与原始的白色二氧化钛粉末的实物对比照片;图2为实施例1制备的黑色二氧化钛粉末与原始的白色二氧化钛的X射线衍射谱图;图3(a)示出了实施例1制备的黑色二氧化钛粉末的透射电镜照片;图3(b)为原始的白色二氧化钛的透射电镜照片;图4(a)为实施例1制备的黑色二氧化钛粉末的高分辨透射电镜照片及选区电子衍射图;图4(b)为原始的白色二氧化钛的高分辨透射电镜照片及选区电子衍射图;图5为实施例1制备的黑色二氧化钛粉末与原始的白色二氧化钛的紫外-可见-近红外的吸收谱图。
实施例2:黑色二氧化钛粉末的制备,步骤是:
用压片机将购买的锐钛矿型的白色二氧化钛压成直径为2cm厚度为1mm的圆形靶材,压强为160MPa;将该圆形靶材置于真空罐中,抽真空使真空罐中的内压力为1×10-3Pa;调节脉冲激光器的入射激光束与圆形靶材之间的角度为45°,脉冲激光器的基片选用为耐高温的石英基片或是K9玻璃基片,调整基片基底与圆形靶材的距离为40mm,以确保产物可以溅射沉积到基片上;开启脉冲激光器,调节脉冲激光器的激光脉宽为10ns,波长为1064nm,能量为500mJ,频率为15Hz;激光聚焦为直径为1mm的光斑辐照真空罐中的白色二氧化钛的圆形靶材,聚焦点辐照时间每点60s,则在基片基底上得到黑色二氧化钛薄膜;关闭脉冲激光器,取出基片,将基片基底上的黑色二氧化钛轻轻刮下即得到黑色二氧化钛粉末。
实施例3:黑色二氧化钛粉末的制备,步骤是:
用压片机将购买的锐钛矿型的白色二氧化钛压成直径为3cm厚度为3mm的圆形靶材,压强为140MPa;将该圆形靶材置于真空罐中,抽真空使真空罐中的内压力为1×10-6Pa;调节脉冲激光器的入射激光束与圆形靶材之间的角度为15°,脉冲激光器的基片选用石英基片,调整基片基底与圆形靶材的距离为15mm,以确保产物可以溅射沉积到基片上;开启脉冲激光器,调节脉冲激光器的激光脉宽为50ns,波长为532nm,能量为450mJ,频率为10Hz;激光聚焦为直径为1mm的光斑辐照真空罐中的白色二氧化钛的圆形靶材,聚焦点辐照时间每点90s,则在基片基底上得到黑色二氧化钛薄膜;关闭脉冲激光器,取出基片,将基片基底上的黑色二氧化钛轻轻刮下即得到黑色二氧化钛粉末。
实施例4:黑色二氧化钛粉末的制备,步骤是:
用压片机将购买的锐钛矿型的白色二氧化钛压成直径为4cm厚度为3mm的圆形靶材,压强为140MPa;将该圆形靶材置于真空罐中,抽真空使真空罐中的内压力为1×104Pa;调节脉冲激光器的入射激光束与圆形靶材之间的角度为30°,脉冲激光器的基片选用石英基片,调整基片基底与圆形靶材的距离为50mm,以确保产物可以溅射沉积到基片上;开启脉冲激光器,调节脉冲激光器的激光脉宽为10ns,波长为1064nm,能量为1500mJ,频率为5Hz;激光聚焦为直径为2mm的光斑辐照真空罐中的白色二氧化钛的圆形靶材,聚焦点辐照时间每点120s,则在基片基底上得到黑色二氧化钛薄膜;关闭脉冲激光器,取出基片,将基片基底上的黑色二氧化钛轻轻刮下即得到黑色二氧化钛粉末。
本发明中黑色二氧化钛的制作过程简单快速,原材料费用低,反应时间短,是一种高效经济的合成方法。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (3)

1.一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法,其特征在于,包括以下步骤:
步骤一、将原始的白色二氧化钛粉末压片,得到压强为140~200Mpa的白色二氧化钛靶材;
步骤二、将步骤一制得的白色二氧化钛靶材置于真空罐,抽真空使真空罐内压力达到1×10-6-1×104Pa;调节脉冲激光器的入射激光束与所述白色二氧化钛靶材之间的角度为10~45°,激光器的基片基底与所述白色二氧化钛靶材的距离为15~50mm;开启脉冲激光器,调节激光脉宽、激光能量、激光波长和频率,激光聚焦辐照真空罐中的白色二氧化钛靶材,靶材吸收激光能量迅速升温气化产生高温等离子体,处理一定时间,在基片上得到黑色二氧化钛薄膜,将黑色二氧化钛薄膜上的黑色二氧化钛刮下即得到黑色二氧化钛粉末。
2.根据权利要求1所述负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法,其特征在于,所述激光器的基片为耐高温基片,耐温不低于550℃。
3.根据权利要求1所述负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法,其特征在于,所述激光脉宽为10ns-50ps,激光能量为450-1500mJ,激光波长为532-1064nm,频率为5~20Hz;激光聚焦辐照白色二氧化钛靶材每点处理时间为30~120s。
CN201611052072.6A 2016-11-24 2016-11-24 一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法 Expired - Fee Related CN106756788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611052072.6A CN106756788B (zh) 2016-11-24 2016-11-24 一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611052072.6A CN106756788B (zh) 2016-11-24 2016-11-24 一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法

Publications (2)

Publication Number Publication Date
CN106756788A CN106756788A (zh) 2017-05-31
CN106756788B true CN106756788B (zh) 2019-05-21

Family

ID=58911229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611052072.6A Expired - Fee Related CN106756788B (zh) 2016-11-24 2016-11-24 一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法

Country Status (1)

Country Link
CN (1) CN106756788B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814485B (zh) * 2022-07-13 2023-09-01 南臺學校財團法人南臺科技大學 薄膜及其製法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055928B (zh) * 2018-10-11 2021-06-01 东北大学 一种高畸变结构黑色纳米氧化钛涂层及其制备方法
CN109704400B (zh) * 2019-02-21 2021-07-13 中国科学院上海硅酸盐研究所 一种在氧气或空气气氛中制备黑色二氧化钛块体的方法
CN112844349B (zh) * 2019-11-28 2023-05-05 桂林理工大学 一种利用激光刻蚀Ti片制备TiOx光阳极的方法
CN111193024A (zh) * 2020-01-21 2020-05-22 黑龙江科技大学 一种利用等离子体电解氧化技术制备TiO2粉末负极的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415650A (zh) * 2002-09-27 2003-05-07 福建师范大学 连续制备纳米氧化物或其反应物溶胶及其聚合物杂化材料的方法
CN103191707A (zh) * 2013-04-28 2013-07-10 中国科学院上海硅酸盐研究所 双温区还原法制备黑色二氧化钛的方法
CN105177511A (zh) * 2015-09-29 2015-12-23 扬州大学 一种负热膨胀材料Sc2Mo3O12薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415650A (zh) * 2002-09-27 2003-05-07 福建师范大学 连续制备纳米氧化物或其反应物溶胶及其聚合物杂化材料的方法
CN103191707A (zh) * 2013-04-28 2013-07-10 中国科学院上海硅酸盐研究所 双温区还原法制备黑色二氧化钛的方法
CN105177511A (zh) * 2015-09-29 2015-12-23 扬州大学 一种负热膨胀材料Sc2Mo3O12薄膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814485B (zh) * 2022-07-13 2023-09-01 南臺學校財團法人南臺科技大學 薄膜及其製法

Also Published As

Publication number Publication date
CN106756788A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106756788B (zh) 一种负压环境下脉冲激光溅射沉积制备黑色二氧化钛粉末的方法
Gannoruwa et al. The mechanism and material aspects of a novel Ag 2 O/TiO 2 photocatalyst active in infrared radiation for water splitting
Tian et al. Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2, 5-DCP degradation
Li et al. Defective black TiO2 nanotube arrays for enhanced photocatalytic and photoelectrochemical applications
Singh et al. Laser irradiance and wavelength-dependent compositional evolution of inorganic ZnO and ZnOOH/organic SDS nanocomposite material
CN107988614B (zh) 灰色还原型二氧化钛纳米混晶的制备方法
JP2013519505A (ja) パルスレーザ溶発によるナノ粒子溶液の製造
CN106637104A (zh) 黑色二氧化钛复合薄膜的制备方法
TW201400417A (zh) Ito膜及使用於此ito膜之製造之ito粉末、ito粉末之製造方法、及ito膜之製造方法
CN105753043A (zh) 金属-氨溶液还原二氧化钛制备还原型二氧化钛的方法
CN109868462A (zh) 一种实现在纳米尺度下激光辅助金离子化学还原的方法
Shiao et al. Novel gold dendritic nanoflowers deposited on titanium nitride for photoelectrochemical cells
He et al. Enhanced solar water-splitting performance of TiO2 nanotube arrays by annealing and quenching
Knezevic et al. Adjusting the band gap of CsPbBr 3− y X y (X= Cl, I) for optimal interfacial charge transfer and enhanced photocatalytic hydrogen generation
Siuzdak et al. Review on robust laser light interaction with titania–Patterning, crystallisation and ablation processes
Bjelajac et al. Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots
Razak et al. Effect of annealing temperature on silver doped titanium dioxide (Ag/tio2) thin film via sol-gel method
Mendivil et al. Transmission electron microscopic studies on noble metal nanoparticles synthesized by pulsed laser ablation in liquid
Nakano et al. Optimal levels of oxygen deficiency in the visible light photocatalyst TiO2− x and long-term stability of catalytic performance
Goncharova et al. Structure and properties of nanoparticles fabricated by laser ablation of bulk metal copper targets in water and ethanol
Krysa et al. Photo-electrochemical properties of WO3 and α-Fe2O3 thin films
CN106732570A (zh) 一种载银二氧化钛纳米复合光催化剂的制备方法
CN111850653B (zh) 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
CN108128799A (zh) 一种超薄氧化锌球壳的制备方法
Sauthier et al. Investigation of nitrogen-doped TiO2 thin films grown by reactive pulsed laser deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190521

Termination date: 20211124