CN106745301B - 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法 - Google Patents

一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法 Download PDF

Info

Publication number
CN106745301B
CN106745301B CN201710085174.6A CN201710085174A CN106745301B CN 106745301 B CN106745301 B CN 106745301B CN 201710085174 A CN201710085174 A CN 201710085174A CN 106745301 B CN106745301 B CN 106745301B
Authority
CN
China
Prior art keywords
dendrimer
pure phase
nano particle
pamam
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710085174.6A
Other languages
English (en)
Other versions
CN106745301A (zh
Inventor
丛日敏
于怀清
杨赞中
王卫伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201710085174.6A priority Critical patent/CN106745301B/zh
Publication of CN106745301A publication Critical patent/CN106745301A/zh
Application granted granted Critical
Publication of CN106745301B publication Critical patent/CN106745301B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及一种用聚酰胺‑胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:以末端基团为酯基、羟基或羧基的聚酰胺‑胺(PAMAM)树形分子为模板,采用溶剂热法制得铁磁性纯相Bi2Fe4O9纳米颗粒。本发明采用了分散系数接近于1的球形聚酰胺‑胺树形分子为模板,制得的Bi2Fe4O9纳米颗粒为正交晶系,粒径小于10纳米,分散性好,饱和磁化强度达到18.4 emu/g,在可见光照射下具有高催化活性,可用作磁性回收可见光催化剂、传感器和磁流变液材料等领域。

Description

一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳 米颗粒的方法
技术领域
本发明涉及一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,属材料制备技术领域。
背景技术
Bi2Fe4O9是铁酸铋材料中一个重要的相,能带间隙大约为2.1eV,化学稳定性好,能够充分吸收利用可见光,在利用太阳能方面具有优势。Bi2Fe4O9在室温下具有弱铁磁性和良好的光催化活性,能将工业氨氧化为NO,在磁性回收光催化剂领域具有良好的应用前景。Bi2Fe4O9对乙醇和丙酮等气体有非常敏感,还可以作为半导体气敏传感器,是一种性能优良的功能材料。
Bi2Fe4O9的形貌、微观结构和尺寸对其光催化性能和磁性能影响很大,小尺寸的纳米颗粒具有更大的比表面积,更强的量子尺寸效应、小尺寸效应和宏观量子隧道效应,能表现出更强的光催化剂活性和磁化强度。因此,小尺寸的Bi2Fe4O9纳米颗粒可望成为一种新型的可磁性回收的窄带隙可见光催化剂,在可见光催化领域具有广泛的应用前景。
目前,科技人员研究了溶胶-凝胶法、共沉淀法和水热法等方法来合成Bi2Fe4O9材料,但要想制备出小尺寸的、高饱和磁化强度的纯相Bi2Fe4O9纳米颗粒仍然非常困难。聚酰胺-胺(PAMAM)树形分子具有单分散的球形分子结构,分子表面为密集的官能团,内部为纳米级空腔,在水和有机溶剂中均具有良好的溶解性能,在制备纳米颗粒时起到容器和载体的软模板作用,已经在制备纳米催化剂、检测试剂、生物医药制剂等高附加值产品上显示出了明显的性能优势,具有广阔的应用前景。为此,我们以PAMAM树形分子为模板,采用溶剂热法制备出直径在10 nm以下的铁磁性纯相Bi2Fe4O9纳米颗粒,在磁性回收可见光催化剂、传感器和磁流变液材料等领域具有很强的理论意义和应用价值。
发明内容
本发明的目的是提供一种能够制备出小尺寸的铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其技术内容为:
一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:以末端基团为酯基、羟基或羧基的聚酰胺-胺(PAMAM)树形分子为模板,采用溶剂热法制得铁磁性纯相Bi2Fe4O9纳米颗粒。
所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:包括以下步骤:(1)PAMAM/Fe(OH)3/Bi(OH)3前驱体制备:所述的PAMAM/Fe(OH)3/Bi(OH)3前驱体的制备步骤为:将物质的量比为2:1的Fe(NO3)3·9H2O和Bi(NO3)3·5H2O加入到有机溶剂中,边搅拌边缓慢滴加8~10%稀硝酸至Fe(NO3)3·9H2O和Bi(NO3)3·5H2O完全溶解,再加入PAMAM树形分子溶液,采用功率为50W的超声波清洗机震荡5min后,置于室温下搅拌2~4 h,使Fe3+和Bi3+与树形分子充分配位后,将搅拌速度调至800转/分以上,加入NaOH水溶液使反应体系的pH值为14,室温下搅拌反应1h后,即得到PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液。(2)铁磁性纯相Bi2Fe4O9纳米颗粒制备:所述的铁磁性纯相Bi2Fe4O9纳米颗粒制备步骤为:将所述步骤(1)制得的PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液转移至水热反应釜中,补充有机溶剂或NaOH水溶液使填充度为70%~75%,密封后将反应釜置于140~150℃的烘箱中,保温18~24h后取出,离心分离,用去离子水将沉淀物洗涤至PH值为中性后,在60℃以下烘干即得到铁磁性纯相Bi2Fe4O9纳米颗粒。
所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:PAMAM树形分子的代数为4~6代,末端基团为酯基、羟基或羧基,加入量以Fe3+与树形分子的物质的量比为140:1~10:1为标准,树形分子溶液的溶剂为水或乙醇,浓度为1×10-4~1×10-2 mol/L。
所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:有机溶剂为乙醇或丙酮,步骤(1)中Fe(NO3)3·9H2O的浓度为0.01~0.1mol/L,步骤(2)水热反应釜中有机溶剂与水的体积比为1:1~4:1。
所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:NaOH水溶液浓度为8~10 mol/L,步骤(1)中碱溶液分批加入,第一批加入量不少于体系中反应物Fe(NO3)3·9H2O、Bi(NO3)3·5H2O和硝酸的物质的量的总和,然后滴加至规定pH值。
本发明与现有技术相比,具有如下优点:
1、本发明采用分散系数接近于1的球形的聚酰胺-胺树形分子为模板,制得的Bi2Fe4O9纳米颗粒为纯相,正交晶系,尺寸均匀,粒径小于10 nm,分散性好,饱和磁化强度达到18.4 emu/g,在可见光照射下具有高催化活性;
2、本发明采用溶剂热法制备Bi2Fe4O9纳米颗粒,工艺简单,可用于磁性回收可见光催化剂、传感器和磁流变液材料等领域。
附图说明
图1是本发明制得的Bi2Fe4O9纳米颗粒的高分辨透射电子显微镜(HRTEM)照片,颗粒为球形,直径小于10 nm。
图2是本发明制得的Bi2Fe4O9纳米颗粒的磁滞回线,可以看出BiFeO3纳米颗粒具有铁磁性,饱和磁化强度为18.4 emu/g。
具体实施方式
实施例1:
步骤(1):PAMAM/Fe(OH)3/Bi(OH)3前驱体制备:将物质的量比为2:1的Fe(NO3)3·9H2O和Bi(NO3)3·5H2O加入到丙酮中,边搅拌边缓慢滴加10%稀硝酸至Fe(NO3)3·9H2O和Bi(NO3)3·5H2O完全溶解,Fe3+的浓度为0.01 mol/L,再加入4代、末端基团为酯基的PAMAM树形分子水溶液,树形分子的浓度为1×10-2 mol/L,加入量以Fe3+与树形分子的物质的量比为10:1为标准,采用功率为50W的超声波清洗机震荡5min后,置于室温下搅拌2 h,使Fe3+和Bi3 +与树形分子充分配位后,将搅拌速度调至800转/分以上,加入8 mol/L 的NaOH水溶液使反应体系的pH值为14,室温下搅拌反应1h后,即得到PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液。
步骤(2):铁磁性纯相Bi2Fe4O9纳米颗粒制备:将步骤(1)制得的PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液转移至水热反应釜中,补充丙酮或8 mol/L 的NaOH水溶液,使填充度为75%,丙酮与水的体积比为1:1,密封后将反应釜置于150℃的烘箱中,保温18h后取出,离心分离,用去离子水将沉淀物洗涤至PH值为中性后,在60℃以下烘干即得到铁磁性纯相Bi2Fe4O9纳米颗粒。
实施例2:
步骤(1):PAMAM/Fe(OH)3/Bi(OH)3前驱体制备:将物质的量比为2:1的Fe(NO3)3·9H2O和Bi(NO3)3·5H2O加入到丙酮中,边搅拌边缓慢滴加10%稀硝酸至Fe(NO3)3·9H2O和Bi(NO3)3·5H2O完全溶解,Fe3+的浓度为0.05 mol/L,再加入5代、末端基团为羧基的PAMAM树形分子水溶液,树形分子的浓度为1×10-3 mol/L,加入量以Fe3+与树形分子的物质的量比为40:1为标准,采用功率为50W的超声波清洗机震荡5min后,置于室温下搅拌3 h,使Fe3+和Bi3 +与树形分子充分配位后,将搅拌速度调至800转/分以上,加入8 mol/L 的NaOH水溶液使反应体系的pH值为14,室温下搅拌反应1h后,即得到PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液。
步骤(2):铁磁性纯相Bi2Fe4O9纳米颗粒制备:将步骤(1)制得的PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液转移至水热反应釜中,补充丙酮或8 mol/L 的NaOH水溶液,使填充度为70%,丙酮与水的体积比为2:1,密封后将反应釜置于150℃的烘箱中,保温18h后取出,离心分离,用去离子水将沉淀物洗涤至PH值为中性后,在60℃以下烘干即得到铁磁性纯相Bi2Fe4O9纳米颗粒。
实施例3:
步骤(1):PAMAM/Fe(OH)3/Bi(OH)3前驱体制备:将物质的量比为2:1的Fe(NO3)3·9H2O和Bi(NO3)3·5H2O加入到乙醇中,边搅拌边缓慢滴加8%稀硝酸至Fe(NO3)3·9H2O和Bi(NO3)3·5H2O完全溶解,Fe3+的浓度为0.05 mol/L,再加入5代、末端基团为羟基的PAMAM树形分子乙醇溶液,树形分子的浓度为1×10-3 mol/L,加入量以Fe3+与树形分子的物质的量比为80:1为标准,采用功率为50W的超声波清洗机震荡5min后,置于室温下搅拌4 h,使Fe3+和Bi3+与树形分子充分配位后,将搅拌速度调至800转/分以上,加入8 mol/L 的NaOH水溶液使反应体系的pH值为14,室温下搅拌反应1h后,即得到PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液。
步骤(2):铁磁性纯相Bi2Fe4O9纳米颗粒制备:将步骤(1)制得的PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液转移至水热反应釜中,补充乙醇或8 mol/L 的NaOH水溶液,使填充度为70%,乙醇与水的体积比为3:1,密封后将反应釜置于140℃的烘箱中,保温24h后取出,离心分离,用去离子水将沉淀物洗涤至PH值为中性后,在60℃以下烘干即得到铁磁性纯相Bi2Fe4O9纳米颗粒。
实施例4:
步骤(1):PAMAM/Fe(OH)3/Bi(OH)3前驱体制备:将物质的量比为2:1的Fe(NO3)3·9H2O和Bi(NO3)3·5H2O加入到乙醇中,边搅拌缓慢滴加8%稀硝酸至Fe(NO3)3·9H2O和Bi(NO3)3·5H2O完全溶解,Fe3+的浓度为0.1 mol/L,再加入6代、末端基团为酯基的PAMAM树形分子乙醇溶液,树形分子的浓度为1×10-4 mol/L,加入量以Fe3+与树形分子的物质的量比为140:1为标准,采用功率为50W的超声波清洗机震荡5min后,置于室温下搅拌4 h,使Fe3+和Bi3+与树形分子充分配位后,将搅拌速度调至800转/分以上,加入10 mol/L 的NaOH水溶液使反应体系的pH值为14,室温下搅拌反应1h后,即得到PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液。
步骤(2):铁磁性纯相Bi2Fe4O9纳米颗粒制备:将步骤(1)制得的PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液转移至水热反应釜中,补充乙醇或10 mol/L 的NaOH水溶液,使填充度为70%,乙醇与水的体积比为4:1,密封后将反应釜置于140℃的烘箱中,保温24h后取出,离心分离,用去离子水将沉淀物洗涤至PH值为中性后,在60℃以下烘干即得到铁磁性纯相Bi2Fe4O9纳米颗粒。

Claims (4)

1.一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:以末端基团为酯基、羟基或羧基的聚酰胺-胺(PAMAM)树形分子为模板,采用溶剂热法制得铁磁性纯相Bi2Fe4O9纳米颗粒,包括以下步骤:(1)PAMAM/Fe(OH)3/Bi(OH)3前驱体制备:所述的PAMAM/Fe(OH)3/Bi(OH)3前驱体的制备步骤为:将物质的量比为2:1的Fe(NO3)3·9H2O和Bi(NO3)3·5H2O加入到有机溶剂中,边搅拌边缓慢滴加8~10%稀硝酸至Fe(NO3)3·9H2O和Bi(NO3)3·5H2O完全溶解,再加入PAMAM树形分子溶液,采用功率为50W的超声波清洗机震荡5min后,置于室温下搅拌2~4 h,使Fe3+和Bi3+与树形分子充分配位后,将搅拌速度调至800转/分以上,加入NaOH水溶液使反应体系的pH值为14,室温下搅拌反应1h后,即得到PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液;(2)铁磁性纯相Bi2Fe4O9纳米颗粒制备:所述的铁磁性纯相Bi2Fe4O9纳米颗粒制备步骤为:将所述步骤(1)制得的PAMAM/Fe(OH)3/Bi(OH)3前驱体悬浊液转移至水热反应釜中,补充有机溶剂或NaOH水溶液使填充度为70%~75%,密封后将反应釜置于140~150℃的烘箱中,保温18~24h后取出,离心分离,用去离子水将沉淀物洗涤至pH值为中性后,在60℃以下烘干即得到铁磁性纯相Bi2Fe4O9纳米颗粒。
2.如权利要求1所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:PAMAM树形分子的代数为4~6代,末端基团为酯基、羟基或羧基,加入量以Fe3+与树形分子的物质的量比为140:1~10:1为标准,树形分子溶液的溶剂为水或乙醇,浓度为1×10-4~1×10-2 mol/L。
3.如权利要求1所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于:有机溶剂为乙醇或丙酮,步骤(1)中Fe(NO3)3·9H2O的浓度为0.01~0.1 mol/L,步骤(2)水热反应釜中有机溶剂与水的体积比为1:1~4:1。
4.如权利要求1所述的一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法,其特征在于: NaOH水溶液浓度为8~10 mol/L,步骤(1)中碱溶液分批加入,第一批加入量不少于体系中反应物Fe(NO3)3·9H2O、Bi(NO3)3·5H2O和硝酸的物质的量的总和,然后滴加至规定pH值。
CN201710085174.6A 2017-02-17 2017-02-17 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法 Expired - Fee Related CN106745301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710085174.6A CN106745301B (zh) 2017-02-17 2017-02-17 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710085174.6A CN106745301B (zh) 2017-02-17 2017-02-17 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN106745301A CN106745301A (zh) 2017-05-31
CN106745301B true CN106745301B (zh) 2018-09-14

Family

ID=58957215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710085174.6A Expired - Fee Related CN106745301B (zh) 2017-02-17 2017-02-17 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN106745301B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830514B (zh) * 2010-03-23 2012-06-27 武汉理工大学 无模板水热合成一维纳米Bi2Fe4O9的方法
CN104923309B (zh) * 2015-04-14 2019-11-01 山东理工大学 一种超顺磁性Fe3O4-PAMAM-TiO2核-壳结构纳米颗粒光催化剂的制备方法

Also Published As

Publication number Publication date
CN106745301A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Makovec et al. Magnetically recoverable photocatalytic nanocomposite particles for water treatment
CN101090018A (zh) 介孔二氧化硅-磁性复合微粒及其制备方法
CN104078229B (zh) 一种二氧化硅包覆磁性氧化铁纳米粒子的方法
CN108384284B (zh) 一种超疏水无机材料粉体及其制备方法
Zhang et al. Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe 3 O 4 nanoparticles
Sun et al. Dual-responsive pickering emulsion stabilized by Fe3O4 nanoparticles hydrophobized in situ with an electrochemical active molecule
Kopp et al. Synthesis and characterization of robust magnetic carriers for bioprocess applications
EP3257576A1 (en) Preparation process of functionalized superparamagnetic adsorbents with ethyltrimethoxysilane (etms) as precursor
Lian et al. Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity
CN103877984B (zh) Fe3O4@C@PbMoO4核壳磁性纳米材料的制备方法
CN106745301B (zh) 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相Bi2Fe4O9纳米颗粒的方法
SI25220A (sl) Postopek priprave funkcionaliziranih superparamagnetnih adsorbentov s prekurzorjem dimetildiklorosilan (DMDCLS)
CN103332752B (zh) 一种制备单分散α-Fe2O3纳米颗粒的方法
Jing et al. Synthesis of a Novel Double Z-Scheme TiO2/Bi2O3-g-C3N4 Photocatalyst with Enhanced Photocatalytic Performance to Rhodamine B Under Sunlight
CN106865620B (zh) 一种用聚酰胺-胺树形分子为模板制备铁磁性纯相BiFeO3纳米颗粒的方法
CN106994345A (zh) 一种粒子自组装TiO2/Fe2O3链状复合粉体的制备方法
Durdureanu-Angheluta et al. Silane covered magnetite particles, preparation and characterization
CN106745314B (zh) 一种铁磁性Bi2Fe4O9-α-Fe2O3核-壳结构纳米颗粒的制备方法
SI25221A (sl) Postopek priprave funkcionaliziranih superparamagnetnih adsorbentov s prekurzorjem trimetoksi(1H,1H,2H,2H-nonafluoroheksil)silan (NFHTMS)
CN108283928A (zh) 核壳结构Co3O4-CeO2@Fe3O4原位制备方法
CN109453739A (zh) Ni/Fe3O4@C复合材料及其制备方法和应用
CN104030363A (zh) 一种四氧化三铁纳米粒子的制备方法
CN106111030B (zh) 一种金/碳复合微球及其制备方法
GB2526659A (en) Process for preparation of superparamagnetic hollow spherical nanostructures
Fathi et al. A multi-nebulizer-based aerosol-assisted system for the synthesis of magnetic iron mixed metal oxides nanoparticles (MFe2O4, M= Fe2+, Ni2+, Mn2+, Co2+, Zn2+)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180914

Termination date: 20190217

CF01 Termination of patent right due to non-payment of annual fee