CN106679911B - 一种基于多尺度数据融合理论的梁型结构损伤识别方法 - Google Patents

一种基于多尺度数据融合理论的梁型结构损伤识别方法 Download PDF

Info

Publication number
CN106679911B
CN106679911B CN201611249646.9A CN201611249646A CN106679911B CN 106679911 B CN106679911 B CN 106679911B CN 201611249646 A CN201611249646 A CN 201611249646A CN 106679911 B CN106679911 B CN 106679911B
Authority
CN
China
Prior art keywords
scale
damage
data fusion
curvature
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611249646.9A
Other languages
English (en)
Other versions
CN106679911A (zh
Inventor
徐自力
郭天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201611249646.9A priority Critical patent/CN106679911B/zh
Publication of CN106679911A publication Critical patent/CN106679911A/zh
Application granted granted Critical
Publication of CN106679911B publication Critical patent/CN106679911B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于多尺度数据融合理论的梁型结构损伤识别方法,针对实际结构的损伤识别中,测量噪声对识别结果的干扰以及轻微损伤难以识别的问题,本发明通过将振型曲率进行多尺度分解来减小测量噪声所产生影响,并根据多尺度分解所得数据,进行融合计算,最终达到克服测量噪声的同时准确识别轻微损伤的目的,本发明可以在具有较强噪声干扰的环境下,对结构的单处或多处损伤进行准确的识别,同时无需了解结构材料属性及边界条件,因此具有适用性强,可以有效减少经济损失,防止灾难性事故的发生。

Description

一种基于多尺度数据融合理论的梁型结构损伤识别方法
技术领域
本发明涉及建筑、桥梁、航空航天和能源动力系统中梁型结构受到局部损伤时的识别方法,具体涉及一种基于多尺度数据融合理论的梁型结构损伤识别方法。
背景技术
梁型结构广泛应用于国民经济生活的各个方面。以桥梁为例,作为交通运输的重要组成部分,是一个国家基础设施建设的重点,同时也是经济发展与技术进步的象征。近些年来,梁型结构的健康诊断技术已经成为工程界的研究热点,健康诊断系统及其理论研究也取得了很大进展。通过对结构的力学性能分析,特别是分析它们损伤前后振动特性的变化,能够准确的识别出结构中存在的损伤,这对于保障结构的安全性、稳定性和耐用性具有重要的意义。
由于梁型结构主要应用于环境较为复杂的环境中,使得针对梁型结构的健康监测问题的许多关键技术从理论到实际应用还存在诸多不足。而目前的损伤识别文献中,由于未同时考虑测量噪声、多处和轻微损伤的问题,因此难以适用于识别在强噪声干扰下的多处轻微损伤的识别。
发明内容
为了解决现有技术中的问题,本发明提出一种基于多尺度数据融合理论的梁型结构损伤识别方法,能够利用实际结构所测振型,通过多尺度变换及数据融合算法识别出结构损伤位置,对测量噪声具有很强的抗干扰能力,对轻微损伤具有高的识别分辨率。
为了实现以上目的,本发明所采用的技术方案为:包括以下步骤:
1)测量损伤的梁型结构的各阶固有频率和振型,选择任意单一阶的振型并计算其振型曲率;
2)选择多尺度核函数和尺度系数后,对步骤1)得到的振型曲率进行多尺度分解,得到振型曲率在尺度空间的识别框架;
3)根据步骤2)得到的识别框架,对不同尺度下的数据进行数据融合计算,得到各测量点处损伤概率分布,根据损伤概率值判断梁型结构是否损伤,完成对梁型结构的损伤识别。
所述步骤1)中采用中心差分法计算振型曲率,振型曲率计算公式如下:
Figure BDA0001197793990000021
式中,Wn″(x)为位于第x个测量点处的第n阶振型曲率,Wn(x)为位于第x个测量点处的第n阶振型,l为测量采样间隔。
所述步骤1)中采用扫描式激光测振仪对梁型结构进行振型测量。
所述步骤2)中多尺度分解的计算公式如下:
Figure BDA0001197793990000022
式中,Lσ(x)为在尺度σ下第x个测量点处的多尺度分解系数,Gσ(x)为在尺度σ下第x个测量点处的多尺度核函数值,σ为尺度系数,
Figure BDA0001197793990000023
为卷积运算符。
所述多尺度核函数值采用高斯基函数计算:
Figure BDA0001197793990000024
所述步骤2)中振型曲率在尺度空间的识别框架的建立过程如下:
首先根据多尺度分解系数采用Teager-Kaiser能量算法,得到尺度σ下第x个测量点处的变化能Eσ(x):
Figure BDA0001197793990000025
然后利用D-S证据理论算法建立识别框架:Θ={E1;E2;E3;…;Eσ},Eσ为在尺度σ下各点能量算子所组成的列向量。
所述识别框架内共有i个子集,并且满足:
S1={E1};S2={E2};S3={E3};…;Si={Ei},i=1,2,3,…,σ。
所述步骤3)中数据融合计算过程如下:
首先根据识别框架内各子集内数据,计算尺度i下各测量点处的损伤概率mi(Si):
Figure BDA0001197793990000031
式中,n为测量点总数;
然后利用D-S证据理论算法,将同一测量点相邻两尺度的能量算子进行数据融合计算:
Figure BDA0001197793990000032
式中,
Figure BDA0001197793990000033
表示所建立识别框架内第k个子集与第k+1个子集数据融合结果;k为正整数,满足1≤k≤i;qk表示所建立识别框架内第k个子集与第k+1个子集的冲突函数;
最后根据下列公式依次将所有尺度进行数据融合计算:
Figure BDA0001197793990000034
最终得到梁型结构各测量点处损伤概率分布,根据各测量点损伤概率值判断梁型结构是否损伤,其中明显大于其他各测量点损伤概率值的位置为梁型结构发生局部损伤的位置。
所述冲突函数qk定义为:
Figure BDA0001197793990000035
冲突函数qk+1定义为:
Figure BDA0001197793990000036
与现有技术相比,本发明通过将振型曲率进行多尺度分解来减小测量噪声所产生影响,并根据多尺度分解所得数据,进行融合计算,最终达到克服测量噪声的同时准确识别轻微损伤的目的,使用任意单阶振型识别结构的损伤位置,通过将测量振型进行多尺度分解,提高了对测量噪声的抗干扰性;使用Teager-Kaiser能量算法突出了损伤特征的奇异性,因此对于轻微损伤具有很高的识别分辨率;无需分析结构的材料属性与边界条件,因此广泛适用于多种材料组成的结构。此外,本发明对于具有多处损伤的结构也具有极强的识别能力,本发明能够在具有较强噪声干扰的环境下,对结构的单处或多处损伤进行准确的识别,减少经济损失,防止灾难性事故的发生。
附图说明
图1是本发明方法流程图;
图2是实施例某铝合金6061悬臂梁结构损伤位置及振型测量示意图,图中1为测量点,2为裂纹损伤;
图3是实施例的振型测量结果;
图4是实施例的振型曲率计算结果;
图5是实施例的损伤识别结果。
具体实施方式
下面结合具体的实施例和说明书附图对本发明作进一步的解释说明。
参见图1,本发明包括以下步骤:
1)对具有局部损伤的梁型结构测量其振型,利用中心差分法,选取第n阶振型Wn进行计算,得到该结构的第n阶振型曲率:
Figure BDA0001197793990000041
其中,Wn″(x)为位于第x个测量点处的第n阶振型曲率;Wn(x)为位于第x个测量点处的第n阶振型曲率;l为测量采样间隔;
2)对原振型曲率进行多尺度分解,其多尺度分解计算公式为:
Figure BDA0001197793990000042
其中,Lσ(x)为在尺度σ下第x个测量点处的多尺度分解系数;Gσ(x)为在尺度σ下第x个测量点处的多尺度核函数值;σ为尺度系数;
Figure BDA0001197793990000043
为卷积运算符;
所选多尺度核函数为高斯基函数:
Figure BDA0001197793990000051
其中,Gσ(x)为在尺度σ下第x个测量点处的高斯函数值;
3)根据中心差分法计算所得振型曲率在不同尺下的多尺度分解系数(高斯系数),利用Teager-Kaiser能量算法,得到尺度σ下第x个测量点处的变化能Eσ(x):
Figure BDA0001197793990000052
运用D-S证据理论算法,设计识别框架:
Θ={E1;E2;E3;…;Eσ}
其中,Eσ为在尺度σ下各点能量算子所组成的列向量;
所定义识别框架内共有i个子集,并且满足:
S1={E1};S2={E2};S3={E3};…;Si={Ei},i=1,2,3,…,σ
根据识别框架内各子集内数据,计算尺度i下各测量点处的概率mi(Si):
Figure BDA0001197793990000053
其中,n为测量点总数;
利用D-S证据理论算法,将同一测量点相邻两尺度的能量算子进行数据融合计算:
Figure BDA0001197793990000054
其中,
Figure BDA0001197793990000055
表示所建立识别框架内第k个子集与第k+1个子集数据融合结果;k为正整数,满足1≤k≤i;qk+1表示所建立识别框架内第k个子集与第k+1个子集的冲突函数:
Figure BDA0001197793990000061
按照此方法,逐步将所有尺度进行数据融合计算:
Figure BDA0001197793990000062
其中,冲突函数qk+1定义为:
Figure BDA0001197793990000063
最终根据数据融合结果,得到结构各测量点损伤概率分布。根据各测量点损伤概率值,其中明显大于其他各测量点概率值的位置,为结构发生局部损伤的位置。
参见图2,本发明实施例以具有局部损伤的铝合金6061悬臂梁结构为例进行损伤识别,该悬臂梁结构长560mm、宽20mm、厚8mm具有局部损伤的铝合金悬臂梁,在距离固定端305mm处有一宽1mm、深1mm的损伤,损伤识别具体包括以下步骤:
(1)测量损伤结构振型:
利用扫描式激光测振仪对该结构进行振型测量,设置测量点共185个,初始测量位置距离固定端55mm,终止测量点距离固定端555mm,对所测梁进行归一化处理,其损伤位置位于ζ=0.42处,本实例选取第3阶振型W3进行计算,其测量结果如图3所示;
(2)计算振型曲率:
利用中心差分法,计算第3阶振型曲率:
Figure BDA0001197793990000064
其中,l为所选采样间隔,本例中l=0.37mm;W3″为第3阶振型曲率,并且根据实验样本边界条件,规定W″(185)=0,计算结果如图4所示;从图中可以看出,由于传统中心差分法在计算过程中会放大噪声所产生的影响,导致测量中的噪声成分在所计算振型曲率中占主要位置,使得损伤特征无法体现,因此难以判断损伤位置。
(3)利用卷积运算对原振型曲率进行多尺度分解,得到不同尺度下的高斯系数:
根据计算所得振型曲率,将原振型曲率划分为20个尺度,选取高斯基函数为多尺度核函数,对第3阶振型曲率进行多尺度分解:
Figure BDA0001197793990000071
其中,Lσ(x)为在尺度σ下测量点x处的高斯系数;σ为尺度系数;
Figure BDA0001197793990000072
为卷积运算符;高斯基函数的表达形式为:
Figure BDA0001197793990000073
其中,Gσ(x)为在尺度σ下测量点x处的高斯函数值。
(4)将不同尺度下的高斯系数矩阵,利用D-S证据理论,进行数据融合,进行损伤识别:
利用Teager-Kaiser能量算法,得到尺度σ下测量点x处的变化能Eσ,σ=1,…,20:
Figure BDA0001197793990000074
将所有尺度下计算所得变化能向量,设计为识别框架Θ,满足:
Θ={E1;E2;E3;…;Eσ};
定义识别框架Θ中包含20个信息源,满足如下形式:
S1={E1},S2={E2},…,S20={E20};
根据识别框架,计算每一信息源中各点损伤概率:
Figure BDA0001197793990000081
其中,mi(Si)为在尺度i下各测量点概率的所组成的列向量;
利用D-S证据理论算法,将相邻两尺度的变化能进行数据融合计算:
Figure BDA0001197793990000082
其中,q表示两个信息源的冲突函数:
Figure BDA0001197793990000083
按照此方法,将剩余所有信息源进行融合:
Figure BDA0001197793990000084
其中,k为正整数,满足k=1,2,3,…,18;冲突函数qk+1定义为:
Figure BDA0001197793990000085
最后得到融合结果
Figure BDA0001197793990000086
根据此结果,得到各测量点损伤概率分布图,结果如图5所示,从图中可以看出,在ζ=0.42出有一明显的波峰,说明在所测结构的第78个测量点(295mm)附近发生局部损伤,与实际实验样本对照可以看出,本发明所提算法的计算结果与实际一致,证明本发明所提算法能够准确识别出梁型结构所发生的局部轻微损伤。
针对实际结构的损伤识别中,测量噪声对识别结果的干扰以及轻微损伤难以识别的问题,本发明通过将振型曲率进行多尺度分解来减小测量噪声所产生影响,并根据多尺度分解所得数据,进行融合计算,最终达到克服测量噪声的同时准确识别轻微损伤的目的,本发明可以在具有较强噪声干扰的环境下,对结构的单处(多处)损伤进行准确的识别,同时无需了解结构材料属性及边界条件,因此具有适用性强,可以有效减少经济损失,防止灾难性事故的发生。

Claims (3)

1.一种基于多尺度数据融合理论的梁型结构损伤识别方法,其特征在于,包括以下步骤:
1)测量损伤的梁型结构的各阶固有频率和振型,选择任意单一阶的振型并计算其振型曲率;
2)选择多尺度核函数和尺度系数后,对步骤1)得到的振型曲率进行多尺度分解,得到振型曲率在尺度空间的识别框架;
3)根据步骤2)得到的识别框架,对不同尺度下的数据进行数据融合计算,得到各测量点处损伤概率分布,根据损伤概率值判断梁型结构是否损伤,完成对梁型结构的损伤识别;
所述步骤2)中振型曲率在尺度空间的识别框架的建立过程如下:
首先根据多尺度分解系数采用Teager-Kaiser能量算法,得到尺度σ下第x个测量点处的能量算子Eσ(x):
Figure FDA0002199242210000011
Lσ(x)为在尺度σ下第x个测量点处的多尺度分解系数;
然后利用D-S证据理论算法建立识别框架:Θ={E1;E2;E3;…;Eσ},Eσ为在尺度σ下各测量点能量算子所组成的列向量;
所述识别框架内共有σ个子集,并且满足:
S1={E1};S2={E2};S3={E3};…;Si={Ei},i=1,2,3,…,σ;
所述步骤1)中采用扫描式激光测振仪对梁型结构进行振型测量;
所述步骤2)中多尺度分解的计算公式如下:
Figure FDA0002199242210000012
式中,Lσ(x)为在尺度σ下第x个测量点处的多尺度分解系数,Gσ(x)为在尺度σ下第x个测量点处的多尺度核函数值,σ为尺度系数,
Figure FDA0002199242210000013
为卷积运算符;W″n(x)为位于第x个测量点处的第n阶振型曲率;
所述多尺度核函数值采用高斯基函数计算:
Figure FDA0002199242210000014
所述步骤3)中数据融合计算过程如下:
首先根据识别框架内各子集内数据,计算尺度i下各测量点处的损伤概率mi(Si):
Figure FDA0002199242210000021
式中,h为测量点总数;
然后利用D-S证据理论算法,将同一测量点相邻两尺度的能量算子进行数据融合计算:
Figure FDA0002199242210000022
式中,
Figure FDA0002199242210000023
表示所建立识别框架内第k个子集与第k+1个子集数据融合结果;k为正整数,满足1≤k≤σ-2;qk表示所建立识别框架内第k个子集与第k+1个子集的冲突函数;
最后根据下列公式依次将所有尺度进行数据融合计算:
Figure FDA0002199242210000024
最终得到梁型结构各测量点处损伤概率分布,根据各测量点损伤概率值判断梁型结构是否损伤,其中明显大于其他各测量点损伤概率值的位置为梁型结构发生局部损伤的位置。
2.根据权利要求1所述的一种基于多尺度数据融合理论的梁型结构损伤识别方法,其特征在于,所述步骤1)中采用中心差分法计算振型曲率,振型曲率计算公式如下:
Figure FDA0002199242210000025
式中,W″n(x)为位于第x个测量点处的第n阶振型曲率,Wn(x)为位于第x个测量点处的第n阶振型,l为测量采样间隔。
3.根据权利要求1所述的一种基于多尺度数据融合理论的梁型结构损伤识别方法,其特征在于,所述冲突函数qk定义为:
Figure FDA0002199242210000031
冲突函数qk+1定义为:
Figure FDA0002199242210000032
CN201611249646.9A 2016-12-29 2016-12-29 一种基于多尺度数据融合理论的梁型结构损伤识别方法 Expired - Fee Related CN106679911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611249646.9A CN106679911B (zh) 2016-12-29 2016-12-29 一种基于多尺度数据融合理论的梁型结构损伤识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611249646.9A CN106679911B (zh) 2016-12-29 2016-12-29 一种基于多尺度数据融合理论的梁型结构损伤识别方法

Publications (2)

Publication Number Publication Date
CN106679911A CN106679911A (zh) 2017-05-17
CN106679911B true CN106679911B (zh) 2020-03-17

Family

ID=58872540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611249646.9A Expired - Fee Related CN106679911B (zh) 2016-12-29 2016-12-29 一种基于多尺度数据融合理论的梁型结构损伤识别方法

Country Status (1)

Country Link
CN (1) CN106679911B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061666A (zh) * 2017-12-01 2018-05-22 广东电网有限责任公司电力科学研究院 一种输电塔损伤识别方法
CN108020562A (zh) * 2017-12-03 2018-05-11 绍兴文理学院 空间屋架损伤检测方法及系统
CN110346290A (zh) * 2019-07-18 2019-10-18 河海大学 一种使用激光量测模态Teager-Kaiser能量的CFRP分层检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575807A (zh) * 2013-10-24 2014-02-12 河海大学 Teager能量算子-小波变换曲率模态的梁结构损伤检测方法
CN105973554A (zh) * 2016-05-13 2016-09-28 河海大学 一种抗噪的使用振型检测梁类结构损伤的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095180A (ja) * 2014-11-13 2016-05-26 富士電機株式会社 構造ヘルスモニタリングシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575807A (zh) * 2013-10-24 2014-02-12 河海大学 Teager能量算子-小波变换曲率模态的梁结构损伤检测方法
CN105973554A (zh) * 2016-05-13 2016-09-28 河海大学 一种抗噪的使用振型检测梁类结构损伤的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Structural health monitoring using wavelet transforms;Venkata Kasi Amaravadi, et. al;《Smart Structures and Materials 2001: Smart Structures and Integrated Systems》;20010816;第4327卷;第3、4节 *
基于小波包变换的梁式结构损伤定位方法;刘习军等;《实验力学》;20150630;第30卷(第3期);第0、2.2节 *

Also Published As

Publication number Publication date
CN106679911A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106950276B (zh) 一种基于卷积神经网络的管道缺陷深度的反演方法
Agarwal et al. Lamb wave based automatic damage detection using matching pursuit and machine learning
CN106679911B (zh) 一种基于多尺度数据融合理论的梁型结构损伤识别方法
CN104619020A (zh) 基于rssi和toa测距的wifi室内定位方法
CN107862134A (zh) 一种考虑自相关测量误差的Wiener过程可靠性分析方法
CN104155650A (zh) 一种基于熵权值法点迹质量评估的目标跟踪方法
CN104390860A (zh) 含复杂缺陷材料失效参数的测定方法
CN103956756A (zh) 一种电力系统低频振荡模态辨识方法
CN112380705B (zh) 基于非线性预测滤波算法的金属疲劳裂纹扩展预测方法
CN118246128B (zh) 一种钢筋混凝土框架结构质量检测方法、介质及系统
CN114414659B (zh) 基于频率融合的非线性超声导波无参损伤识别方法及系统
CN109902386B (zh) 一种基于群稀疏的复合材料结构冲击载荷识别方法及装置
CN109902877B (zh) 一种海上遇险目标漂移预测模型参数的逐步率定方法
CN111914386A (zh) 一种基于退化模型不确定分析的可靠性评估方法及系统
CN112818762B (zh) 一种大尺寸复合材料及其夹层结构快速无损检测方法
Wei et al. Damage quantification of aluminum plates using SC-DTW method based on Lamb waves
CN104914167A (zh) 基于序贯蒙特卡洛算法的声发射源定位方法
CN111756353B (zh) 一种基于非线性融合滤波的液位仪噪声优化方法
CN105956565A (zh) 一种考虑量测信号丢失的动态振荡信号参数辨识方法
CN113094640A (zh) 一种频域下宽带多轴随机振动寿命预测方法
Wang et al. A new computer vision based multi-indentation inspection system for ceramics
CN115597901B (zh) 一种桥梁伸缩缝损伤的监测方法
CN114509506B (zh) 基于导波时频谱差和卷积神经网络集的在线裂纹评估方法
CN114692465B (zh) 桥梁损伤位置的无损识别方法、存储介质及设备
Yao et al. Robust locally weighted regression for profile measurement of magnesium alloy tube in hot bending process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200317

CF01 Termination of patent right due to non-payment of annual fee