CN106669823B - 一种高催化活性和稳定性的漆酶胶束及其制备方法 - Google Patents

一种高催化活性和稳定性的漆酶胶束及其制备方法 Download PDF

Info

Publication number
CN106669823B
CN106669823B CN201710037222.4A CN201710037222A CN106669823B CN 106669823 B CN106669823 B CN 106669823B CN 201710037222 A CN201710037222 A CN 201710037222A CN 106669823 B CN106669823 B CN 106669823B
Authority
CN
China
Prior art keywords
laccase
pss
pmma
micella
nhs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710037222.4A
Other languages
English (en)
Other versions
CN106669823A (zh
Inventor
刘敬权
陈涛
潘建斌
张静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong borunde Agricultural Technology Co., Ltd
Original Assignee
Linyi Bolitexin Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi Bolitexin Material Co Ltd filed Critical Linyi Bolitexin Material Co Ltd
Priority to CN201710037222.4A priority Critical patent/CN106669823B/zh
Publication of CN106669823A publication Critical patent/CN106669823A/zh
Application granted granted Critical
Publication of CN106669823B publication Critical patent/CN106669823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种高催化活性和稳定性漆酶胶束及其制备方法。该方法利用双亲性嵌段共聚物聚甲基丙烯酸甲酯‑block‑聚苯乙烯磺酸钠修饰漆酶得到共聚物与漆酶的结合体,然后在水相中自组装成胶束球,其中亲水段带负电荷的聚合物PSS能通过静电吸附作用吸附漆酶活性诱导剂(铜离子),使制备的漆酶胶束的活性和稳定性有了很大程度的提升。本发明充分利用了胶束巨大的比表面积和球形形态,能增加漆酶在表面的分布并能阻止漆酶因为相互聚集而掩盖活性位点,从而不能发挥其全部活性的特点,同时还能通过聚合物对漆酶的化学修饰产生结合体,从而阻止因较高温度造成漆酶发生相转变而失活的原理,实现了漆酶催化活性和稳定性的显著提高。

Description

一种高催化活性和稳定性的漆酶胶束及其制备方法
技术领域
本发明涉及一种高催化活性和稳定性漆酶胶束及其制备方法,属于生物酶胶束制备领域。
背景技术
漆酶是一种金属酶,它在酚类污染物降解、化学催化反应、生物传感器制备等方面有着非常广泛的应用。但是由于漆酶本身结构脆弱易失活,在溶液中易发生聚集而降低催化活性等特点,它的应用受到了很大的制约。现在常用来提高漆酶稳定性的方法一般有化学修饰法,水凝胶保护法,基底固定法。上述方法中化学修饰法是一种非常有效的方法,但是通过化学修饰法对漆酶进行修饰,漆酶的稳定性虽然有了很大程度的提高,但是活性却普遍下降了。因此若能够在提高漆酶稳定性的同时,如果能够保持或者是提高漆酶的活性有着非常重要的实用意义。现在提高漆酶活性的方法一般是向漆酶溶液中加入漆酶活性诱导剂,例如微生物,光催化剂,重金属离子。其中加入重金属离子如铜离子是一种非常有效的方法,但是铜离子作为一种重金属离子,往往会对催化体系造成二次污染,因此,如果能够将铜离子固定在漆酶上,在能提高漆酶催化活性的同时避免对反应体系造成污染,将会对漆酶的改性有着非常重要的意义。
发明内容
本发明的目的在于,提供一种高催化活性和稳定性漆酶胶束及其制备方法。该漆酶胶束的制备时利用双亲性嵌段共聚物聚甲基丙烯酸甲酯-block-聚苯乙烯磺酸钠(PMMA-b-PSS)修饰漆酶得到共聚物与漆酶的结合体(PMMA-b-PSS-laccase),然后在水相中自组装成胶束球,其中亲水段带负电荷的聚合物PSS能通过静电吸附作用吸附漆酶活性诱导剂(铜离子),使制备的漆酶胶束的活性和稳定性有了很大程度的提升。本发明充分利用了胶束巨大的比表面积和球形形态,能增加漆酶在表面的分布并能阻止漆酶因为相互聚集而掩盖活性位点,从而不能发挥其全部活性的特点,同时还能通过聚合物对漆酶的化学修饰产生结合体,从而阻止因较高温度造成漆酶发生相转变而失活的原理,实现了漆酶催化活性和稳定性的显著提高。
本发明采用以下技术方案:
一种高催化活性和稳定性的漆酶胶束,它是采用下述方法制备得到的:
1、通过RAFT聚合合成嵌段共聚物PMMA-b-PSS:
1)将10-30mg 4-氰基-4-乙基三硫代戊酸、1-6mg偶氮二异丁腈、2-4g苯乙烯磺酸钠,在圆底烧瓶中用2-6mL超纯水和2-4mL二甲基亚砜的混合溶剂溶解,反应体系密封后,通入高纯氮气30分钟以除去反应体系中的氧气,然后在17-88℃下油浴,搅拌反应2-16小时;
2)在上述反应液中加入0.62-3.22g甲基丙烯酸甲酯,反应体系密封后通入氮气8-48分钟,然后在26-82℃下油浴,搅拌反应6-16小时;
3)将上述步骤2)反应得到的混合物用乙醚沉淀2-5次,将得到的沉淀置于烘箱中烘干至恒重即为PMMA-b-PSS,储存备用;
2、嵌段共聚物PMMA-b-PSS对漆酶进行修饰:
1)将0.40-0.55g步骤A所得嵌段共聚物PMMA-b-PSS、8-10mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在50mL的圆底烧瓶中用15-25mL DMSO和12-23mL去离子水的混合溶剂溶解,室温下搅拌反应30-80分钟;
2)在步骤(1)反应结束后,继续向反应液中加入3-8.5g N-羟基琥珀酰亚胺,室温下反应11-33小时,然后用乙醚沉淀三次,得到的沉淀即为PMMA-b-PSS-NHS,干燥备用;
3)配制浓度为0.04-0.91M,pH=4.3-9.2和6.3-8.0的ABS缓冲液,然后用pH为6.3-8.0的ABS缓冲液配制浓度分别是0.55-3.12mg/mL的漆酶储备液和8-44mg/mL的PMMA-b-PSS-NHS储备液,并用等体积的DMSO将上述PMMA-b-PSS-NHS储备液稀释置于4℃下备用;
4)取9-14mL漆酶储备液加入等体积的DMSO稀释,取0.35-10.55mL PMMA-b-PSS-NHS储备液加入等体积的DMSO稀释,将配置得到的漆酶溶液逐滴加入到搅拌的PMMA-b-PSS-NHS溶液中,在4℃下搅拌反应1-9小时,然后用截留分子量为40000-100000的透析膜在1-10℃下用水和DMSO的等体积混合溶液透析1-3天,以此来除去过量的PMMA-b-PSS-NHS,得到聚合物与漆酶的结合体PMMA-b-PSS-laccase;
3、用铜离子修饰酶
1)用pH=4.3-9.2的ABS缓冲液配制浓度为8-20mM的硫酸铜溶液,然后将步骤2中得到的PMMA-b-PSS-laccase在配置的硫酸铜缓冲液中透析1-12小时;
2)然后利用截留分子量为500-1000的透析膜冰浴透析1-6小时,除去吸附不牢的铜离子,得到铜离子吸附的漆酶胶束即为目标产物。
所述用于制备漆酶胶束的双亲性嵌段聚合物PMMA-b-PSS的分子量为10700-90600g/mol。
所述步骤1中合成嵌段共聚物PMMA-b-PSS时所用甲基丙烯酸甲酯和对苯乙烯磺酸钠的摩尔比为2:1-6。
一种高催化活性和稳定性的漆酶胶束的制备方法,它包括以下步骤:
1、通过RAFT聚合合成嵌段共聚物PMMA-b-PSS:
1)将10-30mg 4-氰基-4-乙基三硫代戊酸、1-6mg偶氮二异丁腈、2-4g苯乙烯磺酸钠,在圆底烧瓶中用2-6mL超纯水和2-4mL二甲基亚砜的混合溶剂溶解,反应体系密封后,通入高纯氮气30分钟以除去反应体系中的氧气,然后在17-88℃下油浴,搅拌反应2-16小时;
2)在上述反应液中加入0.62-3.22g甲基丙烯酸甲酯,反应体系密封后通入氮气8-48分钟,然后在26-82℃下油浴,搅拌反应6-16小时;
3)将上述步骤2)反应得到的混合物用乙醚沉淀2-5次,将得到的沉淀置于烘箱中烘干至恒重即为PMMA-b-PSS,储存备用;
2、嵌段共聚物PMMA-b-PSS对漆酶进行修饰:
1)将0.40-0.55g步骤A所得嵌段共聚物PMMA-b-PSS、8-10mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在50mL的圆底烧瓶中用15-25mL DMSO和12-23mL去离子水的混合溶剂溶解,室温下搅拌反应30-80分钟;
2)在步骤(1)反应结束后,继续向反应液中加入3-8.5g N-羟基琥珀酰亚胺,室温下反应11-33小时,然后用乙醚沉淀三次,得到的沉淀即为PMMA-b-PSS-NHS,干燥备用;
3)配制浓度为0.04-0.91M,pH=4.3-9.2和6.3-8.0的ABS缓冲液,然后用pH为6.3-8.0的ABS缓冲液配制浓度分别是0.55-3.12mg/mL的漆酶储备液和8-44mg/mL的PMMA-b-PSS-NHS储备液,并用等体积的DMSO将上述PMMA-b-PSS-NHS储备液稀释置于4℃下备用;
4)取9-14mL漆酶储备液加入等体积的DMSO稀释,取0.35-10.55mL PMMA-b-PSS-NHS漆酶储备液加入等体积的DMSO稀释,将配置得到的漆酶溶液逐滴加入到搅拌的PMMA-b-PSS-NHS溶液中,在4℃下搅拌反应1-9小时,然后用截留分子量为40000-100000的透析膜在1-10℃下用水和DMSO的等体积混合溶液透析1-3天,以此来除去过量的PMMA-b-PSS-NHS,得到聚合物与漆酶的结合体PMMA-b-PSS-laccase;
3、用铜离子修饰酶
1)用pH=4.3-9.2的ABS缓冲液配制浓度为8-20mM的硫酸铜溶液,然后将步骤2中得到的PMMA-b-PSS-laccase在配置的硫酸铜缓冲液中透析1-12小时;
2)然后利用截留分子量为500-1000的透析膜冰浴透析1-6小时,除去吸附不牢的铜离子,得到铜离子吸附的漆酶胶束即为目标产物。
在我们的研究中,我们通过RAFT聚合的方法,合成了PMMA-b-PSS嵌段聚合物。PMMA做为双亲性聚合物的憎水段,PSS作为亲水段。然后通过漆酶上赖氨酸的胺根与共聚物的羧基发生酰胺化反应,对漆酶成功进行了修饰,得到了聚合物-漆酶的结合体(PMMA-b-PSS-laccase)。结合体在水溶液中发生自组装,形成了内核是PMMA,外面是PSS和漆酶的胶束,同时PSS段通过静电吸附实现了铜离子的固定,得到了铜离子吸附的聚合物漆酶胶束。得到的纳米胶束展现了显著提高的稳定性和活性。实现了漆酶活性和稳定性的同时提高。
本发明具有以下优点:利用可逆加成断裂链转移(RAFT)聚合能够按照我们的需要来合成具有不同性质聚合物的特点,合成了能满足在水溶液中发生自组装的双亲性嵌段共聚物PMMA-b-PSS,并且通过静电吸附实现了铜离子的固定,从而避免了重金属铜离子对反应体系产生的二次污染。组装而成的漆酶胶束活性达到了原来的208%,稳定性也提高到了原来的622%,实现了催化活性和稳定性的同时显著提升。
附图说明
图1为本发明涉及的聚合物-漆酶结合体(PMMA-b-PSS-laccase)的合成过程示意图。
图2为本发明制备的嵌段共聚物PMMA-b-PSS的核磁表征图。
图3为漆酶、漆酶胶束以及吸附有铜离子的漆酶胶束的紫外活性测试,其中a为漆酶胶束,b为吸附铜离子的漆酶胶束,c为漆酶。
图4为以铜离子修饰后的漆酶以及漆酶胶束的相对活性测试,其中a为未经任何处理的漆酶,b-g分别为实施例1中制备的不同粒径大小的漆酶胶束。
图5为漆酶以及漆酶胶束的相对半衰期的测定,其中a为未经任何处理的漆酶,b-g分别为实施例1中制备的不同粒径大小的漆酶胶束。
具体实施方式
下面通过实例并结合附图对本发明作进一步说明。
实施例1
1、通过RAFT聚合合成嵌段共聚物PMMA-b-PSS(合成过程如图1所示):
(1)将13mg RAFT试剂(4-氰基-4-乙基三硫代戊酸)、2.8mg偶氮二异丁腈(AIBN)、2.58g苯乙烯磺酸钠,在圆底烧瓶中用3.5mL超纯水和3.5mL DMSO的混合溶剂溶解。反应体系密封后,通入高纯氮气30分钟以除去反应体系中的氧气,然后在75℃下油浴,搅拌反应10小时。
(2)加入1.0g聚甲基丙烯酸甲酯,反应体系密封后通入高纯氮气30分钟,然后在75℃下油浴,搅拌反应10小时。
(3)将反应得到的混合物用乙醚沉淀3次,得到的沉淀经过核磁表征(如图2所示),证明我们得到的聚合物为嵌段共聚物PMMA-b-PSS。将得到的聚合物置于烘箱中烘干至恒重,储存备用。
2、嵌段共聚物PMMA-b-PSS对漆酶进行修饰:
(1)将0.51g共聚物PMMA-b-PSS、9.6mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)在50mL的圆底烧瓶中用15mL DMSO和15mL去离子水的混合溶剂溶解,室温下搅拌反应60分钟。
(2)加入5.8g N-羟基琥珀酰亚胺(NHS),在室温下反应24小时,然后用乙醚沉淀三次,干燥备用。
(3)配制浓度为0.1M,pH=5和7.5的醋酸盐(ABS缓冲液),然后用pH为7.5的ABS缓冲液,配制1mg/mL的漆酶储备液和20mg/mL的PMMA-b-PSS-NHS储备液。
(4)将配置好的漆酶储备液和PMMA-b-PSS-NHS储备液置于4℃下备用。取10mL漆酶储备液加入等体积的DMSO溶剂稀释,取10mLPMMA-b-PSS-NHS储备液加入等体积的DMSO溶剂稀释,将配置得到的漆酶溶液逐滴加入到搅拌中PMMA-b-PSS-NHS溶液中,在4℃下搅拌反应5小时,然后用截留分子量为100000的透析膜在4℃下用水和DMSO等体积混合溶液透析2天,以此来除去过量的PMMA-b-PSS-NHS,得到修饰后的聚合物与漆酶的结合体(MMA-b-PSS-laccase)。
3、用铜离子修饰酶
(1)用pH=5的ABS缓冲液配制8mM的硫酸铜溶液,然后将步骤2中得到的MMA-b-PSS-laccase在4℃下,用硫酸铜缓冲液透析6小时。
(2)然后利用截留分子量为500的透析膜冰浴中透析2小时,除去吸附不牢的铜离子。得到铜离子吸附的漆酶胶束,并冷冻干燥储存以备用。
我们通过控制不同的甲基丙烯酸甲酯和对苯乙烯磺酸钠的配比,采用上述相似的过程,合成了不同大小尺寸的漆酶胶束,具体为漆酶胶束b-g。具体配比以及得到的嵌段聚合物的分子量如表1所示。
表1不同配比的甲基丙烯酸甲酯和对苯乙烯磺酸钠所得产物的性质
实施例2
本实施例以未经任何处理的漆酶a为对比例,以本发明实施例1中制备的b-g漆酶胶束试验样品,对制备的漆酶胶束的催化活性和稳定性进行测定,具体测试过程为:
(1)我们以2'-联氨-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)为反应基底,用以测定漆酶的催化活性。用pH为5的ABS缓冲液配制0.5mM的ABTS溶液,加入1mg/mL的漆酶储备液。在25℃下用紫外分光光度计测量420nm波长处的紫外吸收峰的变化,紫外结果如图3所示。
(2)以样品c为例,根据紫外的斜率计算出漆酶的活性。为了便于比较,我们将漆酶的活性设定为100%,因此而计算出其他胶束的相对活性。发现样品c胶束的活性与漆酶相比提高了108%。除了样品b的活性比漆酶本身低外,其他配比的胶束的活性都有了很大程度的提高(如图4),我们推测是因为样品b中PSS的含量相对于PMMA来说比较低,不能在水溶液中自组装形成胶束,因此活性比漆酶本身低。此外,通过对吸附铜离子的胶束和未吸附铜离子的胶束的活性比较,我们发现铜离子对漆酶活性的提高有着明显的作用。
(3)我们在通过测试漆酶以及漆酶胶束的半衰期,来表征他们的稳定性情况。为了便于比较,我们将漆酶的半衰期设定为100%,因此而计算出其他胶束的相对半衰期(如图5所示)。发现所有的样品(包括样品b)的稳定性都有了很大程度的提高,这表明通过聚合物对漆酶的修饰,对漆酶起了一定的保护作用,使漆酶的稳定性有了大幅度的提高。除此之外,我们发现铜离子的吸附与否不会对漆酶的稳定性有明显的影响。

Claims (4)

1.一种高催化活性和稳定性的漆酶胶束,其特征在于,它是采用下述方法制备得到的:
1、通过RAFT聚合合成嵌段共聚物PMMA-b-PSS:
1.1 将10-30mg 4-氰基-4-乙基三硫代戊酸、1-6mg 偶氮二异丁腈、2-4g对苯乙烯磺酸钠,在圆底烧瓶中用2-6mL超纯水和2-4mL二甲基亚砜的混合溶剂溶解,反应体系密封后,通入高纯氮气30分钟以除去反应体系中的氧气,然后在17-88℃下油浴,搅拌反应2-16小时;
1.2 在上述反应液中加入0.62-3.22g甲基丙烯酸甲酯,反应体系密封后通入氮气8-48分钟,然后在26-82℃下油浴,搅拌反应6-16小时;
1.3 将上述步骤1.2反应得到的混合物用乙醚沉淀2-5次,将得到的沉淀置于烘箱中烘干至恒重即为PMMA-b-PSS,储存备用;
2、嵌段共聚物PMMA-b-PSS对漆酶进行修饰:
2.1 将0.40-0.55g步骤1所得嵌段共聚物PMMA-b-PSS、8-10mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在50mL的圆底烧瓶中用15-25mL DMSO和12-23mL去离子水的混合溶剂溶解,室温下搅拌反应30-80分钟;
2.2 在步骤2.1反应结束后,继续向反应液中加入3-8.5g N-羟基琥珀酰亚胺,室温下反应11-33小时,然后用乙醚沉淀三次,得到的沉淀即为PMMA-b-PSS-NHS,干燥备用;
2.3 配制浓度为0.04-0.91M,pH=4.3-9.2和6.3-8.0的ABS缓冲液,然后用pH为6.3-8.0的ABS缓冲液配制浓度分别是0.55-3.12mg/mL的漆酶储备液和8-44mg/mL的PMMA-b-PSS-NHS 储备液,并用等体积的DMSO将上述PMMA-b-PSS-NHS储备液稀释置于4℃下备用;
2.4 取9-14mL漆酶储备液加入等体积的DMSO稀释,取0.35-10.55mL PMMA-b-PSS-NHS储备液加入等体积的DMSO稀释,将配置得到的漆酶溶液逐滴加入到搅拌的PMMA-b-PSS-NHS溶液中,在4℃下搅拌反应1-9小时,然后用截留分子量为40000-100000的透析膜在1-10℃下用水和DMSO的等体积混合溶液透析1-3天,以此来除去过量的PMMA-b-PSS-NHS,得到聚合物与漆酶的结合体PMMA-b-PSS-laccase;
3、用铜离子修饰酶
3.1 用pH=4.3-9.2的ABS缓冲液配制浓度为8-20 mM的硫酸铜溶液,然后将步骤2中得到的PMMA-b-PSS-laccase 在配置的硫酸铜缓冲液中透析1-12小时;
3.2 然后利用截留分子量为500-1000的透析膜冰浴透析1-6小时,除去吸附不牢的铜离子,得到铜离子吸附的漆酶胶束即为目标产物。
2.根据权利要求1所述的漆酶胶束,其特征在于,所述用于制备漆酶胶束的双亲性嵌段聚合物PMMA-b-PSS的分子量为10700-90600 g/mol。
3.根据权利要求1所述的漆酶胶束,其特征在于,所述步骤1中合成嵌段共聚物PMMA-b-PSS时所用甲基丙烯酸甲酯和对苯乙烯磺酸钠的摩尔比为2:1-6。
4.一种高催化活性和稳定性的漆酶胶束的制备方法,其特征在于,它包括以下步骤:
1、通过RAFT聚合合成嵌段共聚物PMMA-b-PSS:
1.1 将10-30mg 4-氰基-4-乙基三硫代戊酸、1-6mg 偶氮二异丁腈、2-4g对苯乙烯磺酸钠,在圆底烧瓶中用2-6mL超纯水和2-4mL二甲基亚砜的混合溶剂溶解,反应体系密封后,通入高纯氮气30分钟以除去反应体系中的氧气,然后在17-88℃下油浴,搅拌反应2-16小时;
1.2 在上述反应液中加入0.62-3.22g甲基丙烯酸甲酯,反应体系密封后通入氮气8-48分钟,然后在26-82℃下油浴,搅拌反应6-16小时;
1.3 将上述步骤1.2反应得到的混合物用乙醚沉淀2-5次,将得到的沉淀置于烘箱中烘干至恒重即为PMMA-b-PSS,储存备用;
2、嵌段共聚物PMMA-b-PSS对漆酶进行修饰:
2.1 将0.40-0.55g步骤1 所得嵌段共聚物PMMA-b-PSS、8-10mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,在50mL的圆底烧瓶中用15-25mL DMSO和12-23mL去离子水的混合溶剂溶解,室温下搅拌反应30-80分钟;
2.2 在步骤2.1反应结束后,继续向反应液中加入3-8.5g N-羟基琥珀酰亚胺,室温下反应11-33小时,然后用乙醚沉淀三次,得到的沉淀即为PMMA-b-PSS-NHS,干燥备用;
2.3 配制浓度为0.04-0.91M,pH=4.3-9.2和6.3-8.0的ABS缓冲液,然后用pH为6.3-8.0的ABS缓冲液配制浓度分别是0.55-3.12mg/mL的漆酶储备液和8-44mg/mL的PMMA-b-PSS-NHS 储备液,并用等体积的DMSO将上述PMMA-b-PSS-NHS储备液稀释置于4℃下备用;
2.4 取9-14mL漆酶储备液加入等体积的DMSO稀释,取0.35-10.55mL PMMA-b-PSS-NHS储备液加入等体积的DMSO稀释,将配置得到的漆酶溶液逐滴加入到搅拌的PMMA-b-PSS-NHS溶液中,在4℃下搅拌反应1-9小时,然后用截留分子量为40000-100000的透析膜在1-10℃下用水和DMSO的等体积混合溶液透析1-3天,以此来除去过量的PMMA-b-PSS-NHS,得到聚合物与漆酶的结合体PMMA-b-PSS-laccase;
3、用铜离子修饰酶
3.1 用pH=4.3-9.2的ABS缓冲液配制浓度为8-20 mM的硫酸铜溶液,然后将步骤2中得到的PMMA-b-PSS-laccase 在配置的硫酸铜缓冲液中透析1-12小时;
3.2 然后利用截留分子量为500-1000的透析膜冰浴透析1-6小时,除去吸附不牢的铜离子,得到铜离子吸附的漆酶胶束即为目标产物。
CN201710037222.4A 2017-01-19 2017-01-19 一种高催化活性和稳定性的漆酶胶束及其制备方法 Active CN106669823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710037222.4A CN106669823B (zh) 2017-01-19 2017-01-19 一种高催化活性和稳定性的漆酶胶束及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710037222.4A CN106669823B (zh) 2017-01-19 2017-01-19 一种高催化活性和稳定性的漆酶胶束及其制备方法

Publications (2)

Publication Number Publication Date
CN106669823A CN106669823A (zh) 2017-05-17
CN106669823B true CN106669823B (zh) 2019-05-21

Family

ID=58860643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710037222.4A Active CN106669823B (zh) 2017-01-19 2017-01-19 一种高催化活性和稳定性的漆酶胶束及其制备方法

Country Status (1)

Country Link
CN (1) CN106669823B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876688B (zh) * 2021-01-20 2022-10-28 浙江理工大学 适于串联催化的纳米胶束的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2420344A (en) * 2004-10-08 2006-05-24 Univ Cambridge Tech Use of ionic liquids
CN102504150B (zh) * 2011-11-23 2014-04-30 江南大学 一种双亲性PVAc-b-PNVA嵌段共聚物的RAFT制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2420344A (en) * 2004-10-08 2006-05-24 Univ Cambridge Tech Use of ionic liquids
CN102504150B (zh) * 2011-11-23 2014-04-30 江南大学 一种双亲性PVAc-b-PNVA嵌段共聚物的RAFT制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Enhancing Enzyme Stability by Construction of Polymer-Enzyme Conjugate Micelles for Decontamination of Organophosphate Agents";Nisaraporn Suthiwangcharoen, et al.;《Biomacromolecules》;20140224;第15卷;第1142-1152页
"Simultaneous Enhancement of Bioactivity and Stability of Laccase by Cu2+/PAA/PPEGA Matrix for Efficient Biosensing and Recyclable Decontamination of Pyrocatechol";Tao Chen, et al.;《Anal. Chem.》;20161228;第89卷;第2065-2072页,Supporting Information

Also Published As

Publication number Publication date
CN106669823A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN108676178B (zh) 改性多糖水凝胶的制备方法及制备的改性多糖水凝胶
Fodor et al. Laccase-catalyzed controlled radical polymerization of N-vinylimidazole
CN107746841B (zh) 一种两性离子磁性复合水凝胶固定化酶载体及制备方法
EP2069412A1 (en) Mixed charge copolymers and hydrogels
CN104549085B (zh) 一种抗氧化酶纳米胶囊及其制备方法与应用
JPS63152667A (ja) 安定性の優れた吸水性樹脂
US8092705B2 (en) Simple method for introducing magnetic particles into a polymer
Qu et al. Hemin-micelles immobilized in alginate hydrogels as artificial enzymes with peroxidase-like activity and substrate selectivity
Fan et al. GOX-hemin nanogels with enhanced cascade activity for sensitive one-step glucose detection
Lopez et al. Application of molecularly imprinted polymer nanoparticles for degradation of the bacterial autoinducer N-hexanoyl homoserine lactone
CN106669823B (zh) 一种高催化活性和稳定性的漆酶胶束及其制备方法
Yu et al. Polymers with acyl-protected perthiol chain termini as convenient building blocks for doubly responsive H 2 S-donating nanoparticles
Luo et al. Manipulation of the bioactivity of glucose oxidase via raft‐controlled surface modification
Jimenez et al. Fundamental insights into free-radical polymerization in the presence of catechols and catechol-functionalized monomers
JP2019073673A (ja) 自己修復性ゲル
Forg et al. Copolymerization kinetics of dopamine methacrylamide during PNIPAM microgel synthesis for increased adhesive properties
Singh et al. Biopolymeric receptor for peptide recognition by molecular imprinting approach—Synthesis, characterization and application
Jiang et al. Fabrication of enzyme reactor utilizing magnetic porous polymer membrane for screening D-Amino acid oxidase inhibitors
Piacham et al. A polymer supported manganese catalyst useful as a superoxide dismutase mimic
Dollendorf et al. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides
Sahiner et al. Superporous cryogel-M (Cu, Ni, and Co) composites in catalytic reduction of toxic phenolic compounds and dyes from wastewaters
Lele et al. Molecularly imprinted polymer mimics of chymotrypsin: 2. Functional monomers and hydrolytic activity
JP5044777B2 (ja) 細胞固定化基材被覆膜用材料
Ghéczy et al. Performance of a Flow‐Through Enzyme Reactor Prepared from a Silica Monolith and an α‐Poly (D‐Lysine)‐Enzyme Conjugate
JPH01210463A (ja) 安定性の優れた吸水性樹脂組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211116

Address after: 276000 room 212, block a, Linyi Applied Science City, high tech Industrial Development Zone, Linyi City, Shandong Province

Patentee after: Shandong borunde Agricultural Technology Co., Ltd

Address before: 276000 6th floor, Zhongxing business enterprise development center, Pingshang Town, Lingang Economic Development Zone, Linyi City, Shandong Province

Patentee before: Linyi bolite New Material Co., Ltd

TR01 Transfer of patent right