CN106740273A - 用于电传动履带车辆控制的驾驶员信号解析方法 - Google Patents

用于电传动履带车辆控制的驾驶员信号解析方法 Download PDF

Info

Publication number
CN106740273A
CN106740273A CN201611141243.2A CN201611141243A CN106740273A CN 106740273 A CN106740273 A CN 106740273A CN 201611141243 A CN201611141243 A CN 201611141243A CN 106740273 A CN106740273 A CN 106740273A
Authority
CN
China
Prior art keywords
motor
vref
target
vehicle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611141243.2A
Other languages
English (en)
Other versions
CN106740273B (zh
Inventor
李春明
薛天扬
盖江涛
曾根
徐岩
韩政达
帅志斌
张欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China North Vehicle Research Institute
Original Assignee
China North Vehicle Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China North Vehicle Research Institute filed Critical China North Vehicle Research Institute
Priority to CN201611141243.2A priority Critical patent/CN106740273B/zh
Publication of CN106740273A publication Critical patent/CN106740273A/zh
Application granted granted Critical
Publication of CN106740273B publication Critical patent/CN106740273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/38Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明属于电传动履带车辆控制技术领域,具体涉及一种用于电传动履带车辆控制的驾驶员信号解析方法。本发明利用加速踏板开度与制动踏板开度之差确定目标车速,通过限制目标车速和实际车速的差值来实现加减速斜率控制;利用方向盘转角、侧滑极限转向半径确定双侧电机目标转速之差,从而确定双侧电机各自目标转速与实际转速之差,通过PI调节器得到各自驱动转矩,使得车辆完成直驶和转向功能,并且不会出现转向半径过小而发生侧滑的控制方法。

Description

用于电传动履带车辆控制的驾驶员信号解析方法
技术领域
本发明属于电传动履带车辆控制技术领域,具体涉及一种用于电传动履带车辆控制的驾驶员信号解析方法。
背景技术
电传动在履带车辆的应用上越来越广泛,双侧电机驱动是其中一种典型的传动形式。当整车采用车速、转向半径闭环的控制时,履带车辆的主动轮转速即直接受控,车辆的运动状态较为稳定,因此车速、转向半径闭环模式是合适的控制方法,控制的难点在于对驾驶意图的正确解析。
但是若将加速踏板信号直接对应控制车速时,其转矩并不是目标受控量,因而驱动电机的输出功率也就不受控制,带来了系统供电和用电功率较难平衡的问题。尤其是驾驶员减小或完全松释油门踏板时,若单纯按照车速模式控制电机减速,极易使驱动电机进入功率未知的发电工况,强行给动力源反馈电能,带来母线电压急剧上升、电网稳定性被破坏等故障。因此,需要对驾驶员信号进行合理的解析,设计专门的整车控制方法,一方面使得车辆能够正常完成收油时减速直驶或转向的功能,另一方面又要避免驱动电机进入功率不可控的再生制动工况。
相较于轮式车辆的随动式转向,履带车辆需要通过控制动力传动系统实现主动式转向。因此,在转向过程当中,需要制定高效的能够用于实时控制的转向控制策略,以求针对加速踏板开度、制动踏板开度、方向盘转角这三组驾驶员的输入,合理确定两侧驱动电机的目标控制值。一方面使得车辆能够顺利完成转向功能,实现驾驶意图,另一方向又必须保证车辆的转向半径不会过小而导致车辆发生侧滑失控危险。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:对于双侧电机驱动的履带车辆,当驱动电机采用转矩控制模式时,如何提供一种车速、转向半径闭环的实时控制方法,以有效执行驾驶员的行驶意图,并避免车辆行驶中的侧滑危险。
(二)技术方案
为解决上述技术问题,本发明提供一种用于电传动履带车辆控制的驾驶员信号解析方法,所述控制方法基于双电机驱动的履带车辆动力传动系统来实施,所述动力传动系统包括:动力辅助单元1、左电机控制器2、左侧电机3、左侧变速机构及侧传动装置4、左侧主动轮5、右电机控制器6、右侧电机7、右侧变速机构及侧传动装置8、油门踏板9、整车控制器10、方向盘11、制动踏板12、右侧主动轮13;
所述动力辅助单元1用于提供两路用于驱动两侧电机的电能至左电机控制器2和右电机控制器6,并在制动工况下能够进行能量回收;
所述左电机控制器2用于将来自动力辅助单元1的直流电的电能转换为三相交流电的电能,并根据整车控制器10的指令控制左侧电机3工作;所述右电机控制器6用于将来自动力辅助单元1的直流电的电能转换为三相交流电的电能,并根据整车控制器10的指令控制左侧电机7工作;
所述左侧电机3及右侧电机7分别用于将所述三相交流电的电能转换为机械能,输出机械功率;
所述左侧电机3输出的机械功率经左侧变速机构及侧传动4传递至左侧主动轮5,右侧电机7输出的机械功率经右侧变速机构及侧传动装置8传递至右侧主动轮13,从而驱动车辆行驶;
系统工作时,由整车控制器10采集油门踏板9的开度、制动踏板12的开度及方向盘11的转角信号,以解释驾驶意图,并发送左侧电机3的目标驱动转矩指令给左电机控制器2,发送右侧电机7的目标驱动转矩指令给右电机控制器6,由左电机控制器2和右电机控制器6来分别各自对应侧的电机输出相应的驱动转矩,带动对应的变速机构及侧传动、主动轮旋转;
当两侧电机的转速相等时,履带车辆执行直驶;当两侧电机出现转速差时,履带车辆执行转向;
所述驾驶员信号解析方法包括如下步骤:
步骤S1:整车控制器10进行初始化,读入包括路面行驶阻力系数f、最大转向阻力系数μmax、路面附着系数变速器传动比ib、侧传动比ic、车辆中心距B、车长L、车重m、主动轮半径r在内的整车的预置参数,读入包括允许的最大车速Vmax、增速率最大值ΔVrefmax在内的预置控制参数,读入固有的转向安全系数δ随车速V变化的离散化曲线图,读入固有的两侧电机的T-n特性曲线;然后转入步骤S2;
步骤S2:计算最小相对转向半径ρmin与车速V之间的对应关系,并制成二维表格;根据预置参数,计算车速V对应的最小相对转向半径ρ,有判别式如下:
其中,g是重力加速度;V(k)是当前步长的车速;k是步长;
第一式是离心力不超过地面附着极限的判别式,第二式是外侧履带牵引力不超过附着极限的判别式,ρmin为满足该组判别式的最小ρ值;由此即可获得最小相对转向半径曲线并离散化为映射关系:
ρmin=map(V)
然后转入步骤S3;
步骤S3:整车控制器10接收油门踏板信号a(k)、制动踏板信号b(k)、方向盘转角信号s(k),并且分别对其进行归一化处理,得到归一化的油门踏板信号Sa(k)、归一化的制动踏板信号Sb(k)、归一化的方向盘转角信号Ss(k);然后转入步骤S4;
步骤S4:整车控制器10接收当前的反馈车速Vfbk(k)、左电机反馈转速NLfbk(k)、右电机反馈转速NRfbk(k);然后同时执行步骤S5及步骤S12;
步骤S5:根据归一化的油门踏板信号Sa(k)、归一化的制动踏板信号Sb(k)、当前允许的最大车速Vmax(k)计算驾驶员的期望车速Vref(k);
Vref(k)=(Sa(k)-Sb(k))*Vmax(k)
然后转入步骤S6;
步骤S6:根据驾驶员的期望车速Vref(k)、当前的反馈车速Vfbk(k),计算履带车辆的目标车速差ΔVref(k);
ΔVref(k)=Vref(k)-Vfbk(k)
然后转入步骤S7;
步骤S7:根据归一化的制动踏板信号Sb(k)计算履带车辆目标车速减速率的最小值ΔVrefmin(k);
ΔVrefmin(k)=(1+Kb·Sb(k))ΔVmin
其中,ΔVmin为当履带车辆自由滑行时的减速率,ΔVmin<0;Kb是制动踏板的增益系数;
然后转入步骤S8;
步骤S8:判断目标车速差ΔVref(k)与增速率最大值ΔVrefmax的关系,如果ΔVref(k)<ΔVrefmax,说明目标车速差未超出增速率最大值,目标车速差在可调节的范围之内,转至步骤S9;反之则可判定目标车速差过大,可能会导致后续调节不稳定等情况,需要对其进行限制,转至步骤S10;
步骤S9:判断目标车速差ΔVref(k)与减速率最小值ΔVrefmin(k)的关系,若ΔVref(k)>ΔVrefmin(k),说明目标车速差在合理范围,不需要对其进行限制,转至步骤S15;反之则可判定目标车速差过小,会导致电动机发电电流过大的情况,需要对其进行限制,转至步骤S11;
步骤S10:由于目标车速差过大,因此将其限制为增速率最大值ΔVrefmax
ΔVref(k)=ΔVrefmax
然后转入步骤S15;
步骤S11:由于目标车速差过小,因此将其限制为减速率最小值ΔVrefmin(k);
ΔVref(k)=ΔVrefmin(k)
然后转入步骤S15;
步骤S12:根据履带车辆的行驶速度Vfbk(k)、转向安全系数δ[Vfbk(k)]、以及离散化的最小相对转向半径曲线,确定当前车速下履带车辆不发生侧滑所能实现的最小相对转向半径ρmin(k);
ρmin(k)=δ[Vfbk(k)]·map[Vfbk(k)]
然后转入步骤S13;
步骤S13:根据最小相对转向半径ρmin(k)将归一化的方向盘转角信号Ss(k)修正为Ss’(k),保证履带车辆实现安全转向;修正式为:
式中,Ks是转向修正系数;
然后转入步骤S14;
步骤S14:根据最小相对转向半径ρmin(k)、左右电机的反馈转速NLfbk(k)、NRfbk(k)以及修正后的方向盘转角信号Ss’(k)计算两侧电机目标转速差ΔNref(k),然后转至步骤15;
式中,Kn为转速差修正系数,该系数与变速机构传动比有关。
步骤S15:根据目标车速差ΔVref(k)和两侧电机目标转速差ΔNref(k)分别确定左右两侧电机各自的目标转速差,即左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k),转至步骤S16;
步骤S16:将上一步得到的左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k)分别经过PI调节器处理,分别得到左侧电机的目标驱动转矩TLref(k)和右侧电机的目标驱动转矩TRref(k);然后转入步骤S17;
步骤S17:整车控制器将左侧电机目标驱动转矩TLref(k)和右侧电机目标驱动转矩TRref(k)发送两侧电机控制器,控制两侧电机输出相应的驱动转矩,使车辆完成直驶或转向;跳转至步骤S3,进行k+1控制周期内的实时控制。
(三)有益效果
本发明技术方案对双侧电机驱动履带车辆的转速控制策略进行了重新设计,根据归一化的油门踏板信号、方向盘转角信号、挡位信号、路面附着系数、转向安全系数、最小转向半径曲线等,对车辆转向半径是否过小进行判断,解算出目标车速差和两侧驱动电机目标转速差,然后转换为两侧电机各自的目标转速差,再分别经过左右侧的PI调节器处理,得到左右两侧的目标驱动转矩。两侧电机控制器接收整车控制器发出的指令,实现履带车辆的直驶和转向控制。
与现有技术相比较,本发明具备如下有益效果:
(1)本发明方案能够大幅减少传统车速控制中由于驾驶员操作导致的发电电流过大的情况,并使车辆有效执行驾驶员的行驶意图。
(2)本发明技术方案需要标定的控制参数少,便于实际应用。
(3)本发明技术方案能够有效避免车辆行驶中的侧滑危险;
(4)本发明技术方案应用场合灵活,电机底层控制采用转矩模式或转速模式均能适用。
附图说明
图1为本发明技术方案实施所基于的双侧电机驱动的履带车辆动力传动系统的结构示意图。
图2为本发明技术方案实施例1的方法流程图。
图3为本发明技术方案实施例2的方法流程图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本发明提供一种用于双侧电机驱动的履带车辆的驾驶员信号解析方法,所述控制方法基于双电机驱动的履带车辆动力传动系统来实施,所述动力传动系统包括:动力辅助单元1、左电机控制器2、左侧电机3、左侧变速机构及侧传动装置4、左侧主动轮5、右电机控制器6、右侧电机7、右侧变速机构及侧传动装置8、油门踏板9、整车控制器10、方向盘11、制动踏板12、右侧主动轮13;
所述动力辅助单元1用于提供两路用于驱动两侧电机的电能至左电机控制器2和右电机控制器6,并在制动工况下能够进行能量回收;
所述左电机控制器2用于将来自动力辅助单元1的直流电的电能转换为三相交流电的电能,并根据整车控制器10的指令控制左侧电机3工作;所述右电机控制器6用于将来自动力辅助单元1的直流电的电能转换为三相交流电的电能,并根据整车控制器10的指令控制左侧电机7工作;
所述左侧电机3及右侧电机7分别用于将所述三相交流电的电能转换为机械能,输出机械功率;
所述左侧电机3输出的机械功率经左侧变速机构及侧传动4传递至左侧主动轮5,右侧电机7输出的机械功率经右侧变速机构及侧传动装置8传递至右侧主动轮13,从而驱动车辆行驶;
系统工作时,由整车控制器10采集油门踏板9的开度、制动踏板12的开度及方向盘11的转角信号,以解释驾驶意图,并发送左侧电机3的目标驱动转矩指令给左电机控制器2,发送右侧电机7的目标驱动转矩指令给右电机控制器6,由左电机控制器2和右电机控制器6来分别各自对应侧的电机输出相应的驱动转矩,带动对应的变速机构及侧传动、主动轮旋转;
当两侧电机的转速相等时,履带车辆执行直驶;当两侧电机出现转速差时,履带车辆执行转向;
下面结合具体实施例来详细描述本发明。
实施例1:
本实施例适用于电机控制为转矩模式的情况,所述的驾驶员信号解析方法包括如下步骤:
所述驾驶员信号解析方法包括如下步骤:
步骤S1:整车控制器10进行初始化,读入包括路面行驶阻力系数f、最大转向阻力系数μmax、路面附着系数变速器传动比ib、侧传动比ic、车辆中心距B、车长L、车重m、主动轮半径r在内的整车的预置参数,读入包括允许的最大车速Vmax、增速率最大值ΔVrefmax在内的预置控制参数,读入固有的转向安全系数δ随车速V变化的离散化曲线图,读入固有的两侧电机的T-n特性曲线;然后转入步骤S2;
步骤S2:计算最小相对转向半径ρmin与车速V之间的对应关系,并制成二维表格;根据预置参数,计算车速V对应的最小相对转向半径ρ,有判别式如下:
其中,g是重力加速度;V(k)是当前步长的车速;k是步长;
第一式是离心力不超过地面附着极限的判别式,第二式是外侧履带牵引力不超过附着极限的判别式,ρmin为满足该组判别式的最小ρ值;由此即可获得最小相对转向半径曲线并离散化为映射关系:
ρmin=map(V)
步骤S1和步骤S2只在初始控制周期内进行,随后进入步骤S3。后续的步骤是周期性的实时控制步骤。
然后转入步骤S3;
步骤S3:整车控制器10接收油门踏板信号a(k)、制动踏板信号b(k)、方向盘转角信号s(k),并且分别对其进行归一化处理,得到归一化的油门踏板信号Sa(k)、归一化的制动踏板信号Sb(k)、归一化的方向盘转角信号Ss(k);然后转入步骤S4;
步骤S4:整车控制器10接收当前的反馈车速Vfbk(k)、左电机反馈转速NLfbk(k)、右电机反馈转速NRfbk(k);然后同时执行步骤S5及步骤S12;
步骤S5:根据归一化的油门踏板信号Sa(k)、归一化的制动踏板信号Sb(k)、当前允许的最大车速Vmax(k)计算驾驶员的期望车速Vref(k);
Vref(k)=(Sa(k)-Sb(k))*Vmax(k)
然后转入步骤S6;
步骤S6:根据驾驶员的期望车速Vref(k)、当前的反馈车速Vfbk(k),计算履带车辆的目标车速差ΔVref(k);
ΔVref(k)=Vref(k)-Vfbk(k)
然后转入步骤S7;
步骤S7:根据归一化的制动踏板信号Sb(k)计算履带车辆目标车速减速率的最小值ΔVrefmin(k);
ΔVrefmin(k)=(1+Kb·Sb(k))ΔVmin
其中,ΔVmin为当履带车辆自由滑行时的减速率,ΔVmin<0;Kb是制动踏板的增益系数;
然后转入步骤S8;
步骤S8:判断目标车速差ΔVref(k)与增速率最大值ΔVrefmax的关系,如果ΔVref(k)<ΔVrefmax,说明目标车速差未超出增速率最大值,目标车速差在可调节的范围之内,转至步骤S9;反之则可判定目标车速差过大,可能会导致后续调节不稳定等情况,需要对其进行限制,转至步骤S10;
步骤S9:判断目标车速差ΔVref(k)与减速率最小值ΔVrefmin(k)的关系,若ΔVref(k)>ΔVrefmin(k),说明目标车速差在合理范围,不需要对其进行限制,转至步骤S15;反之则可判定目标车速差过小,会导致电动机发电电流过大的情况,需要对其进行限制,转至步骤S11;
步骤S10:由于目标车速差过大,因此将其限制为增速率最大值ΔVrefmax
ΔVref(k)=ΔVrefmax
然后转入步骤S15;
步骤S11:由于目标车速差过小,因此将其限制为减速率最小值ΔVrefmin(k);
ΔVref(k)=ΔVrefmin(k)
然后转入步骤S15;
步骤S12:根据履带车辆的行驶速度Vfbk(k)、转向安全系数δ[Vfbk(k)]、以及离散化的最小相对转向半径曲线,确定当前车速下履带车辆不发生侧滑所能实现的最小相对转向半径ρmin(k);
ρmin(k)=δ[Vfbk(k)]·map[Vfbk(k)]
然后转入步骤S13;
步骤S13:根据最小相对转向半径ρmin(k)将归一化的方向盘转角信号Ss(k)修正为Ss’(k),保证履带车辆实现安全转向;修正式为:
式中,Ks是转向修正系数;
然后转入步骤S14;
步骤S14:根据最小相对转向半径ρmin(k)、左右电机的反馈转速NLfbk(k)、NRfbk(k)以及修正后的方向盘转角信号Ss’(k)计算两侧电机目标转速差ΔNref(k),然后转至步骤15;
式中,Kn为转速差修正系数,该系数与变速机构传动比有关。
步骤S15:根据目标车速差ΔVref(k)和两侧电机目标转速差ΔNref(k)分别确定左右两侧电机各自的目标转速差,即左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k),转至步骤S16;
步骤S16:将上一步得到的左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k)分别经过PI调节器处理,分别得到左侧电机的目标驱动转矩TLref(k)和右侧电机的目标驱动转矩TRref(k);然后转入步骤S17;
步骤S17:整车控制器将左侧电机目标驱动转矩TLref(k)和右侧电机目标驱动转矩TRref(k)发送两侧电机控制器,控制两侧电机输出相应的驱动转矩,使车辆完成直驶或转向;跳转至步骤S3,进行k+1 控制周期内的实时控制。
实施例2:
本实施例适用于电机控制为转速模式的情况,所述的驾驶员信号解析方法从步骤S1到步骤S15均与实施例1相同,不同之处在于:
步骤S16:根据上一步得到的左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k)以及左侧电机的反馈转速NLfbk(k)、右侧电机的反馈转速NRfbk(k),分别计算左侧电机的目标转速NLref(k)、右侧电机的目标转速NRref(k):
步骤S17:将两侧电机的目标转速发送给相应的电机控制器,控制两侧电机输出相应的转速,使车辆完成直驶或转向功能。跳转至步骤S3,进行k+1控制周期内的实时控制。
综上,本发明利用加速踏板开度与制动踏板开度之差确定目标车速,通过限制目标车速和实际车速的差值来实现加减速斜率控制;利用方向盘转角、侧滑极限转向半径确定双侧电机目标转速之差,从而确定双侧电机各自目标转速与实际转速之差,通过PI调节器得到各自驱动转矩,使得车辆完成直驶和转向功能,并且不会出现转向半径过小而发生侧滑的控制方法。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (1)

1.一种用于电传动履带车辆控制的驾驶员信号解析方法,其特征在于,所述控制方法基于双电机驱动的履带车辆动力传动系统来实施,所述动力传动系统包括:动力辅助单元(1)、左电机控制器(2)、左侧电机(3)、左侧变速机构及侧传动装置(4)、左侧主动轮(5)、右电机控制器(6)、右侧电机(7)、右侧变速机构及侧传动装置(8)、油门踏板(9)、整车控制器(10)、方向盘(11)、制动踏板(12)、右侧主动轮(13);
所述动力辅助单元(1)用于提供两路用于驱动两侧电机的电能至左电机控制器(2)和右电机控制器(6);
所述左电机控制器(2)用于将来自动力辅助单元(1)的直流电的电能转换为三相交流电的电能,并根据整车控制器(10)的指令控制左侧电机(3)工作;所述右电机控制器(6)用于将来自动力辅助单元(1)的直流电的电能转换为三相交流电的电能,并根据整车控制器(10)的指令控制左侧电机(7)工作;
所述左侧电机(3)及右侧电机(7)分别用于将所述三相交流电的电能转换为机械能,输出机械功率;
所述左侧电机(3)输出的机械功率经左侧变速机构及侧传动(4)传递至左侧主动轮(5),右侧电机(7)输出的机械功率经右侧变速机构及侧传动装置(8)传递至右侧主动轮(13),从而驱动车辆行驶;
系统工作时,由整车控制器(10)采集油门踏板(9)的开度、制动踏板(12)的开度及方向盘(11)的转角信号,以解释驾驶意图,并发送左侧电机(3)的目标驱动转矩指令给左电机控制器(2),发送右侧电机(7)的目标驱动转矩指令给右电机控制器(6),由左电机控制器(2)和右电机控制器(6)来分别各自对应侧的电机输出相应的驱动转矩,带动对应的变速机构及侧传动、主动轮旋转;
当两侧电机的转速相等时,履带车辆执行直驶;当两侧电机出现转速差时,履带车辆执行转向;
所述驾驶员信号解析方法包括如下步骤:
步骤S1:整车控制器(10)进行初始化,读入包括路面行驶阻力系数f、最大转向阻力系数μmax、路面附着系数变速器传动比ib、侧传动比ic、车辆中心距B、车长L、车重m、主动轮半径r在内的整车的预置参数,读入包括允许的最大车速Vmax、增速率最大值ΔVrefmax在内的预置控制参数,读入固有的转向安全系数δ随车速V变化的离散化曲线图,读入固有的两侧电机的T-n特性曲线;然后转入步骤S2;
步骤S2:计算最小相对转向半径ρmin与车速V之间的对应关系,并制成二维表格;根据预置参数,计算车速V对应的最小相对转向半径ρ,有判别式如下:
其中,g是重力加速度;V(k)是当前步长的车速;k是步长;
第一式是离心力不超过地面附着极限的判别式,第二式是外侧履带牵引力不超过附着极限的判别式,ρmin为满足该组判别式的最小ρ值;由此即可获得最小相对转向半径曲线并离散化为映射关系:
ρmin=map(V)
然后转入步骤S3;
步骤S3:整车控制器(10)接收油门踏板信号a(k)、制动踏板信号b(k)、方向盘转角信号s(k),并且分别对其进行归一化处理,得到归一化的油门踏板信号Sa(k)、归一化的制动踏板信号Sb(k)、归一化的方向盘转角信号Ss(k);然后转入步骤S4;
步骤S4:整车控制器(10)接收当前的反馈车速Vfbk(k)、左电机反馈转速NLfbk(k)、右电机反馈转速NRfbk(k);然后同时执行步骤S5及步骤S12;
步骤S5:根据归一化的油门踏板信号Sa(k)、归一化的制动踏板信号Sb(k)、当前允许的最大车速Vmax(k)计算驾驶员的期望车速Vref(k);
Vref(k)=(Sa(k)-Sb(k))*V max(k)
然后转入步骤S6;
步骤S6:根据驾驶员的期望车速Vref(k)、当前的反馈车速Vfbk(k),计算履带车辆的目标车速差ΔVref(k);
ΔVref(k)=Vref(k)-Vfbk(k)
然后转入步骤S7;
步骤S7:根据归一化的制动踏板信号Sb(k)计算履带车辆目标车速减速率的最小值ΔVrefmin(k);
ΔVrefmin(k)=(1+Kb·Sb(k))ΔVmin
其中,ΔVmin为当履带车辆自由滑行时的减速率,ΔVmin<0;Kb是制动踏板的增益系数;
然后转入步骤S8;
步骤S8:判断目标车速差ΔVref(k)与增速率最大值ΔVrefmax的关系,如果ΔVref(k)<ΔVrefmax,说明目标车速差未超出增速率最大值,目标车速差在可调节的范围之内,转至步骤S9;反之则可判定目标车速差过大,可能会导致后续调节不稳定等情况,需要对其进行限制,转至步骤S10;
步骤S9:判断目标车速差ΔVref(k)与减速率最小值ΔVrefmin(k)的关系,若ΔVref(k)>ΔVrefmin(k),说明目标车速差在合理范围,不需要对其进行限制,转至步骤S15;反之则可判定目标车速差过小,会导致电动机发电电流过大的情况,需要对其进行限制,转至步骤S11;
步骤S10:由于目标车速差过大,因此将其限制为增速率最大值ΔVrefmax
ΔVref(k)=ΔVrefmax
然后转入步骤S15;
步骤S11:由于目标车速差过小,因此将其限制为减速率最小值ΔVrefmin(k);
ΔVref(k)=ΔVrefmin(k)
然后转入步骤S15;
步骤S12:根据履带车辆的行驶速度Vfbk(k)、转向安全系数δ[Vfbk(k)]、以及离散化的最小相对转向半径曲线,确定当前车速下履带车辆不发生侧滑所能实现的最小相对转向半径ρmin(k);
ρmin(k)=δ[Vfbk(k)]·map[Vfbk(k)]
然后转入步骤S13;
步骤S13:根据最小相对转向半径ρmin(k)将归一化的方向盘转角信号Ss(k)修正为Ss’(k),保证履带车辆实现安全转向;修正式为:
Ss &prime; ( k ) = S s ( k ) K s &CenterDot; &rho; min ( k )
式中,Ks是转向修正系数;
然后转入步骤S14;
步骤S14:根据最小相对转向半径ρmin(k)、左右电机的反馈转速NLfbk(k)、NRfbk(k)以及修正后的方向盘转角信号Ss’(k)计算两侧电机目标转速差ΔNref(k),然后转至步骤15;
&Delta; N r e f ( k ) = K n &CenterDot; ( N L f b k ( k ) + N R f b k ( k ) ) Ss &prime; ( k ) &rho; min ( k )
式中,Kn为转速差修正系数,该系数与变速机构传动比有关。
步骤S15:根据目标车速差ΔVref(k)和两侧电机目标转速差ΔNref(k)分别确定左右两侧电机各自的目标转速差,即左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k),转至步骤S16;
&Delta; N L r e f ( k ) = 1 2 &lsqb; &Delta; N r e f ( k ) + i b i c &pi; r &Delta; V r e f ( k ) - ( N L f b k ( k ) - N R f b k ( k ) ) &rsqb; &Delta; N R r e f ( k ) = 1 2 &lsqb; - &Delta; N r e f ( k ) + i b i c &pi; r &Delta; V r e f ( k ) + ( N L f b k ( k ) - N R f b k ( k ) ) &rsqb;
步骤S16:将上一步得到的左侧电机的目标转速差ΔNLref(k)、右侧电机的目标转速差ΔNRref(k)分别经过PI调节器处理,分别得到左侧电机的目标驱动转矩TLref(k)和右侧电机的目标驱动转矩TRref(k);然后转入步骤S17;
步骤S17:整车控制器将左侧电机目标驱动转矩TLref(k)和右侧电机目标驱动转矩TRref(k)发送两侧电机控制器,控制两侧电机输出相应的驱动转矩,使车辆完成直驶或转向;跳转至步骤S3,进行k+1控制周期内的实时控制。
CN201611141243.2A 2016-12-12 2016-12-12 用于电传动履带车辆控制的驾驶员信号解析方法 Active CN106740273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611141243.2A CN106740273B (zh) 2016-12-12 2016-12-12 用于电传动履带车辆控制的驾驶员信号解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611141243.2A CN106740273B (zh) 2016-12-12 2016-12-12 用于电传动履带车辆控制的驾驶员信号解析方法

Publications (2)

Publication Number Publication Date
CN106740273A true CN106740273A (zh) 2017-05-31
CN106740273B CN106740273B (zh) 2019-04-02

Family

ID=58876073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611141243.2A Active CN106740273B (zh) 2016-12-12 2016-12-12 用于电传动履带车辆控制的驾驶员信号解析方法

Country Status (1)

Country Link
CN (1) CN106740273B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427344A (zh) * 2018-03-15 2018-08-21 济南大学 基于dSPACE的履带机器人运动控制系统及控制方法
CN109130883A (zh) * 2018-08-16 2019-01-04 北京理工大学 一种基于路面特性的分布式车辆转速控制方法及装置
CN109131319A (zh) * 2018-10-19 2019-01-04 北京经纬恒润科技有限公司 一种自动泊车扭矩控制方法和装置
CN109878346A (zh) * 2019-03-22 2019-06-14 湖南中成动力科技有限公司 一种履带农机电驱动系统总成及其控制方法
CN110001417A (zh) * 2019-04-24 2019-07-12 山西零度智控设备有限公司 双直流电机驱动器电子差速防止车体倾覆控制系统及方法
CN110937051A (zh) * 2019-11-04 2020-03-31 北京理工大学 一种实时测量自行车骑行者输出功率的方法
CN111016605A (zh) * 2019-12-13 2020-04-17 中国北方车辆研究所 一种履带车辆电传动装置支撑定位结构
CN112603205A (zh) * 2020-12-17 2021-04-06 珠海市一微半导体有限公司 一种机器人行走速度调节方法
CN113002325A (zh) * 2021-02-23 2021-06-22 潍柴动力股份有限公司 一种双侧电机驱动型车辆的控制方法及装置
CN114194293A (zh) * 2021-12-02 2022-03-18 中国煤炭科工集团太原研究院有限公司 煤矿履带式采掘装备的控制方法及装置
CN114228510A (zh) * 2021-12-30 2022-03-25 江苏英拓动力科技有限公司 双侧独立电驱动履带车电机转矩计算方法
CN114454728A (zh) * 2021-12-14 2022-05-10 中国北方车辆研究所 一种双电机耦合驱动履带车辆电气负载特性分析方法
WO2022192210A1 (en) * 2021-03-11 2022-09-15 Vortrex LLC Systems and methods for electric track vehicle control
EP4140839A1 (en) * 2021-08-31 2023-03-01 Volvo Truck Corporation Vehicle control based on a dynamically configured sideslip limit
CN117087628A (zh) * 2023-10-18 2023-11-21 江苏智能无人装备产业创新中心有限公司 双侧独立电驱动无人驾驶履带车辆制动防跑偏控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364806B1 (en) * 1999-07-09 2002-04-02 Daimlerchrysler Ag Multi-motor drive for motor vehicles
JP4672387B2 (ja) * 2005-02-17 2011-04-20 三菱重工業株式会社 装軌車輌における操向制御方法及び装置
CN102700611A (zh) * 2012-05-25 2012-10-03 北京理工大学 一种电驱动履带车辆转向电机与单侧驱动电机耦合转向系统
CN103101453A (zh) * 2011-11-13 2013-05-15 湖南晟通科技集团有限公司 一体化电子差速与调速集中控制方法及其装置
CN103350719A (zh) * 2013-06-27 2013-10-16 中国北方车辆研究所 用于双侧电机耦合驱动的履带车辆的转向控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364806B1 (en) * 1999-07-09 2002-04-02 Daimlerchrysler Ag Multi-motor drive for motor vehicles
JP4672387B2 (ja) * 2005-02-17 2011-04-20 三菱重工業株式会社 装軌車輌における操向制御方法及び装置
CN103101453A (zh) * 2011-11-13 2013-05-15 湖南晟通科技集团有限公司 一体化电子差速与调速集中控制方法及其装置
CN102700611A (zh) * 2012-05-25 2012-10-03 北京理工大学 一种电驱动履带车辆转向电机与单侧驱动电机耦合转向系统
CN103350719A (zh) * 2013-06-27 2013-10-16 中国北方车辆研究所 用于双侧电机耦合驱动的履带车辆的转向控制方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427344A (zh) * 2018-03-15 2018-08-21 济南大学 基于dSPACE的履带机器人运动控制系统及控制方法
CN109130883B (zh) * 2018-08-16 2020-04-10 北京理工大学 一种基于路面特性的分布式车辆转速控制方法及装置
CN109130883A (zh) * 2018-08-16 2019-01-04 北京理工大学 一种基于路面特性的分布式车辆转速控制方法及装置
CN109131319A (zh) * 2018-10-19 2019-01-04 北京经纬恒润科技有限公司 一种自动泊车扭矩控制方法和装置
CN109878346A (zh) * 2019-03-22 2019-06-14 湖南中成动力科技有限公司 一种履带农机电驱动系统总成及其控制方法
CN109878346B (zh) * 2019-03-22 2021-01-01 湖南中成动力科技有限公司 一种履带农机电驱动系统总成及其控制方法
CN110001417A (zh) * 2019-04-24 2019-07-12 山西零度智控设备有限公司 双直流电机驱动器电子差速防止车体倾覆控制系统及方法
CN110001417B (zh) * 2019-04-24 2022-10-11 山西零度智控设备有限公司 双直流电机驱动器电子差速防止车体倾覆控制系统及方法
CN110937051A (zh) * 2019-11-04 2020-03-31 北京理工大学 一种实时测量自行车骑行者输出功率的方法
CN111016605A (zh) * 2019-12-13 2020-04-17 中国北方车辆研究所 一种履带车辆电传动装置支撑定位结构
CN111016605B (zh) * 2019-12-13 2021-04-23 中国北方车辆研究所 一种履带车辆电传动装置支撑定位结构
CN112603205A (zh) * 2020-12-17 2021-04-06 珠海市一微半导体有限公司 一种机器人行走速度调节方法
CN113002325A (zh) * 2021-02-23 2021-06-22 潍柴动力股份有限公司 一种双侧电机驱动型车辆的控制方法及装置
CN113002325B (zh) * 2021-02-23 2022-08-23 潍柴动力股份有限公司 一种双侧电机驱动型车辆的控制方法及装置
US11713077B2 (en) 2021-03-11 2023-08-01 Vortrex LLC Systems and methods for electric track vehicle control
WO2022192210A1 (en) * 2021-03-11 2022-09-15 Vortrex LLC Systems and methods for electric track vehicle control
EP4140839A1 (en) * 2021-08-31 2023-03-01 Volvo Truck Corporation Vehicle control based on a dynamically configured sideslip limit
CN114194293A (zh) * 2021-12-02 2022-03-18 中国煤炭科工集团太原研究院有限公司 煤矿履带式采掘装备的控制方法及装置
CN114454728A (zh) * 2021-12-14 2022-05-10 中国北方车辆研究所 一种双电机耦合驱动履带车辆电气负载特性分析方法
CN114454728B (zh) * 2021-12-14 2024-01-05 中国北方车辆研究所 一种双电机耦合驱动履带车辆电气负载特性分析方法
CN114228510A (zh) * 2021-12-30 2022-03-25 江苏英拓动力科技有限公司 双侧独立电驱动履带车电机转矩计算方法
CN114228510B (zh) * 2021-12-30 2023-04-28 江苏英拓动力科技有限公司 双侧独立电驱动履带车电机转矩计算方法
CN117087628A (zh) * 2023-10-18 2023-11-21 江苏智能无人装备产业创新中心有限公司 双侧独立电驱动无人驾驶履带车辆制动防跑偏控制方法
CN117087628B (zh) * 2023-10-18 2023-12-22 江苏智能无人装备产业创新中心有限公司 双侧独立电驱动无人驾驶履带车辆制动防跑偏控制方法

Also Published As

Publication number Publication date
CN106740273B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN106740273B (zh) 用于电传动履带车辆控制的驾驶员信号解析方法
US9896082B2 (en) Vehicle driving support control device
CN104175902B (zh) 电动轮汽车轮毂电机转矩分配系统的转矩分配控制方法
CN105015363B (zh) 一种基于分层协调的分布式驱动汽车控制系统及方法
CN105691381B (zh) 一种四轮独立驱动电动汽车稳定性控制方法及系统
CN103786602B (zh) 基于分布式驱动电动汽车的操纵性改善控制方法
CN106184199B (zh) 分布式控制电动汽车稳定性的集成控制方法
CN109747434A (zh) 分布式驱动电动汽车转矩矢量分配控制方法
CN103935265B (zh) 一种电动汽车的车身稳定控制系统
CN103879307B (zh) 一种用于电动汽车的后轮独立驱动控制系统及方法
US10967870B2 (en) Hill descent system for vehicle and control method thereof
CN107472082A (zh) 四驱电动汽车的驱动力矩分配方法、系统及电动汽车
CN108790940A (zh) 轮边驱动转向差速控制方法、控制装置、设备及汽车
CN110254405A (zh) 一种面向自动驾驶与智能辅助驾驶的汽车线控制动控制系统及其控制方法
CN102267459B (zh) 一种电机驱动车辆的驱动防滑调节控制方法
CN107089261A (zh) 一种集成eps的分布式驱动汽车转向控制系统及方法
CN104724113B (zh) 一种用于多轴分布式机电驱动车辆的操纵稳定性控制系统
CN105667341B (zh) 一种用于多轴分布式机电驱动车辆的牵引力控制系统
CN105835721A (zh) 一种四轮轮毂电动汽车车速控制方法
CN105555591A (zh) 电动车辆的控制装置及电动车辆的控制方法
CN102582681A (zh) 基于dsp的交流永磁式电动助力转向控制系统与方法
CN106627168A (zh) 电动汽车的制动能量回馈方法和制动能量回馈系统
CN105109477B (zh) 一种轮毂电机驱动车辆的转矩分配方法
CN110920616A (zh) 一种智能车换道轨迹及换道轨迹跟随控制方法
CN108327702A (zh) 一种四轮轮毂电机独立驱动控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant