CN106745022A - 化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途 - Google Patents

化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途 Download PDF

Info

Publication number
CN106745022A
CN106745022A CN201611128283.3A CN201611128283A CN106745022A CN 106745022 A CN106745022 A CN 106745022A CN 201611128283 A CN201611128283 A CN 201611128283A CN 106745022 A CN106745022 A CN 106745022A
Authority
CN
China
Prior art keywords
temperature
crystal
speed
compound
quartz ampoule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611128283.3A
Other languages
English (en)
Other versions
CN106745022B (zh
Inventor
潘世烈
史国强
张方方
侯雪玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201611128283.3A priority Critical patent/CN106745022B/zh
Priority to JP2018558475A priority patent/JP6623313B2/ja
Priority to US16/070,286 priority patent/US10662067B1/en
Priority to PCT/CN2017/074336 priority patent/WO2018103201A1/zh
Priority to GB1812223.4A priority patent/GB2562006B/en
Publication of CN106745022A publication Critical patent/CN106745022A/zh
Application granted granted Critical
Publication of CN106745022B publication Critical patent/CN106745022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/061Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification

Abstract

本发明涉及一种化合物氟硼酸铵及氟硼酸铵非线性光学晶体及制备方法和用途,该化合物的化学式为NH4B4O6F,分子量为176.28,采用固相反应法制备;该晶体的化学式为NH4B4O6F,分子量为176.28,晶体属正交晶系,空间群Pna21,晶胞参数为a=7.615(3)Å,b=11.207(4)Å,c=6.604(3)Å,Z=4,V=563.6Å3。通过该方法获得尺寸为厘米级的NH4B4O6F非线性光学晶体,在制备Nd:YAG激光器所输出的1064 nm的基频光进行2倍频或3倍频或4倍频或5倍频或6倍频的谐波光输出或产生低于200nm的深紫外倍频光输出的用途或制备倍频发生器、上或下频率转换器或光参量振荡器中的用途。该NH4B4O6F非线性光学晶体具有较宽的透光波段,物化性能稳定,机械硬度大,不易碎裂和潮解,易于切割、抛光加工和保存等优点。

Description

化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和 用途
技术领域
本发明涉及一种化合物氟硼酸铵NH4B4O6F和氟硼酸铵NH4B4O6F非线性光学晶体及制备方法和用途。
背景技术
随着193nm光刻技术、微纳米精细激光加工,以及超高能量分辨率光电子能谱仪和光电子发射显微镜等现代化仪器对深紫外激光源(一般指波长短于200nm)的强烈需求发展全固态深紫外激光光源已经成为国际激光科学界近期研究的一个热点。发展全固态深紫外激光光源,深紫外非线性光学晶体是十分关键的一个元件。
目前产业应用的紫外、深紫外非线性光学晶体主要包括LiB3O5(LBO)、CsB3O5(CBO)、CsLiB6O10(CLBO)、BaB2O4(BBO)和KBe2BO3F2(KBBF)晶体。LBO晶体具有宽的透光范围,高的光学均匀性,具有较大的有效倍频系数(3KDP)和高的损伤阈值(18.9GW/cm2)。但是由于其相对较小的双折射(Δn=0.04-0.05),使其不能在深紫外区实现相位匹配,最短倍频波长为276nm。与LBO晶体类似,CBO与CLBO晶体也是由于其相对较小的双折射,限制了在深紫外区的应用。BBO晶体虽然具有较大的倍频系数和双折射,但是由于其相对较高的紫外吸收截止边(189nm),其最短倍频波长为204.8nm,从而限制了其在深紫外区的应用。KBBF可以实现对1064nm基频光直接六倍频输出,但是由于KBBF具有层状生长习性,生长大尺寸晶体难度大,在一定程度上限制了它的应用。因此迫切需要开发出综合性能优异的新型深紫外非线性光学晶体。
发明内容
本发明目的在于提供一种化合物氟硼酸铵,该化合物的化学式为NH4B4O6F,分子量为176.28。采用固相反应法制备。
本发明的另一个目的在于提供提供氟硼酸铵NH4B4O6F非线性光学晶,该晶体的化学式为NH4B4O6F,分子量为176.28,晶体属正交晶系,空间群Pna21,晶胞参数为
本发明再一个目的是提供氟硼酸铵NH4B4O6F非线性光学晶体的用途。
本发明所述的一种化合物氟硼酸铵,该化合物的化学式为NH4B4O6F,分子量为176.28,采用固相反应法制备。
所述化合物氟硼酸铵制备方法,按下列步骤进行:
将含NH4化合物为NH4F,含B化合物为H3BO3和B2O3,含F化合物为NH4F或HF按摩尔比NH4∶B∶F=0.5-2∶3-5∶0.5-2混合均匀,装入水热釜或石英管中密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至150-580℃,恒温10-48小时,然后以温度1-10℃/h的速率降至30℃,打开水热釜或石英管,即得到化合物NH4B4O6F。
一种氟硼酸铵非线性光学晶体,该晶体的化学式为NH4B4O6F,分子量为176.28,晶体属正交晶系,空间群Pna21,晶胞参数为
所述氟硼酸铵非线性光学晶体的制备方法,采用助熔剂法,坩埚下降法,室温溶液法和溶剂热法生长晶体,具体操作按下列步骤进行:
a、将含NH4化合物为NH4F,含B化合物为H3BO3和B2O3,含F化合物为NH4F或HF按摩尔比NH4∶B∶F=0.5-2∶3-5∶0.5-2混合均匀,装入水热釜或石英管中密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至150-580℃,恒温10-48小时,然后以温度1-10℃/h的速率降至30℃,打开水热釜或石英管,即得到化合物NH4B4O6F;
b、将步骤a得到的化合物NH4B4O6F装入水热釜或石英管中密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至200-600℃,恒温10-48小时,然后以温度1-5℃/h的速率降至30℃,打开水热釜或石英管,得到NH4B4O6F晶体的籽晶;
c、将步骤b得到的籽晶放在容器的底部,然后将步骤a得到的化合物NH4B4O6F放入容器中;
或将步骤b得到的NH4B4O6F籽晶放在石英管的底部,然后将步骤a得到的化合物NH4B4O6F与助熔剂为NH4F、NH4F:H3BO3、NH4F:B2O3、H3BO3或B2O3按摩尔比1∶1-10混合,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
d、将步骤c中的容器密封或加入10-100mL溶剂为去离子水,无水乙醇,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺或氢氟酸在密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至150-600℃,恒温10-48小时,以温度1-3℃/天的速率降温50℃,再以温度1-10℃/h的速率降至30℃,打开容器,即可获得尺寸为1-20mm的NH4B4O6F晶体;
或将步骤c中的容器密封并置于坩埚下降炉中,升温至300-600℃,保温10-20小时,调整容器位置,使自发成核温度或接种温度在350-600℃,再以温度0.05-2mm/h的速度缓慢降低容器,同时,保持生长温度不变或以温度0-3℃/h的速率缓慢降温,待生长结束后,将生长炉温度降至30℃,取出容器,即得到尺寸为1-20mm的NH4B4O6F晶体;
或将步骤c中的容器中加入10-100mL溶剂为去离子水,无水乙醇,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺或氢氟酸,然后超声波处理使其充分混合溶解,调节溶液pH值1-11,用定性滤纸过滤,再用聚氯乙烯薄膜封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎若干个小孔用以调节溶液中溶剂的挥发速率,在室温下静置,待生长结束,即得到尺寸为1-20mm的NH4B4O6F晶体。
步骤c中的助熔剂NH4F-H3BO3体系中NH4F与H3BO3的摩尔比为1-3∶1-5;NH4F-B2O3体系中NH4F与B2O3的摩尔比为1-2∶1-4。
所述氟硼酸铵非线性光学晶体在制备Nd:YAG激光器所输出的1064nm的基频光进行2倍频或3倍频或4倍频或5倍频或6倍频的谐波光输出的用途。
所述氟硼酸铵非线性光学晶体在制备产生低于200nm的深紫外倍频光输出中的用途。
所述氟硼酸铵非线性光学晶体在制备倍频发生器、上或下频率转换器或光参量振荡器中的用途。
其中,所用的容器为铂金坩埚,铱坩埚,陶瓷坩埚,石英管,锥形瓶,烧杯,内衬为聚四氟乙烯内衬或装有铂金套管的不锈钢内衬的水热釜。当容器为石英管时,密封之前需要抽真空,避免反应过程中放出气体使石英管炸裂。当容器为锥形瓶或烧杯,须先用酸将容器清洗干净,再用去离子水润洗,晾干。
在NH4B4O6F基础上,可进行KB4O6F、RbB4O6F、CsB4O6F、NH4B4O6OH、KB4O6OH、RbB4O6OH和CsB4O6OH七种化合物的合成,这七种化合物的性质与NH4B4O6F类似,非线性光学系数大约为0.5-4KDP,紫外吸收截止边均小于200nm,都可用于对Nd:YAG激光器所输出的1064nm的基频光进行2倍频或3倍频或4倍频或5倍频或6倍频的谐波光输出,或者用于产生低于200nm的深紫外倍频光输出。
采用本发明所述的氟硼酸铵非线性光学晶体的制备方法,通过该方法获得尺寸为厘米级的NH4B4O6F非线性光学晶体,无明显层状生长习性,使用大尺寸坩埚或容器,并延长晶体的生长周期,则可获得相应大尺寸的非线性光学晶体NH4B4O6F,在该NH4B4O6F非线性光学晶体的生长中晶体易长大透明无包裹,具有生长速度快,成本低,容易获得大尺寸晶体等优点。
采用本发明所述的氟硼酸铵非线性光学晶体的制备方法,获得的大尺寸NH4B4O6F非线性光学晶体,根据晶体的结晶学数据,将晶体毛胚定向,按所需角度、厚度和截面尺寸切割晶体,将晶体的通光面抛光,即可作为非线性光学器件使用,该NH4B4O6F非线性光学晶体具有较宽的透光波段,物化性能稳定,机械硬度大,不易碎裂和潮解,易于切割、抛光加工和保存等优点。
附图说明
图1为本发明化合物NH4B4O6F的粉末XRD谱图,谱图与理论XRD图谱一致,证明了化合物NH4B4O6F的存在;
图2为本发明化合物NH4B4O6F的EDS谱图,谱图显示实验与理论的原子比例基本一致,证明了NH4B4O6F化合物的化学式的准确性;
图3为本发明化合物NH4B4O6F的拉曼光谱图,谱图的3139cm-1的峰证明了NH4+的存在。
图4为本发明NH4B4O6F晶体的结构图;
图5为本发明NH4B4O6F晶体制作的非线性光学器件的工作原理图,其中1为激光器,2为发出光束,3为NH4B4O6F晶体,4为出射光束,5为滤波片。
具体实施方式
以下结合实施例对本发明做进一步描述。需要说明的是,下述实施例不能作为对本发明保护范围的限制,任何在本发明基础上做出的改进都不违背本发明精神。本发明所用原料或设备,如无特殊说明,均是商业上可以购买得到的。
实施例1
制备化合物:
按反应式:NH4F+2B2O3→NH4B4O6,采用固相反应法合成化合物NH4B4O6F:
将NH4F,B2O3按摩尔比1:1.5混合均匀,装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度30℃/h的速率升温至400℃,恒温24小时,然后以温度6℃/h的速率降至30℃,打开石英管,即得到化合物NH4B4O6F。
实施例2
制备化合物:
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑,采用固相反应法合成化合物NH4B4O6F:
将NH4F,H3BO3按摩尔比1:3.5混合均匀,装入干净、无污染的体积为23mL的水热釜的聚四氟乙烯内衬中,并将水热釜旋紧密封,放置在干燥箱内,以温度35℃/h的速率升温至220℃,恒温24小时,然后以温度6℃/h的速率降至30℃,打开水热釜,即得到化合物NH4B4O6F。
实施例3
室温溶液法合成NH4B4O6F非线性光学晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行;
将得到的化合物NH4B4O6F装入水热釜中密封,放到干燥箱中,以温度20℃/h的速率升温至200℃,恒温10小时,然后以温度1℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在洗干净的烧杯的底部,然后将得到的化合物NH4B4O6F放入烧杯中;
将烧杯中加入10mL的溶剂氢氟酸,然后超声波处理使其充分混合溶解,调节溶液pH值到5-6,用定性滤纸过滤,用聚氯乙烯薄膜封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎若干个小孔用以调节溶液中溶剂的挥发速率,在室温下静置,待生长结束,即得到尺寸为Φ5mm×6mm×8mm的NH4B4O6F晶体。
实施例4
室温溶液法合成NH4B4O6F非线性光学晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度40℃/h的速率升温至600℃,恒温48小时,然后以温度5℃/h的速率降至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在容器的底部,然后将得到的化合物NH4B4O6F放入锥形瓶中;
将锥形瓶中加入100mL无水乙醇,然后超声波处理使其充分混合溶解,用定性滤纸过滤,用聚氯乙烯薄膜封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎若干个小孔用以调节溶液中溶剂的挥发速率,在室温下静置,待生长结束,即得到尺寸为Φ7mm×6mm×4mm的NH4B4O6F晶体。
实施例5
采用室温溶液法生长NH4B4O6F晶体
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
将得到的化合物NH4B4O6F装入水热釜中密封,放到干燥箱中,以温度30℃/h的速率升温至300℃,恒温20小时,然后以温度2℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在烧杯的底部,然后将步骤a得到的化合物NH4B4O6F放入烧杯中;
向烧杯中加入N,N-二甲基乙酰胺,然后超声波处理使其充分混合溶解,用定性滤纸过滤,用聚氯乙烯薄膜封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎若干个小孔用以调节溶液中溶剂的挥发速率,在室温下静置,待生长结束,即可得到尺寸为Φ13mm×8mm×5mm的NH4B4O6F晶体。
实施例6
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度30℃/h的速率升温至400℃,恒温30小时,然后以温度2℃/h的速率降温至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
将得到的NH4B4O6F籽晶放在容器的底部,然后将得到的化合物NH4B4O6F与助熔剂为NH4F按摩尔比1∶2混合,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度30℃/h的速率升温至500℃,恒温24小时,然后以温度1.5℃/天的速率降温至450℃,再以温度2℃/h的速率降至30℃,切开石英管,即获得尺寸为Φ5mm×7mm×9mm的NH4B4O6F晶体。
实施例7
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度20℃/h的速率升温至300℃,恒温10小时,然后以温度1℃/h的速率降至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
先将NH4B4O6F晶体的籽晶放在Φ10mm的石英管的底部,然后将化合物NH4B4O6F与助熔剂NH4F:H3BO3按摩尔比1∶1混合,其中助溶剂NH4F:H3BO3中的NH4F与H3BO3的摩尔比为1∶1,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度30℃/h的速率升温至450℃,恒温24小时,然后以温度1.5℃/天的速率降温至400℃,再以温度2℃/h的速率降至30℃,切开石英管,即可获得尺寸为Φ10mm×7mm×6mm的NH4B4O6F晶体。
实施例8
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度40℃/h的速率升温至500℃,恒温40小时,然后以温度4℃/h的速率降温至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
将得到的NH4B4O6F籽晶放在容器的底部,然后将得到的化合物NH4B4O6F与助熔剂为NH4F:B2O3按摩尔比1∶5混合,其中NH4F-B2O3体系中NH4F与B2O3的摩尔比为1∶4,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度40℃/h的速率升温至450℃,恒温20小时,然后以温度2℃/天的速率降温至400℃,再以温度3℃/h的速率降至30℃,切开石英管,即获得尺寸为Φ5mm×7mm×8mm的NH4B4O6F晶体。
实施例9
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,放到马弗炉中,以温度25℃/h的速率升温至300℃,恒温30小时,然后以温度3℃/h的速率降至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
先将NH4B4O6F晶体的籽晶放在Φ10mm的石英管的底部,然后按摩尔比1∶5将NH4B4O6F化合物与助熔剂H3BO3混合,放入石英管中,将石英管抽真空,真空度达到1×10- 3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度40℃/h的速率升温至600℃,恒温48小时,然后以温度3℃/天的速率降温至550℃,再以温度10℃/h的速率降至30℃,切开石英管,即可获得尺寸为Φ8mm×7mm×6mm的NH4B4O6F晶体。
实施例10
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行;
将得到的化合物NH4B4O6F装入水热釜中密封,放到干燥箱中,以温度25℃/h的速率升温至200℃,恒温15小时,然后以温度3℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
先将NH4B4O6F晶体的籽晶放在Φ10mm的石英管的底部,然后将化合物NH4B4O6F与助熔剂NH4F:H3BO3按摩尔比1∶10混合,其中助溶剂NH4F:H3BO3中的NH4F与H3BO3的摩尔比为2∶3放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度30℃/h的速率升温至450℃,恒温24小时,然后以温度1.5℃/天的速率降温至400℃,再以温度2℃/h的速率降至30℃,切开石英管,即可获得尺寸为Φ8mm×6mm×4mm的NH4B4O6F晶体。
实施例11
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度40℃/h的速率升温至500℃,恒温40小时,然后以温度4℃/h的速率降温至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
将得到的NH4B4O6F籽晶放在石英管的底部,然后将得到的化合物NH4B4O6F与助熔剂为NH4F:B2O3按摩尔比1∶5混合,其中NH4F-B2O3体系中NH4F与B2O3的摩尔比为1∶4,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度40℃/h的速率升温至400℃,恒温20小时,然后以温度2℃/天的速率降温至350℃,再以温度3℃/h的速率降至30℃,切开石英管,即获得尺寸为Φ5mm×7mm×7mm的NH4B4O6F晶体。
实施例12
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行:
将得到的化合物NH4B4O6F装入水热釜中密封,放到干燥箱中,以温度25℃/h的速率升温至200℃,恒温30小时,然后以温度3℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
先将NH4B4O6F晶体的籽晶放在Φ10mm的石英管的底部,然后按摩尔比1∶5将NH4B4O6F化合物与助熔剂H3BO3混合,放入石英管中,将石英管抽真空,真空度达到1×10- 3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度40℃/h的速率升温至600℃,恒温48小时,然后以温度3℃/天的速率降温至550℃,再以温度10℃/h的速率降至30℃,切开石英管,即可获得尺寸为Φ8mm×6mm×4mm的NH4B4O6F晶体。
实施例13
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度35℃/h的速率升温至550℃,恒温40小时,然后以温度5℃/h的速率降温至30℃,打开石英管,得到NH4B4O6F晶体的籽晶;
将得到的NH4B4O6F籽晶放在石英管的底部,然后将得到的化合物NH4B4O6F与助熔剂为NH4F:B2O3按摩尔比1∶5混合,其中NH4F-B2O3体系中NH4F与B2O3的摩尔比为2∶4,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度35℃/h的速率升温至450℃,恒温36小时,然后以温度4℃/天的速率降温至400℃,再以温度10℃/h的速率降至30℃,切开石英管,即获得尺寸为Φ5mm×7mm×9mm的NH4B4O6F晶体。
实施例14
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行;
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度40℃/h的速率升温至550℃,恒温25小时,然后以温度4℃/h的速率降至30℃,切开石英管,得到NH4B4O6F晶体的籽晶;
先将NH4B4O6F晶体的籽晶放在Φ10mm的石英管的底部,然后将化合物NH4B4O6F与助熔剂NH4F:H3BO3按摩尔比1∶10混合,其中助溶剂NH4F:H3BO3中的NH4F与H3BO3的摩尔比为3∶5放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度40℃/h的速率升温至550℃,恒温40小时,然后以温度3℃/天的速率降温至500℃,再以温度8℃/h的速率降至30℃,切开石英管,即可获得尺寸为Φ9mm×7mm×6mm的NH4B4O6F晶体。
实施例15
助熔剂法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行:
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度30℃/h的速率升温至500℃,恒温15小时,然后以温度5℃/h的速率降至30℃,打开水热釜或石英管,得到NH4B4O6F晶体的籽晶;
先将NH4B4O6F晶体的籽晶放在Φ10mm的石英管的底部,然后按摩尔比1∶10将NH4B4O6F化合物与助熔剂B2O3混合,放入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装;
然后放入马弗炉中,以温度40℃/h的速率升温至500℃,恒温45小时,然后以温度3℃/天的速率降温至450℃,再以温度6℃/h的速率降至30℃,切开石英管,即可获得尺寸为Φ7mm×6mm×4mm的NH4B4O6F晶体。
实施例16
采用坩埚下降法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行:
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度40℃/h的速率升温至600℃,恒温48小时,然后以温度5℃/h的速率降至30℃,打开水热釜或石英管,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在铂金坩埚的底部,然后将得到的化合物NH4B4O6F放入铂金坩埚中;
将铂金坩埚密封并置于坩埚下降炉中,升温至300℃,保温10小时,调整容器位置,使自发成核温度,再以温度0.05mm/h的速度缓慢降低容器,同时,保持生长温度不变,待生长结束后,将生长炉温度降至30℃,取出容器,即得到尺寸为Φ6mm×8mm×12mm的NH4B4O6F晶体。
实施例17
采用坩埚下降法生长NH4B4O6F晶体
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例1进行:
将得到的化合物NH4B4O6F装入水热釜中密封,放到干燥箱中,以温度20℃/h的速率升温至200℃,恒温10小时,然后以温度1℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在铱坩埚的底部,然后将得到的化合物NH4B4O6F放入铱坩埚中;
将铱坩埚密封并置于坩埚下降炉中,升温至600℃,保温20小时,调整铱坩埚位置,接种温度在350℃,再以温度2mm/h的速度缓慢降低容器,同时,以温度3℃/h的速率缓慢降温,待生长结束后,将生长炉温度降至30℃,取出铱坩埚,即得到尺寸为Φ7mm×6mm×5mm的NH4B4O6F晶体。
实施例18
采用坩埚下降法生长NH4B4O6F晶体:
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例1进行:
将得到的化合物NH4B4O6F装入Φ10mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度30℃/h的速率升温至400℃,恒温36小时,然后以温度3℃/h的速率降至30℃,切开石英管,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在陶瓷坩埚的底部,然后将得到的化合物NH4B4O6F放入陶瓷坩埚中;
将陶瓷坩埚密封并置于坩埚下降炉中,升温至400℃,保温15小时,调整陶瓷坩埚位置,接种温度在500℃,再以温度0.5mm/h的速度缓慢降低陶瓷坩埚,同时,保持生长温度不变,待生长结束后,将生长炉温度降至30℃,取出陶瓷坩埚,即得到尺寸为Φ6mm×8mm×12mm的NH4B4O6F晶体。
实施例19
采用坩埚下降法生长NH4B4O6F晶体
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例1进行:
将得到的化合物NH4B4O6F装入水热釜中密封,放到干燥箱中,以温度20℃/h的速率升温至200℃,恒温10小时,然后以温度1℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在石英管的底部,然后将得到的化合物NH4B4O6F放入石英管中;
将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装密封,并将石英管置于坩埚下降炉中,升温至600℃,保温20小时,调整石英管位置,接种温度在600℃,再以温度1mm/h的速度缓慢降低石英管,同时,以温度2℃/h的速率缓慢降温,待生长结束后,将生长炉温度降至30℃,取出石英管,即得到尺寸为Φ7mm×6mm×5mm的NH4B4O6F晶体。
实施例20
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行:
采用溶剂热法生长NH4B4O6F晶体
将得到的化合物NH4B4O6F装入水热釜密封,放到干燥箱中,以温度20℃/h的速率升温至200℃,恒温10小时,然后以温度1℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在干净、无污染的体积为23mL的水热釜的聚四氟乙烯内衬的底部,然后将得到的化合物NH4B4O6F放入聚四氟乙烯内衬中;
将聚四氟乙烯内衬中加入溶剂为去离子水,并将水热釜旋紧密封;将水热釜放置在干燥箱内,按20℃/h的速率升温至150℃,恒温24小时,再以2℃/天的降温速率降至100℃;再以2℃/h的速率降至30℃,打开水热釜,即可获得尺寸为Φ5mm×6mm×8mm的NH4B4O6F晶体。
实施例21
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
采用溶剂热法生长NH4B4O6F晶体
将得到的化合物NH4B4O6F装入干净、无污染的体积为23mL的水热釜的聚四氟乙烯内衬的底部,放到干燥箱中,以温度20℃/h的速率升温至200℃,恒温10小时,然后以温度1℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在水热釜的聚四氟乙烯内衬的底部,然后将得到的化合物NH4B4O6F放入水热釜的聚四氟乙烯内衬中;
将水热釜的聚四氟乙烯内衬中加入10mL溶剂为N,N-二甲基甲酰胺,并将水热釜旋紧密封;将水热釜放置在干燥箱内,以温度20℃/h的速率升温至150℃,恒温24小时,再以温度2℃/天的降温速率降至100℃,再以温度2℃/h的速率降至30℃,打开水热釜,即可获得尺寸为Φ5mm×6mm×8mm的NH4B4O6F晶体。
实施例22
按反应式:NH4F+2B2O3→NH4B4O6F合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
采用溶剂热法生长NH4B4O6F晶体
将得到的化合物NH4B4O6F装入干净、无污染的体积为50mL的装有铂金套管的不锈钢内衬的水热釜的底部,放到马弗炉中,以温度30℃/h的速率升温至300℃,恒温15小时,然后以温度2℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在装有铂金套管的不锈钢内衬的水热釜的底部,然后将得到的化合物NH4B4O6F放入装有铂金套管的不锈钢内衬的水热釜中;
将装有铂金套管的不锈钢内衬中的水热釜加入50mL溶剂为去离子水,并将水热釜旋紧密封,将水热釜放置在马弗炉内,以温度30℃/h的速率升温至250℃,恒温24小时,再以温度2℃/天的降温速率降至200℃,再以温度5℃/h的速率降至30℃,打开水热釜,即可获得尺寸为Φ5mm×6mm×8mm的NH4B4O6F晶体。
实施例23
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
采用溶剂热法生长NH4B4O6F晶体
将得到的化合物NH4B4O6F装入干净、无污染的体积为23mL的装有铂金套管的不锈钢内衬的水热釜的底部,放到马弗炉中,以温度35℃/h的速率升温至500℃,恒温48小时,然后以温度4℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在装有铂金套管的不锈钢内衬的水热釜的底部,然后将得到的化合物NH4B4O6F放入装有铂金套管的不锈钢内衬的水热釜中;
将装有铂金套管的不锈钢内衬的水热釜中加入80mL溶剂为氢氟酸,并将水热釜旋紧密封,将水热釜放置在马弗炉内,以温度40℃/h的速率升温至600℃,恒温48小时,再以温度3℃/天的降温速率降至550℃,再以温度10℃/h的速率降至30℃,打开水热釜,即可获得尺寸为Φ5mm×6mm×8mm的NH4B4O6F晶体。
实施例24
按反应式:NH4F+4H3BO3→NH4B4O6F+6H2O↑合成NH4B4O6F化合物,具体操作步骤依据实施例2进行;
采用溶剂热法生长NH4B4O6F晶体
将得到的化合物NH4B4O6F装入干净、无污染的体积为23mL的水热釜的聚四氟乙烯内衬的底部,放到干燥箱中,以温度40℃/h的速率升温至220℃,恒温48小时,然后以温度5℃/h的速率降至30℃,打开水热釜,得到NH4B4O6F晶体的籽晶;
将得到的籽晶放在水热釜的聚四氟乙烯内衬的底部,然后将得到的化合物NH4B4O6F放入水热釜的聚四氟乙烯内衬中;
将水热釜的聚四氟乙烯内衬中加入10mL溶剂为N,N-二甲基乙酰胺,并将水热釜旋紧密封,将水热釜放置在干燥箱内,以温度40℃/h的速率升温至210℃,恒温35小时,再以温度3℃/天的降温速率降至160℃,再以温度4℃/h的速率降至30℃,打开水热釜,即可获得尺寸为Φ5mm×6mm×8mm的NH4B4O6F晶体。
实施例25
将实施例1-24任意所得的NH4B4O6F晶体按相匹配方向加工,按附图5所示安置在3的位置上,在室温下,用调Q Nd:YAG激光器作光源,入射波长为1064nm,由调QNd:YAG激光器1发出波长为1064nm的红外光束2射入NH4B4O6F晶体3,产生波长为532nm的绿色倍频光,输出强度约为同等条件KDP的3倍。
实施例26
将实施例1-24任意所得NH4B4O6F晶体按相匹配方向加工,按附图5所示安置在3的位置上,在室温下,用调Q Nd:YAG激光器作光源,入射波长为532nm,由调Q的Nd:YAG激光器1发出波长为532nm的红外光束2射入NH4B4O6F晶体3,产生波长为266nm的倍频光,输出强度约为同等条件BBO的1.5倍。
实施例27
将实施例1-24任意所得NH4B4O6F晶体按相匹配方向加工,按附图5所示安置在3的位置上,在室温下,用调Q Nd:YAG激光器作光源,入射波长为355nm,由调QNd:YAG激光器1发出波长为355nm的红外光束2射入NH4B4O6F晶体3,可观察到波长为177.3nm的深紫外倍频光输出。

Claims (8)

1.一种化合物氟硼酸铵,其特征在于该化合物的化学式为NH4B4O6F,分子量为176.28,采用固相反应法制备。
2.根据权利要求1所述的化合物氟硼酸铵制备方法,其特征在于按下列步骤进行:
将含NH4化合物为NH4F,含B化合物为H3BO3和B2O3,含F化合物为NH4F或HF按摩尔比NH4∶B∶F=0.5-2∶3-5∶0.5-2混合均匀,装入水热釜或石英管中密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至150-580℃,恒温10-48小时,然后以温度1-10℃/h的速率降至30℃,打开水热釜或石英管,即得到化合物NH4B4O6F。
3.一种氟硼酸铵非线性光学晶体,其特征在于该晶体的化学式为NH4B4O6F,分子量为176.28,晶体属正交晶系,空间群Pna21,晶胞参数为a = 7.615(3) Å,b = 11.207(4) Å,c= 6.604(3) Å, Z = 4,V = 563.6 Å3
4.根据权利要求3所述的氟硼酸铵非线性光学晶体的制备方法,其特征在于采用助熔剂法,坩埚下降法,室温溶液法和溶剂热法生长晶体,具体操作按下列步骤进行:
a、将含NH4化合物为NH4F,含B化合物为H3BO3和B2O3,含F化合物为NH4F或HF按摩尔比NH4∶B∶F=0.5-2∶3-5∶0.5-2混合均匀,装入水热釜或石英管中密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至150-580℃,恒温10-48小时,然后以温度1-10℃/h的速率降至30℃,打开水热釜或石英管,即得到化合物NH4B4O6F;
b、将步骤a得到的化合物NH4B4O6F装入水热釜或石英管中密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至200-600℃,恒温10-48小时,然后以温度1-5℃/h的速率降至30℃,打开水热釜或石英管,得到NH4B4O6F晶体的籽晶;
c、将步骤b得到的籽晶放在容器的底部,然后将步骤a得到的化合物NH4B4O6F放入容器中;
或将步骤b得到的NH4B4O6F籽晶放在石英管的底部,然后将步骤a得到的化合物NH4B4O6F与助熔剂为NH4F、NH4F:H3BO3、NH4F:B2O3、H3BO3或B2O3按摩尔比1∶1-10混合,放入石英管中,将石英管抽真空,真空度达到1×10−3 Pa,用火焰枪真空封装;
d、将步骤c中的容器密封或加入10-100mL溶剂为去离子水,无水乙醇,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺或氢氟酸再密封,放到马弗炉或干燥箱中,以温度20-40℃/h的速率升温至150-600℃,恒温10-48小时,以温度1-3℃/天的速率降温50℃,再以温度1-10℃/h的速率降至30℃,打开容器,即可获得尺寸为1-20mm的NH4B4O6F晶体;
或将步骤c中的容器密封并置于坩埚下降炉中,升温至300-600℃,保温10-20小时,调整容器位置,使自发成核温度或接种温度在350-600℃,再以温度0.05-2mm/h的速度缓慢降低容器,同时,保持生长温度不变或以温度0-3℃/h的速率缓慢降温,待生长结束后,将生长炉温度降至30℃,取出容器,即得到尺寸为1-20mm的NH4B4O6F晶体;
或将步骤c中的容器中加入10-100mL溶剂为去离子水,无水乙醇,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺或氢氟酸,然后超声波处理使其充分混合溶解,调节溶液pH值1-11,用定性滤纸过滤,再用聚氯乙烯薄膜封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎若干个小孔用以调节溶液中溶剂的挥发速率,在室温下静置,待生长结束,即得到尺寸为1-20mm的NH4B4O6F晶体。
5.根据权利要求4所述的氟硼酸铵非线性光学晶体的制备方法,其特征在于步骤c中的助熔剂NH4F-H3BO3体系中NH4F与H3BO3的摩尔比为1-3∶1-5;NH4F-B2O3体系中NH4F与B2O3的摩尔比为1-2∶1-4。
6.根据权利要求3所述的氟硼酸铵非线性光学晶体在制备Nd: YAG激光器所输出的1064 nm的基频光进行2倍频或3倍频或4倍频或5倍频或6倍频的谐波光输出的用途。
7.根据权利要求6所述的氟硼酸铵非线性光学晶体在制备产生低于200nm 的深紫外倍频光输出中的用途。
8.根据权利要求3所述的氟硼酸铵非线性光学晶体在制备倍频发生器、上或下频率转换器或光参量振荡器中的用途。
CN201611128283.3A 2016-12-09 2016-12-09 化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途 Active CN106745022B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201611128283.3A CN106745022B (zh) 2016-12-09 2016-12-09 化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途
JP2018558475A JP6623313B2 (ja) 2016-12-09 2017-02-22 ホウフッ化アンモニウム化合物、ホウフッ化アンモニウム非線形光学結晶及び製造方法並びに用途
US16/070,286 US10662067B1 (en) 2016-12-09 2017-02-22 Compound ammonium fluoroborate, nonlinear optical crystal of ammonium fluoroborate, and preparation method and use thereof
PCT/CN2017/074336 WO2018103201A1 (zh) 2016-12-09 2017-02-22 化合物氟硼酸铵、氟硼酸铵非线性光学晶体及制备方法和用途
GB1812223.4A GB2562006B (en) 2016-12-09 2017-02-22 Compound ammonium fluoroborate, nonlinear optical crystal of ammonium fluoroborate, and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611128283.3A CN106745022B (zh) 2016-12-09 2016-12-09 化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途

Publications (2)

Publication Number Publication Date
CN106745022A true CN106745022A (zh) 2017-05-31
CN106745022B CN106745022B (zh) 2018-11-09

Family

ID=58874843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611128283.3A Active CN106745022B (zh) 2016-12-09 2016-12-09 化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途

Country Status (5)

Country Link
US (1) US10662067B1 (zh)
JP (1) JP6623313B2 (zh)
CN (1) CN106745022B (zh)
GB (1) GB2562006B (zh)
WO (1) WO2018103201A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937981A (zh) * 2017-11-17 2018-04-20 中国科学院新疆理化技术研究所 化合物氟硼酸锶及氟硼酸锶非线性光学晶体及制备方法和用途
CN112760717A (zh) * 2020-12-26 2021-05-07 中国科学院新疆理化技术研究所 四氟硼酸胍非线性光学晶体及制备方法和用途
CN114197043A (zh) * 2021-12-15 2022-03-18 中国科学院新疆理化技术研究所 化合物氟硼酸钾铯碘和氟硼酸钾铯碘非线性光学晶体及制备方法和用途
CN114604845A (zh) * 2022-03-31 2022-06-10 中国科学院新疆理化技术研究所 化合物氟化硼磷酸铵和氟化硼磷酸铵非线性光学晶体及制备方法和用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111056570B (zh) * 2019-12-04 2021-04-06 中国科学院福建物质结构研究所 一种无机化合物晶体CsVO2F(IO3)、其制备方法及应用
CN113106550B (zh) * 2021-04-07 2022-08-19 南京大学 一种倍频晶体的电化学制备方法
CN114016121B (zh) * 2021-11-02 2022-10-04 山东省科学院新材料研究所 一种低温生长碳酸盐拉曼晶体的方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978702A (zh) * 2011-09-02 2013-03-20 中国科学院新疆理化技术研究所 化合物氟硼酸钡和氟硼酸钡非线性光学晶体及制备方法和用途
CN104746140A (zh) * 2013-12-26 2015-07-01 中国科学院新疆理化技术研究所 化合物钾钠硼氧溴非线性光学晶体及制备方法和用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984149B (zh) * 2010-11-22 2012-07-25 中国科学院新疆理化技术研究所 大尺寸氯硼酸钡非线性光学晶体的制备方法和用途
CN103031601A (zh) * 2011-09-29 2013-04-10 中国科学院福建物质结构研究所 非线性光学晶体氟碳酸锶铷
CN102650075B (zh) * 2012-04-25 2014-12-17 中国科学院福建物质结构研究所 非线性光学晶体氟硼酸镉
CN103590106B (zh) * 2012-08-17 2015-11-25 中国科学院新疆理化技术研究所 氟硼酸锶非线性光学晶体的制备方法及用途
CN104176742B (zh) * 2013-05-24 2016-01-27 中国科学院新疆理化技术研究所 四硼酸钡和四硼酸钡非线性光学晶体及制备方法和用途
US10564514B1 (en) * 2018-12-04 2020-02-18 Xinjiang Technical Institute Of Physics & Chemistry, Chinese Academy Of Sciences Nonlinear optical crystal of cesium fluorooxoborate, and method of preparation and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978702A (zh) * 2011-09-02 2013-03-20 中国科学院新疆理化技术研究所 化合物氟硼酸钡和氟硼酸钡非线性光学晶体及制备方法和用途
CN104746140A (zh) * 2013-12-26 2015-07-01 中国科学院新疆理化技术研究所 化合物钾钠硼氧溴非线性光学晶体及制备方法和用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KANG LEI ET AL: "First-Principles Design of a Deep-Ultraviolet Nonlinear-Optical Crystal from KBe2BO3F2 to NH4Be2BO3F2", 《INORGANIC CHEMISTRY》 *
SHU GUO ET AL: "BaBe2BO3F3: A KBBF-Type Deep-Ultraviolet Nonlinear Optical Material with Reinforced [Be2BO3F2](infinity) Layers and Short Phase-Matching Wavelength", 《CHEMISTRY OF MATERIALS》 *
YAO WENJIAO ET AL: "Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End", 《ADVANCED OPTICAL MATERIALS》 *
朱洪法等: "《无机化工产品手册》", 31 December 2008 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937981A (zh) * 2017-11-17 2018-04-20 中国科学院新疆理化技术研究所 化合物氟硼酸锶及氟硼酸锶非线性光学晶体及制备方法和用途
CN107937981B (zh) * 2017-11-17 2019-08-30 中国科学院新疆理化技术研究所 化合物氟硼酸锶及氟硼酸锶非线性光学晶体及制备方法和用途
CN112760717A (zh) * 2020-12-26 2021-05-07 中国科学院新疆理化技术研究所 四氟硼酸胍非线性光学晶体及制备方法和用途
CN114197043A (zh) * 2021-12-15 2022-03-18 中国科学院新疆理化技术研究所 化合物氟硼酸钾铯碘和氟硼酸钾铯碘非线性光学晶体及制备方法和用途
CN114197043B (zh) * 2021-12-15 2023-07-25 中国科学院新疆理化技术研究所 化合物氟硼酸钾铯碘和氟硼酸钾铯碘非线性光学晶体及制备方法和用途
CN114604845A (zh) * 2022-03-31 2022-06-10 中国科学院新疆理化技术研究所 化合物氟化硼磷酸铵和氟化硼磷酸铵非线性光学晶体及制备方法和用途
CN114604845B (zh) * 2022-03-31 2024-01-30 中国科学院新疆理化技术研究所 化合物氟化硼磷酸铵和氟化硼磷酸铵非线性光学晶体及制备方法和用途

Also Published As

Publication number Publication date
GB2562006B (en) 2021-02-17
US20200165139A1 (en) 2020-05-28
US10662067B1 (en) 2020-05-26
CN106745022B (zh) 2018-11-09
JP2019505855A (ja) 2019-02-28
GB201812223D0 (en) 2018-09-12
JP6623313B2 (ja) 2019-12-18
GB2562006A (en) 2018-10-31
WO2018103201A1 (zh) 2018-06-14

Similar Documents

Publication Publication Date Title
CN107937981B (zh) 化合物氟硼酸锶及氟硼酸锶非线性光学晶体及制备方法和用途
CN106745022B (zh) 化合物氟硼酸铵和氟硼酸铵非线性光学晶体及制备方法和用途
CN106894085B (zh) 化合物氟硼酸铯和氟硼酸铯非线性光学晶体及制备方法和用途
CN108588833B (zh) 化合物氟硼酸钙和氟硼酸钙非线性光学晶体及制备方法和用途
CN106948003B (zh) 化合物氟硼酸钾和氟硼酸钾非线性光学晶体及制备方法和用途
CN107585777B (zh) 化合物氟硼酸铯钾和氟硼酸铯钾非线性光学晶体及制备方法和用途
CN107265473A (zh) 化合物氟硼酸铷和氟硼酸铷非线性光学晶体及制备方法和用途
CN107628629B (zh) 化合物氟硼酸铯铷和氟硼酸铯铷非线性光学晶体及制备方法和用途
CN111334858B (zh) 化合物氟硼酸钡和氟硼酸钡非线性光学晶体及制备方法和用途
CN109680332A (zh) 化合物锡硼氧氯和锡硼氧氯非线性光学晶体及制备方法和用途
CN108286072B (zh) 化合物一氟化四硼酸钠和一氟化四硼酸钠非线性光学晶体及制备方法和用途
CN114057207B (zh) 化合物十氟化八硼酸钠和十氟化八硼酸钠非线性光学晶体及制备方法和用途
CN110921676A (zh) 化合物氟硼酸铅和氟硼酸铅非线性光学晶体及制备方法和用途
CN106978630B (zh) 硒硅铜钡和硒硅铜钡中远红外非线性光学晶体及制备方法和用途
CN114672880B (zh) 化合物氟硼磷酸铷和氟硼磷酸铷非线性光学晶体及制备方法和用途
CN113773231B (zh) 化合物羟基四氟化三硼酸二胍和羟基四氟化三硼酸二胍非线性光学晶体及制备方法和用途
CN111139524B (zh) 氟硼酸钾和氟硼酸钾非线性光学晶体及制备方法和用途
CN111621848A (zh) 化合物锡硼氧溴和锡硼氧溴非线性光学晶体及制备方法和用途
CN114604845B (zh) 化合物氟化硼磷酸铵和氟化硼磷酸铵非线性光学晶体及制备方法和用途
CN112111787A (zh) 化合物三氟化五硼酸镁及三氟化五硼酸镁非线性光学晶体及制备方法和用途
CN112267150A (zh) 化合物三氟化五硼酸钡及三氟化五硼酸钡非线性光学晶体及制备方法和用途
CN113913917B (zh) 系列碱金属硼硫酸盐化合物和碱金属硼硫酸盐非线性光学晶体及制备方法和用途
CN109656079B (zh) 一种BaHgSnS4非线性光学晶体的用途
CN116427031A (zh) 化合物氟硼酸钠和氟硼酸钠非线性光学晶体及制备方法和用途
CN113913936A (zh) 一种化合物镧硼氧氟及镧硼氧氟非线性光学晶体及制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant