CN106747426A - 一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层 - Google Patents

一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层 Download PDF

Info

Publication number
CN106747426A
CN106747426A CN201611136551.6A CN201611136551A CN106747426A CN 106747426 A CN106747426 A CN 106747426A CN 201611136551 A CN201611136551 A CN 201611136551A CN 106747426 A CN106747426 A CN 106747426A
Authority
CN
China
Prior art keywords
nano
gadolinium
gadolinium zirconate
densification
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201611136551.6A
Other languages
English (en)
Inventor
王海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Jia Xin New Mstar Technology Ltd
Original Assignee
Dongguan Jia Xin New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Jia Xin New Mstar Technology Ltd filed Critical Dongguan Jia Xin New Mstar Technology Ltd
Priority to CN201611136551.6A priority Critical patent/CN106747426A/zh
Publication of CN106747426A publication Critical patent/CN106747426A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和包括钇氧化锆陶瓷层,纳晶致密锆酸钆陶瓷层由粒径为6‑12nm,比表面积不低于87m2/g的锆酸钆纳米粉末经放电等离子体烧结得到,金属粘接层包括钴、铬、铝、钇、銤和镍,本发明制备基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层热绝缘性能优异,密度高,不开裂,机械性能好,在高温下性能稳定性好,可用于催化剂、热障涂层、固体电解质、高放废物固化等方面。

Description

一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层
技术领域
本发明属于功能陶瓷材料技术领域,具体涉及一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层。
背景技术
锆酸钆具有立方晶系结构,热导率低,高温离子电导率高,氧扩散率低和抗辐照性能优异,高温热稳定性能出色,因此锆酸钆陶瓷是一种综合性能好、耐高温的陶瓷材料,具有优良的物理和化学性能,在催化剂、热障涂层、固体电解质、高放废物固化等方面都有较为广泛的应用。
中国专利CN101313080B公开的一种含钆-混晶-烧绿石相的层系,该层系上具有基底、内陶瓷层、金属粘结层和外陶瓷层,外陶瓷层含有烧绿石结构,内陶瓷层为钇稳定的氧化锆层,金属粘结层包括钴、铬、铝、钇、銤和镍组成,由此可知该层系含有多层金属氧化物陶瓷层,保证构建在高温下的机械性能,但是该层系中对外陶瓷层的致密度和晶粒的具体性能并没有多做限制。然而锆酸钆陶瓷的密度和晶粒的尺寸对锆酸钆陶瓷的高温热稳定性和机械性能影响较大,然而目前基于纳米晶锆酸钆陶瓷制备和应用方面的研究并不多见,通常出现致密度和晶粒尺寸不可兼得的情况。
本发明的申请人将锆酸钆纳米粉末采用放电等离子体烧结,结合缓慢升温,线性降温的技术得到纳晶致密锆酸钆陶瓷层,并将纳晶致密锆酸钆陶瓷层与金属粘结层和氧化锆陶瓷层结合,制备得到综合性能优异的陶瓷绝缘层,进一步提高陶瓷绝缘层的使用性能,力求在催化剂、热障涂层、固体电解质、高放废物固化等方面取得更加广阔的应用。
发明内容
本发明要解决的技术问题是提供一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,将高密度纳米晶粒的锆酸钆陶瓷层与其他陶瓷层相结合,进一步提高陶瓷绝缘层的综合性能和使用性,制备基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层热绝缘性能优异,密度高,不开裂,机械性能好,在高温下性能稳定性好,可用于催化剂、热障涂层、固体电解质、高放废物固化等方面。
为解决上述技术问题,本发明的技术方案是:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,所述基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,所述纳晶致密锆酸钆陶瓷层由锆酸钆纳米粉末经放电等离子体烧结得到,所述金属粘接层包括钴、铬、铝、钇、銤和镍,所述氧化锆陶瓷层还包括钇,所述锆酸钆纳米粉末的粒径为6-12nm,比表面积不低于87m2/g,所述放电等离子体烧结的条件为:开始以升温速率为30-40℃/min升温至600℃,再以40-60℃/min升温至1300-1350℃,保温3-5min,然后按照30-50℃/min降温至600℃,随炉自然降温冷却。
作为上述技术方案的优选,所述氧化锆陶瓷层中钇的重量比为5-7%。
作为上述技术方案的优选,所述金属粘接层中的组分,按重量百分比计,包括钴10-15%、铬20-25%、铝10-13%、钇0.2-0.5%、銤1-3%,其余为镍。
作为上述技术方案的优选,所述基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为300-400μm。
作为上述技术方案的优选,所述纳晶致密锆酸钆陶瓷层的制备方法包括以下步骤:
(1)在5-22℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,搅拌均匀,将含钆和锆的混合溶液逐滴滴入搅拌的稀氨水溶液中,滴定完毕后,停止搅拌,陈化,得到上清液和沉淀,上清液的pH值为10-10.5,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入反应釜中,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中干燥,取出研磨,在200目筛网中过筛,在马弗炉中焙烧,去除吸附的水分和羟基氧化物,得到锆酸钆纳米粉体;
(2)将步骤(1)制备得到的锆酸钆纳米粉体置于石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中干燥,随后在台式粉末干压机上预压;
(3)将步骤(2)制备的装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门开始抽真空,待真空度小于6Pa时,开始加压,压力为60-80MPa,烧结,待炉内温度降低到低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
作为上述技术方案的优选,所述步骤(1)中含钆和锆的混合溶液中钆和锆的浓度为0.03-0.05mol/L,所述稀氨水的浓度为0.4-0.6mol/L,所述稀氨水与含钆和锆的混合溶液的体积比为2:1。
作为上述技术方案的优选,所述步骤(1)中陈化时间为20-24h,干燥温度为50-70℃,焙烧温度为800-10000℃,焙烧时间为2-5h。
作为上述技术方案的优选,所述步骤(2)中干燥温度为180-200℃,干燥时间为4-6h,预压的压力为1-2MPa。
作为上述技术方案的优选,所述步骤(3)中烧结的条件为:开始以升温速率为30-40℃/min升温至600℃,再以40-60℃/min升温至1300-1350℃,保温3-5min,然后按照30-50℃/min降温至600℃,随炉自然降温冷却。
作为上述技术方案的优选,所述步骤(3)中纳晶致密锆酸钆陶瓷层的平均晶粒尺寸为50-80nm,相对密度不低于97%。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层中含有的纳晶致密锆酸钆陶瓷层原料为纳米级粉体,由纳米级粉体经改性后制备的晶粒尺寸小,晶粒尺寸稳定,结晶度好,分散性好,比表面积大,活性高,为纳晶致密陶瓷的烧结打下良好的基础,然后通过粉体装摸后高温干燥、缓慢升温和线性升温,解决了放电等离子体烧结中样品开裂的问题,制备得到不裂的高致密陶瓷,相对密度大于其理论密度的97%,而且采用放电等离子体烧结的时间短,效率高,节约能源。
(2)本发明制备的基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层中含钇的氧化锆陶瓷层,含钇的氧化锆陶瓷层具有绝缘耐热耐腐蚀的性能,但性能略低于纳晶致密锆酸钆陶瓷层,通过由钴、铬、铝、钇、銤和镍构成的金属粘接层将纳晶致密锆酸钆陶瓷层与含钇的氧化锆陶瓷层相结合,不仅提高了绝缘层的热稳定性能和耐腐蚀性能,而且利用金属粘合层的粘合性提高了绝缘层在高温情况下的机械稳定性能,提高了绝缘层的使用效率,可运用于热障涂层,固体氧化物燃料电池和高放核废固化等领域。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为300μm,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,其中纳晶致密锆酸钆陶瓷层由粒径为6-12nm,比表面积不低于87m2/g的锆酸钆纳米粉末采用放电等离子体烧结得到,金属粘接层中的组分,按重量百分比计,包括钴10%、铬20%、铝10%、钇0.2%、銤1%,其余为镍,氧化锆陶瓷层还包括重量比为5%的钇。
其中,纳晶致密锆酸钆陶瓷层的制备方法为:
(1)在5℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,其中钆和锆的浓度为0.03mol/L,搅拌均匀,按照体积比为2:1,将含钆和锆的混合溶液以10ml/min的速度逐滴滴入搅拌的浓度为0.4mol/L的稀氨水溶液中,滴定完毕后,停止搅拌,陈化20h,得到上清液和沉淀,上清液的pH值为10,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入聚四氟乙烯的反应釜中,在180℃下反应22h,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中在50℃下干燥,取出研磨,在200目筛网中过筛,在马弗炉中以1000℃温度焙烧2h,去除吸附的水分和羟基氧化物,得到晶粒尺寸为6-12nm,比表面积超过87m2/g的锆酸钆纳米粉体。
(2)将锆酸钆纳米粉体置于直径为15mm的圆形石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中在180℃下干燥6h,随后在台式粉末干压机上以2MPa的压力预压。
(3)将装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门抽真空,待真空度小于6Pa时,开始加压,压力为60MPa,开始以升温速率为30℃/min升温至600℃,再以40℃/min升温至1300℃,保温4min,然后按照30℃/min降温至600℃,随炉自然降温冷却,烧结完毕,待炉内温度降低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
实施例2:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为400μm,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,其中纳晶致密锆酸钆陶瓷层由粒径为6-12nm,比表面积不低于87m2/g的锆酸钆纳米粉末采用放电等离子体烧结得到,金属粘接层中的组分,按重量百分比计,包括钴15%、铬25%、铝13%、钇0.5%、銤3%,其余为镍,氧化锆陶瓷层还包括重量比为7%的钇。
其中,纳晶致密锆酸钆陶瓷层的制备方法为:
(1)在18℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,其中钆和锆的浓度为0.05mol/L,搅拌均匀,按照体积比为2:1,将含钆和锆的混合溶液以6ml/min的速度逐滴滴入搅拌的浓度为0.6mol/L的稀氨水溶液中,滴定完毕后,停止搅拌,陈化24h,得到上清液和沉淀,上清液的pH值为10.3,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入聚四氟乙烯的反应釜中,在200℃下反应24h,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中在60℃下干燥,取出研磨,在200目筛网中过筛,在马弗炉中以800℃温度焙烧5h,去除吸附的水分和羟基氧化物,得到晶粒尺寸为6-12nm,比表面积超过87m2/g的锆酸钆纳米粉体。
(2)将锆酸钆纳米粉体置于长方形的石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中在200℃下干燥5h,随后在台式粉末干压机上以1MPa的压力预压1min。
(3)将装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门开始抽真空,待真空度小于6Pa时,开始加压,压力为70MPa,开始以升温速率为30℃/min升温至300℃,以升温速率为40℃/min升温至600℃,再以50℃/min升温至1320℃,保5min,然后按照40℃/min降温至600℃,随炉自然降温冷却,烧结完毕,待炉内温度降低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
实施例3:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为350μm,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,其中纳晶致密锆酸钆陶瓷层由粒径为6-12nm,比表面积不低于87m2/g的锆酸钆纳米粉末采用放电等离子体烧结得到,金属粘接层中的组分,按重量百分比计,包括钴12%、铬23%、铝11%、钇0.3%、銤2%,其余为镍,氧化锆陶瓷层还包括重量比为6%的钇。
其中,纳晶致密锆酸钆陶瓷层的制备方法为:
(1)在22℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,其中钆和锆的浓度为0.04mol/L,搅拌均匀,按照体积比为2:1,将含钆和锆的混合溶液以8ml/min的速度逐滴滴入搅拌的浓度为0.6mol/L的稀氨水溶液中,滴定完毕后,停止搅拌,陈化22h,得到上清液和沉淀,上清液的pH值为10.5,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入聚四氟乙烯的反应釜中,在190℃下反应20h,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中在70℃下干燥,取出研磨,在200目筛网中过筛,在马弗炉中以900℃温度焙烧4h,去除吸附的水分和羟基氧化物,得到晶粒尺寸为6-12nm,比表面积超过87m2/g的锆酸钆纳米粉体。
(2)将锆酸钆纳米粉体置于狭长形的石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中在190℃下干燥4h,随后在台式粉末干压机上以1.5MPa的压力预压1min。
(3)将装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门抽真空,待真空度小于6Pa时,开始加压,压力为80MPa,开始以升温速率为40℃/min升温至600℃,再以60℃/min升温至1350℃,保温3min,然后按照50℃/min降温至600℃,随炉自然降温冷却,烧结完毕,待炉内温度降低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
实施例4:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为380μm,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,其中纳晶致密锆酸钆陶瓷层由粒径为6-12nm,比表面积不低于87m2/g的锆酸钆纳米粉末采用放电等离子体烧结得到,金属粘接层中的组分,按重量百分比计,包括钴14%、铬21%、铝12%、钇0.4%、銤2.5%,其余为镍,氧化锆陶瓷层还包括重量比为6.5%的钇。
其中,纳晶致密锆酸钆陶瓷层的制备方法为:
(1)在5℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,其中钆和锆的浓度为0.03mol/L,搅拌均匀,按照体积比为2:1,将含钆和锆的混合溶液以10ml/min的速度逐滴滴入搅拌的浓度为0.4mol/L的稀氨水溶液中,滴定完毕后,停止搅拌,陈化20h,得到上清液和沉淀,上清液的pH值为10,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入聚四氟乙烯的反应釜中,在180℃下反应22h,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中在50℃下干燥,取出研磨,在200目筛网中过筛,在马弗炉中以1000℃温度焙烧2h,去除吸附的水分和羟基氧化物,得到晶粒尺寸为6-12nm,比表面积超过87m2/g的锆酸钆纳米粉体。
(2)将锆酸钆纳米粉体置于直径为15mm的圆形石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中在180℃下干燥6h,随后在台式粉末干压机上以2MPa的压力预压。
(3)将装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门抽真空,待真空度小于6Pa时,开始加压,压力为60MPa,开始以升温速率为30℃/min升温至600℃,再以40℃/min升温至1300℃,保温4min,然后按照30℃/min降温至600℃,随炉自然降温冷却,烧结完毕,待炉内温度降低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
实施例5:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为360μm,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,其中纳晶致密锆酸钆陶瓷层由粒径为6-12nm,比表面积不低于87m2/g的锆酸钆纳米粉末采用放电等离子体烧结得到,金属粘接层中的组分,按重量百分比计,包括钴15%、铬20%、铝11%、钇0.5%、銤1%,其余为镍,氧化锆陶瓷层还包括重量比为7%的钇。
其中,纳晶致密锆酸钆陶瓷层的制备方法为:
(1)在18℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,其中钆和锆的浓度为0.05mol/L,搅拌均匀,按照体积比为2:1,将含钆和锆的混合溶液以6ml/min的速度逐滴滴入搅拌的浓度为0.6mol/L的稀氨水溶液中,滴定完毕后,停止搅拌,陈化24h,得到上清液和沉淀,上清液的pH值为10.3,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入聚四氟乙烯的反应釜中,在200℃下反应24h,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中在60℃下干燥,取出研磨,在200目筛网中过筛,在马弗炉中以800℃温度焙烧5h,去除吸附的水分和羟基氧化物,得到晶粒尺寸为6-12nm,比表面积超过87m2/g的锆酸钆纳米粉体。
(2)将锆酸钆纳米粉体置于长方形的石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中在200℃下干燥5h,随后在台式粉末干压机上以1MPa的压力预压1min。
(3)将装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门开始抽真空,待真空度小于6Pa时,开始加压,压力为70MPa,开始以升温速率为30℃/min升温至300℃,以升温速率为40℃/min升温至600℃,再以50℃/min升温至1320℃,保5min,然后按照40℃/min降温至600℃,随炉自然降温冷却,烧结完毕,待炉内温度降低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
实施例6:
一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为310μm,从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,其中纳晶致密锆酸钆陶瓷层由粒径为6-12nm,比表面积不低于87m2/g的锆酸钆纳米粉末采用放电等离子体烧结得到,金属粘接层中的组分,按重量百分比计,包括钴14%、铬23%、铝11%、钇0.4%、銤1.5%,其余为镍,氧化锆陶瓷层还包括重量比为5.5%的钇。
其中,纳晶致密锆酸钆陶瓷层的制备方法为:
(1)在22℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,其中钆和锆的浓度为0.04mol/L,搅拌均匀,按照体积比为2:1,将含钆和锆的混合溶液以8ml/min的速度逐滴滴入搅拌的浓度为0.6mol/L的稀氨水溶液中,滴定完毕后,停止搅拌,陈化22h,得到上清液和沉淀,上清液的pH值为10.5,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入聚四氟乙烯的反应釜中,在190℃下反应20h,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中在70℃下干燥,取出研磨,在200目筛网中过筛,在马弗炉中以900℃温度焙烧4h,去除吸附的水分和羟基氧化物,得到晶粒尺寸为6-12nm,比表面积超过87m2/g的锆酸钆纳米粉体。
(2)将锆酸钆纳米粉体置于狭长形的石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中在190℃下干燥4h,随后在台式粉末干压机上以1.5MPa的压力预压1min。
(3)将装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门抽真空,待真空度小于6Pa时,开始加压,压力为80MPa,开始以升温速率为40℃/min升温至600℃,再以60℃/min升温至1350℃,保温3min,然后按照50℃/min降温至600℃,随炉自然降温冷却,烧结完毕,待炉内温度降低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
经检测,实施例1-3制备的纳晶致密锆酸钆陶瓷层的晶粒尺寸、密度和相对密度的结果如下所示:
实施例1 实施例2 实施例3
平均晶粒尺寸(nm) 50 55 78
密度(g/cm3) 6.782 6.801 6.878
相对密度(%) 97.1 97.4 98.5
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,其特征在于:所述基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层从外至内依次包括纳晶致密锆酸钆陶瓷层、金属粘结层和氧化锆陶瓷层,所述纳晶致密锆酸钆陶瓷层由锆酸钆纳米粉末经放电等离子体烧结得到,所述金属粘接层包括钴、铬、铝、钇、銤和镍,所述氧化锆陶瓷层还包括钇,所述锆酸钆纳米粉末的粒径为6-12nm,比表面积不低于87m2/g,所述放电等离子体烧结的条件为:开始以升温速率为30-40℃/min升温至600℃,再以40-60℃/min升温至1300-1350℃,保温3-5min,然后按照30-50℃/min降温至600℃,随炉自然降温冷却。
2.根据权利要求1所述的一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,其特征在于:所述氧化锆陶瓷层中钇的重量比为5-7%。
3.根据权利要求1所述的一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,其特征在于:所述金属粘接层中的组分,按重量百分比计,包括钴10-15%、铬20-25%、铝10-13%、钇0.2-0.5%、銤1-3%,其余为镍。
4.根据权利要求1所述的一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,其特征在于:所述基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层的厚度为300-400μm。
5.根据权利要求1所述的一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层,其特征在于,所述纳晶致密锆酸钆陶瓷层的制备方法包括以下步骤:
(1)在5-22℃下,将摩尔比为1:1的六水硝酸钆和八水二氯氧化锆加入去离子水中,形成含钆和锆的混合溶液,搅拌均匀,将含钆和锆的混合溶液逐滴滴入搅拌的稀氨水溶液中,滴定完毕后,停止搅拌,陈化,得到上清液和沉淀,上清液的pH值为10-10.5,将沉淀进行离心清洗,先用去离子水清洗5-6遍,直到将硝酸银加入离心后的上层清液中无白色沉淀产生为止,再用无水乙醇清洗3遍,取出沉淀中的水,然后将沉淀用无水乙醇稀释后放入反应釜中,待反应结束后,将沉淀用无水乙醇离心清洗1遍,放入干燥箱中干燥,取出研磨,在200目筛网中过筛,在马弗炉中焙烧,去除吸附的水分和羟基氧化物,得到锆酸钆纳米粉体;
(2)将步骤(1)制备得到的锆酸钆纳米粉体置于石墨模具中,套筒内壁和上下压头各垫一层碳纸,避免石墨模具和锆酸钆纳米粉体直接接触,将锆酸钆纳米粉体装膜后同石墨模具一起在干燥箱中干燥,随后在台式粉末干压机上预压;
(3)将步骤(2)制备的装有锆酸钆纳米粉体的石墨模具在放电等离子体烧结炉中正确安放后,关炉门开始抽真空,待真空度小于6Pa时,开始加压,压力为60-80MPa,烧结,待炉内温度降低到低于30℃时,开始泄压,待全部压力卸完,放气,开炉门,脱模,取样;最后对样品进行抛光,得到纳晶致密锆酸钆陶瓷层。
6.根据权利要求5所述的一种含羟基磷灰石涂层的不裂高致密纳米锆酸钆陶瓷,其特征在于:所述步骤(1)中含钆和锆的混合溶液中钆和锆的浓度为0.03-0.05mol/L,所述稀氨水的浓度为0.4-0.6mol/L,所述稀氨水与含钆和锆的混合溶液的体积比为2:1。
7.根据权利要求5所述的一种含羟基磷灰石涂层的不裂高致密纳米锆酸钆陶瓷,其特征在于:所述步骤(1)中陈化时间为20-24h,干燥温度为50-70℃,焙烧温度为800-10000℃,焙烧时间为2-5h。
8.根据权利要求5所述的一种含羟基磷灰石涂层的不裂高致密纳米锆酸钆陶瓷,其特征在于:所述步骤(2)中干燥温度为180-200℃,干燥时间为4-6h,预压的压力为1-2MPa。
9.根据权利要求5所述的一种含羟基磷灰石涂层的不裂高致密纳米锆酸钆陶瓷,其特征在于,所述步骤(3)中烧结的条件为:开始以升温速率为30-40℃/min升温至600℃,再以40-60℃/min升温至1300-1350℃,保温3-5min,然后按照30-50℃/min降温至600℃,随炉自然降温冷却。
10.根据权利要求5所述的一种含羟基磷灰石涂层的不裂高致密纳米锆酸钆陶瓷,其特征在于:所述步骤(3)中纳晶致密锆酸钆陶瓷层的平均晶粒尺寸为50-80nm,相对密度不低于97%。
CN201611136551.6A 2016-12-12 2016-12-12 一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层 Withdrawn CN106747426A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611136551.6A CN106747426A (zh) 2016-12-12 2016-12-12 一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611136551.6A CN106747426A (zh) 2016-12-12 2016-12-12 一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层

Publications (1)

Publication Number Publication Date
CN106747426A true CN106747426A (zh) 2017-05-31

Family

ID=58875485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611136551.6A Withdrawn CN106747426A (zh) 2016-12-12 2016-12-12 一种基于金属粘结层的多层纳晶致密锆酸钆陶瓷绝缘层

Country Status (1)

Country Link
CN (1) CN106747426A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718258A (zh) * 2011-12-12 2012-10-10 沈阳化工大学 一种Gd2Zr2O7纳米粉体的制备方法
CN105862038A (zh) * 2016-06-21 2016-08-17 天津大学 一种抗cmas腐蚀耐超高温的长寿命热障涂层及其制备方法
CN106116568A (zh) * 2016-06-21 2016-11-16 西南科技大学 一种锆酸钆陶瓷的快速制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718258A (zh) * 2011-12-12 2012-10-10 沈阳化工大学 一种Gd2Zr2O7纳米粉体的制备方法
CN105862038A (zh) * 2016-06-21 2016-08-17 天津大学 一种抗cmas腐蚀耐超高温的长寿命热障涂层及其制备方法
CN106116568A (zh) * 2016-06-21 2016-11-16 西南科技大学 一种锆酸钆陶瓷的快速制备方法

Similar Documents

Publication Publication Date Title
Gavrilović et al. Synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions
CN106631008B (zh) 一种块状不裂高致密纳米晶锆酸钆陶瓷及其制备方法
CN107059129B (zh) 共沉淀与热蒸发技术原位合成锥状SiC晶须的制备方法
CN106297904B (zh) UO2‑SiC燃料芯块的制备方法及采用该制备方法制成的UO2‑SiC燃料芯块
JP5218419B2 (ja) 固体酸化物形燃料電池用の酸化ニッケル粉末材料とその製造方法、並びにそれを用いた燃料極材料、燃料極、及び固体酸化物形燃料電池
Li et al. Sinterability and electrical properties of ZnO-doped Ce0. 8Y0. 2O1. 9 electrolytes prepared by an EDTA–citrate complexing method
CN106241861A (zh) 一种棒状亚氧化钛粉体及其制备方法
CN105329876A (zh) 一种硼、氮共掺杂碳量子点的制备方法
CN113058610A (zh) 一种氨裂解制氢的装置及其制作方法
CN109796209A (zh) 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法
CN103183513A (zh) 一种质子导电陶瓷电解质薄膜的制备方法
Wang et al. Coprecipitation Synthesis of MgO‐Doped ZrO2 Nano Powder
CN106045550A (zh) SiC‑ZrC梯度改性碳/碳复合材料的制备方法
CN108751969A (zh) 一种耐高温、隔热、透波陶瓷基复合材料及其制备方法
CN104877392A (zh) 一种二氧化硅包覆型硫化铈红色颜料的制备方法及其制得的产品
CN109336572A (zh) 一种制备氧化物陶瓷的冷压烧结方法
CN110204341A (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN109704396A (zh) 一种钛酸铜钙的制备方法
CN108610038A (zh) 一种氧化锆与yag粉体双层包埋烧结制备yag透明陶瓷的方法
CN107389770A (zh) 氧传感器用电解质层和致密扩散层双层结构的制作方法
CN104557024B (zh) 高居里温度无铅钛酸钡基ptcr陶瓷材料及制备和应用
CN111719173A (zh) 一种固体氧化物燃料电池合金连接体尖晶石涂层的制备方法
CN113173787B (zh) 一种锆酸钆/钽酸钆复合陶瓷及其制备方法
KR101308020B1 (ko) 코어-셀 구조의 복합 분말 및 그 제조 방법
CN106747425A (zh) 一种含羟基磷灰石涂层的不裂高致密纳米锆酸钆陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170531