CN106669640B - 一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法 - Google Patents

一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法 Download PDF

Info

Publication number
CN106669640B
CN106669640B CN201611009392.3A CN201611009392A CN106669640B CN 106669640 B CN106669640 B CN 106669640B CN 201611009392 A CN201611009392 A CN 201611009392A CN 106669640 B CN106669640 B CN 106669640B
Authority
CN
China
Prior art keywords
bentonite
polyaniline
adsorbing material
modified bentonite
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611009392.3A
Other languages
English (en)
Other versions
CN106669640A (zh
Inventor
彭龙贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Mengtelaite Environmental Protection Technology Co.,Ltd.
Original Assignee
Shaanxi Longbinlide New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Longbinlide New Material Technology Co Ltd filed Critical Shaanxi Longbinlide New Material Technology Co Ltd
Priority to CN201611009392.3A priority Critical patent/CN106669640B/zh
Publication of CN106669640A publication Critical patent/CN106669640A/zh
Application granted granted Critical
Publication of CN106669640B publication Critical patent/CN106669640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种聚苯胺修饰膨润土纳米微球吸附材料,该材料由下述重量百分比的原料制备而成:苯胺单体插层有机化膨润土10—20%,蒸馏水60—80%,氢氧化钠9—15%,引发剂0.02%—0.06%,乳化剂0.3%—0.5%。本发明还提供了一种制造聚苯胺修饰膨润土纳米微球吸附材料的方法,通过特定的配方设计和工艺参数选择,制备合成出一种成本低廉、有良好的兼容性、环境友好、易于固液分离和纳米尺寸效应的聚苯胺修饰膨润土纳米微球吸附材料,该吸附材料具有较大的比表面积、较小的纳米尺度和具有协同吸附污水中金属离子与有机物双污染成分的功能特性。

Description

一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法
技术领域
本发明涉及一种膨润土吸附材料及其制备工艺,特别是一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法。
背景技术
吸附是脱除污染水体中可溶性重金属离子和有机物的通用方法,该法是通过吸附材料来实现。当前,常用的无机吸附材料主要有活性炭和粘土矿。
活性炭材料因其具有良好的孔态分布和巨大的比表面积,已被广泛应用于特种污水或含有难于用一般方法处理的有毒有机物的污水处理中,但改吸附材料在使用中存在两种局限性:一是成本过高,即升高了水处理污染的成本;二是其对水体中重金属离子的除效率较低。这两个缺点限制了活性炭材料的在污水处理领域的应用与推广。
粘土类矿物贮量大、低廉环保并兼具优良的吸附性能而备受关注,已成为近年来研究与应用的优选材料之一,特别是该类材料的具有较多的改性功能,可根据不同的吸附处理对象进行针对性改性,使其具有更加优良的吸附性能。主要的粘土矿物有膨润土、高岭石、沸石和硅藻土等。其中研究最广、最为大家青睐且有望市场化应的当属膨润土矿物材料。
如中国专利ZL200410018109所述的一种有机-无机符合膨润土废水处理材料的制备方法。在膨润土层间与表面形成羟基金属,有效的吸附了磷酸根与有机物,并提高了固液分离能力。
如美国专利US6093241所述的一种从废水中除油的颗粒状有机粘土混合物,配方涉及海泡石、绿坡石、四元化合物及水泥胶黏剂等,该吸附材料具有高温稳定性的特质。
膨润土矿物材料经提纯与改性后是一种具有高活性和高吸附性能的优质吸附材料,其在污水处理工业中具有广泛的应用价值和应用前景。但是,该材料在改性研究和应用推广中主要存在如下问题:1)固-液分离困难。由相关研究可知,膨润土的颗粒粒径越小,比表面积和表面张力越大,其水处理吸附效率越高;但是颗粒粒径越小,颗粒在液体中的沉降速率越慢,其颗粒的相对溶胀性越大(10%左右),两者均加大了沉降、浓缩和脱水等工艺的成本。现在解决该问题的办法主要有两种,一是向固-液体系中加入絮凝剂;二是提高过滤压力,前者引入了二次污染物,后者提高了投资成本。2)深加工研究不足。当前,大多研究者集中于表面改性剂对膨润土处理不同污水时的吸附效果及行业等方面的研究,所用的膨润土原料均为传统的粉状颗粒,没有结合原料深加工与膨润土改性两者相关性的研究。3)引入二次污染。由于膨润土吸附材料吸水膨胀后,其呈絮凝态,材料强度极低,在搅拌和脱失工艺中将会破裂,裂化的膨润土粒度下,沉降极其缓慢,在水处理中,不得不采用絮凝剂去除这些颗粒;无论是有机絮凝剂,还是无机絮凝剂均会溶解在水体当中,这样,造成水处理成本的上升,并引入了二次污染。4)吸附兼容性差。吸附材料处理水体中的污染物大致可分为两类,即金属离子和有害有机物。金属离子和有害有机物各自种类繁多,具相关报道,采用膨润土改性吸附金属离子或有害有机物时,有一种改性及改性的膨润土仅能有效吸附水中的1~2种有害物质,所以,针对受多种有害物质污染的水体,将使用多种被改性后的膨润土,这样,造成了水处理工艺的复杂化,提高了成本;这也是膨润土一直未曾取代活性炭用于水体治理的原因之一。
发明内容
针对膨润土吸附材料在污水吸附研究与应用中存在的科技问题,本发明的目的是制备一种污水吸附材料,本发明通过特定的配方设计和工艺参数选择,制备合成出一种成本低廉、有良好的兼容性、环境友好、易于固液分离和纳米尺寸效应的聚苯胺修饰膨润土纳米微球吸附材料,该吸附材料具有较大的比表面积、较小的纳米尺度和具有协同吸附污水中金属离子与有机物双污染成分的功能特性。
本发明的目的是通过下述技术方案来实现的。
一种聚苯胺修饰膨润土纳米微球吸附材料,该材料由下述重量百分比的原料制备而成:
苯胺单体插层有机化膨润土10—20%;蒸馏水60—80%;引发剂0.02%—0.06%;氢氧化钠9—15%;乳化剂0.3%—0.5%。
进一步的,所述材料中:
所述引发剂为三氯化铁。
所述乳化剂为Span60。
进一步的,所述苯胺单体插层有机化膨润土由下述重量百分比的原料制备而成:
膨润土10—20%;苯胺3%—8%;蒸馏水60—75%;氢氧化钠 9—15%;表面活性剂0.01%—0.06%。
进一步的,所述材料中:
所述表面活性剂为十六烷基三甲基溴化铵。
相应地,本发明还给出了一种聚苯胺修饰膨润土纳米微球吸附材料的制备方法,包括下述两个步骤:
第一步、膨润土的有机化及苯胺单体插层制备:
选取重量百分比为10—20%的膨润土,60—75%的蒸馏水,9—15%的氢氧化钠,0.01—0.06%的表面活性剂,于容器中混合;在40—50℃水浴中热搅拌1—2h,使膨润土有机化制得有机化膨润土,然后继续滴加3—8%的苯胺,于容器中混合;在60—70℃水浴中热搅拌2—4h,制备得苯胺单体插层有机化膨润土。
第二步、聚苯胺修饰膨润土纳米微球吸附材料的制备;
选取重量百分比为10—20%的步骤一制取的苯胺单体插层有机化膨润土,60—80%的蒸馏水,0.02—0.06%的引发剂,0.3—0.5%的乳化剂, 9—15%的氢氧化钠,于容器中混合;在70—80℃水浴中热搅拌2—4h,然后离心洗涤、真空抽提后,制备得聚苯胺修饰膨润土纳米微球吸附材料。
本发明相对于现有的膨润土复合材料的制备工艺、配方设计和应用推广等具有下述有益效果:
1)、协同兼容吸附
聚苯胺修饰膨润土纳米微球吸附材料充分利用了膨润土的亲水性能和聚苯胺的亲油性能,使其同时吸收水中的有机物和金属离子,达到协同兼容吸附的效果。
2)、纳米化设计
采用“乳液聚合发”制备的聚苯胺修饰膨润土纳米微球吸附材料,微球中位直径≤80nm;球内包覆直径≤10nm的多颗膨润土纳米颗粒。
3)、吸附剂快速分离
由于膨润土的吸水膨胀性,使其在污水处理后将其从母液中分离出来非常困难,该固-液分离科技难题是一直以来阻碍膨润土及其改性材料推广使用的主要因素。本发明采用苯胺包覆膨润土制备核壳结构设计的材料制备手段,使膨润土在吸附过程中,受到外壳聚苯胺的限制,不发生漂移,不会封堵无数颗聚苯胺修饰膨润土纳米微球之间的液体流经通道,从而提高了过滤效率。
4)、较大的吸附比表面积
通过工艺设计,使得聚苯胺修饰膨润土纳米微球吸附材料具有巨大的比表面积,比表面积来源于两方面,一是聚苯胺包覆层微多孔结构,其平均孔径≤2nm;二是聚苯胺包覆层内部存在大量的平均粒径≤10nm的膨润土纳米颗粒;这使得聚苯胺修饰膨润土纳米微球吸附材料具有巨大的比表面积。
附图说明
图1是本发明膨润土有机化及苯胺单体插层工艺流程图;
图2是本发明聚苯胺修饰膨润土纳米微球的制备流程图;
图3是本发明聚苯胺修饰膨润土纳米微球的扫描投射显微镜(TEM)图。
具体实施方式
下面结合附图及实施例对本发明的聚苯胺修饰膨润土纳米微球吸附材料及其制备方法做出详细说明。
第一步、本发明膨润土有机化及苯胺单体插层制备。
1)原料选取
膨润土(工业品),表面活性剂十六烷基三甲基溴化铵(分析纯),氢氧化钠(分析纯),苯胺(分析纯),蒸馏水(分析纯)。
2)制备工艺
选取一定量的膨润土,加入蒸馏水,搅拌的悬浮液,在悬浮液中添加表面活性剂十六烷基三甲基溴化铵,于容器中混合;在一定温度的水浴中热搅拌一段时间,使膨润土进行充分的有机化。然后,继续滴加一定浓度的苯胺溶液,于容器中混合,继续在水浴中加热搅拌,制备得苯胺单体插层有机化膨润土。苯胺单体插层有机化膨润土制备工艺如附图1所示。
3)制备原理
制备苯胺单体插层有机化膨润土主要涉及阳离子离子交换机理和相似相容原理等等。
十六烷基三甲基溴化铵在水溶液中将会能电离出NH4 +,根据膨润土的阳离子交换性,由于NH4 +离子半径小于Na+、Mg2+、K+、Ca2+等离子的半径,因此体积小的NH4 +离子置换出膨润土层间的Na+、Mg2+、K+、Ca2+等离子后,孔径增大,并削弱了原来层间的键力,层状晶格断开,蒙脱石内部随着八面体中阳离子的去除形成了暴露表面,它们之间以氢键连接,使得被阳离子交换之后的有机膨润土具有较强的化学活性、吸附性和催化性。
通过离子交换机理,有机膨润土的层间被十六烷基三甲基溴化铵填充,由于十六烷基三甲基溴化铵的有机特性,其具有亲油疏水的功能,根据相似相容原理,十六烷基三甲基溴化铵对有机小分子有相容性,使得溶液中的苯胺单体能被插层到膨润土层间,实现了苯胺对膨润土的层间插层。
膨润土的有机化及苯胺单体插层可以通过XRD、TG、DSC、TEM和SEM 等测试仪器设备进行表征与效果评价。
第二步、本发明聚苯胺修饰膨润土纳米微球的制备
1)原料选取
苯胺单体插层有机化膨润土(本发明所述第一步制备的材料);引发剂三氯化铁(分析纯),乳化剂Span60(分析纯),蒸馏水(分析纯),氢氧化钠(分析纯)。
2)制备工艺
选取一定量按本发明第一步所述的苯胺单体插层有机化膨润土,加入蒸馏水,加入乳化剂Span60,加入氢氧化钠,制备成悬浮状水溶液,搅拌加热一段时间后,滴加引发剂三氯化铁,于容器中充分混合;升温搅拌,使苯胺膨润土表面发生聚合反应并成微球态分布;然后离心洗涤、真空抽提后,制备得聚苯胺修饰膨润土纳米微球吸附材料。聚苯胺修饰膨润土纳米微球吸附材料工艺流程如附图2所示。
3)制备原理
采用无水三氯化铁构成引发体系,制备聚苯胺修饰膨润土纳米微球吸附材料时,首先是氯化铁引发生成正氮离子活性中心:
Figure BDA0001153803080000071
该活性中心将进攻下一个苯胺分子的对位氢,端头的伯胺被氧化成正氮结构,通过亲电取代实现了聚苯胺的链增长:
Figure BDA0001153803080000081
最后合成聚苯胺产物分子的结构是:
其中n代表链节数,而y和1-y分别代表一个平均链节中苯式和醌式两种结构所占百分比。当y=0时,为完全氧化态全醒式结构,由醌二亚胺构成了聚苯胺的分子整链;当y=1时,为完全还原态全苯式结构,由苯二胺构成了聚苯胺的分子整链;而当y=0.5时,为中间氧化苯醌交替结构。
下面通过具体实施例来进一步说明本发明。
实施例1
第一步、膨润土的有机化及苯胺单体插层制备:
选取10%膨润土,加入75%蒸馏水,0.02%的表面活性剂十六烷基三甲基溴化铵,11.7%的氢氧化钠,于容器中混合;40℃水浴加热2h,进行浸渍;然后加入3.28%的苯胺,继续水浴加热至60℃,搅拌4h,使苯胺插层入膨润土层间;制得苯胺单体插层有机化膨润土。
第二步、聚苯胺修饰膨润土纳米微球吸附材料的制备:
选取本发明第一步制取的苯胺单体插层有机化膨润土10%,加入80%的蒸馏水,0.3%的乳化剂Span60,9.68%的氢氧化钠,于容器中混合制备成悬浮状水溶液,搅拌加热一段时间后,滴加引发剂三氯化铁0.02%,升温水浴加热至70℃,搅拌4h,使苯胺膨润土表面发生聚合反应并成微球态分布;然后离心洗涤、真空抽提后,制得聚苯胺修饰膨润土纳米微球吸附材料。
实施例2
第一步、膨润土的有机化及苯胺单体插层制备:
选取14.5%膨润土,加入65%蒸馏水,0.04%的表面活性剂十六烷基三甲基溴化铵,14.5%的氢氧化钠,于容器中混合;42℃水浴加热1.5h,进行浸渍;然后加入5.96%的苯胺,继续水浴加热至62℃,搅拌3.2h,使苯胺插层入膨润土层间;制得苯胺单体插层有机化膨润土。
第二步、聚苯胺修饰膨润土纳米微球吸附材料的制备:
选取本发明第一步制取的苯胺单体插层有机化膨润土16%,加入72%的蒸馏水,0.4%的乳化剂Span60,11.56%的氢氧化钠,于容器中混合制备成悬浮状水溶液,搅拌加热一段时间后,滴加引发剂三氯化铁0.06%,升温水浴加热至76℃,搅拌3h,使苯胺膨润土表面发生聚合反应并成微球态分布;然后离心洗涤、真空抽提后,制得聚苯胺修饰膨润土纳米微球吸附材料。
实施例3
第一步、膨润土的有机化及苯胺单体插层制备:
选取20%膨润土,加入60%蒸馏水,0.06%的表面活性剂十六烷基三甲基溴化铵,12.4%的氢氧化钠,于容器中混合;50℃水浴加热1h,进行浸渍;然后加入7.54%的苯胺,继续水浴加热至70℃,搅拌2h,使苯胺插层入膨润土层间;制得苯胺单体插层有机化膨润土。
第二步、聚苯胺修饰膨润土纳米微球吸附材料的制备:
选取本发明第一步制取的苯胺单体插层有机化膨润土10%,加入80%的蒸馏水,0.3%的乳化剂Span60,9.68%的氢氧化钠,于容器中混合制备成悬浮状水溶液,搅拌加热一段时间后,滴加引发剂三氯化铁0.02%,升温水浴加热至70℃,搅拌4h,使苯胺膨润土表面发生聚合反应并成微球态分布;然后离心洗涤、真空抽提后,制得聚苯胺修饰膨润土纳米微球吸附材料。
请参阅图3,是本发明聚苯胺修饰膨润土纳米微球的扫描投射显微镜 (TEM)图,通过工艺设计,使得聚苯胺修饰膨润土纳米微球吸附材料具有巨大的比表面积,比表面积来源于两方面,一是聚苯胺包覆层微多孔结构,其平均孔径≤2nm;二是聚苯胺包覆层内部存在大量的平均粒径≤10nm的膨润土纳米颗粒;这使得聚苯胺修饰膨润土纳米微球吸附材料具有巨大的比表面积。

Claims (3)

1.一种聚苯胺修饰膨润土纳米微球吸附材料,其特征在于,该材料由下述重量百分比的原料制备而成:
Figure FDA0002161768750000011
所述苯胺单体插层有机化膨润土由下述重量百分比的原料制备而成:
所述膨润土的主要成分为蒙脱石;
所述表面活性剂为十六烷基三甲基溴化铵;
所述的聚苯胺修饰膨润土纳米微球吸附材料的制备方法包括下述两个步骤:
第一步、膨润土的有机化及苯胺单体插层制备:
选取重量百分比为10—20%的膨润土,60—75%的蒸馏水,9—15%的氢氧化钠,0.01%—0.06% 的表面活性剂,于容器中混合;在40—50℃水浴中热搅拌1—2h,使膨润土有机化制得有机化膨润土,然后继续滴加3—8%的苯胺,于容器中混合;在60—70℃水浴中热搅拌2—4h,制备得苯胺单体插层有机化膨润土;
第二步、聚苯胺修饰膨润土纳米微球吸附材料的制备;
选取重量百分比为10—20%的步骤一制取的苯胺单体插层有机化膨润土,60—80%的蒸馏水,0.02%—0.06%的引发剂,0.3%—0.5%的乳化剂,9—15%的氢氧化钠,于容器中混合;在70—80℃水浴中热搅拌2—4h,然后离心洗涤、真空抽提后,制备得聚苯胺修饰膨润土纳米微球吸附材料。
2.根据权利要求1所述的聚苯胺修饰膨润土纳米微球吸附材料,其特征在于,所述引发剂为三氯化铁。
3.根据权利要求1所述的聚苯胺修饰膨润土纳米微球吸附材料,其特征在于,所述乳化剂为Span60。
CN201611009392.3A 2016-11-16 2016-11-16 一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法 Active CN106669640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611009392.3A CN106669640B (zh) 2016-11-16 2016-11-16 一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611009392.3A CN106669640B (zh) 2016-11-16 2016-11-16 一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106669640A CN106669640A (zh) 2017-05-17
CN106669640B true CN106669640B (zh) 2020-01-21

Family

ID=58839455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611009392.3A Active CN106669640B (zh) 2016-11-16 2016-11-16 一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106669640B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109021546A (zh) * 2018-07-20 2018-12-18 滁州市玉林聚氨酯有限公司 一种用于制作聚氨酯轮胎的抗静电高分子材料制备方法
CN109012642A (zh) * 2018-09-08 2018-12-18 佛山市森昂生物科技有限公司 一种硅藻土基复合吸附材料的制备方法
CN109248657A (zh) * 2018-09-26 2019-01-22 芜湖市鹏磊新材料有限公司 一种膨润土原矿制备高吸附性能膨润土的加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634276A (zh) * 2012-04-25 2012-08-15 厦门大学 一种聚苯胺重防腐涂料及其制备方法
CN102824898A (zh) * 2012-09-18 2012-12-19 西安科技大学 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
CN102886250A (zh) * 2012-10-23 2013-01-23 安徽工业大学 具有片状结构的聚苯胺/蒙脱土复合吸附剂的制备方法
CN103285839A (zh) * 2013-07-02 2013-09-11 河北工业大学 钙基膨润土-AA-(AA-Na)复合的粒状镉离子吸附剂的制备方法
CN104741096A (zh) * 2015-03-16 2015-07-01 中国科学院兰州化学物理研究所 一种磁性黏土矿物/聚苯胺复合吸附材料的制备方法
CN105175921A (zh) * 2015-10-21 2015-12-23 山东科技大学 一种蒙脱土/聚苯胺纳米阻燃聚苯乙烯复合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634276A (zh) * 2012-04-25 2012-08-15 厦门大学 一种聚苯胺重防腐涂料及其制备方法
CN102824898A (zh) * 2012-09-18 2012-12-19 西安科技大学 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
CN102886250A (zh) * 2012-10-23 2013-01-23 安徽工业大学 具有片状结构的聚苯胺/蒙脱土复合吸附剂的制备方法
CN103285839A (zh) * 2013-07-02 2013-09-11 河北工业大学 钙基膨润土-AA-(AA-Na)复合的粒状镉离子吸附剂的制备方法
CN104741096A (zh) * 2015-03-16 2015-07-01 中国科学院兰州化学物理研究所 一种磁性黏土矿物/聚苯胺复合吸附材料的制备方法
CN105175921A (zh) * 2015-10-21 2015-12-23 山东科技大学 一种蒙脱土/聚苯胺纳米阻燃聚苯乙烯复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
剥离型聚苯胺/蒙脱石介孔材料制备与结构表征;杨晓凤等;《硅酸盐通报》;20150930;第34卷(第9期);第2449页第2.1、2.2节 *

Also Published As

Publication number Publication date
CN106669640A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
Zhang et al. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites
Siyal et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes
Ge et al. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu (II) in water: Batch and column studies
Huang et al. Modified bentonite adsorption of organic pollutants of dye wastewater
Wang et al. Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater
Tang et al. Tannic acid functionalized graphene hydrogel for organic dye adsorption
Nechita Applications of chitosan in wastewater treatment
CN103708631B (zh) 一种多功能污水处理剂及其制备方法
CN103708593B (zh) 一种印染污水处理剂及其制备方法
CN103641245B (zh) 一种造纸废水处理剂及其制备方法
Simate et al. The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes
Dalida et al. Adsorptive removal of Cu (II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads
Wang et al. Palygorskite nanomaterials: structure, properties, and functional applications
Ghorai et al. Rapid adsorptive removal of toxic Pb2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica
Dan et al. Tailored synthesis of SBA-15 rods using different types of acids and its application in adsorption of uranium
Grisdanurak et al. The study of copper adsorption from aqueous solution using crosslinked chitosan immobilized on bentonite
CN106669640B (zh) 一种聚苯胺修饰膨润土纳米微球吸附材料及其制备方法
WO2013123780A1 (zh) 一种深度处理焦化废水生化尾水的方法
CN101041478A (zh) 一种有机聚合物-硅藻土复合混凝剂的制备方法
Zou et al. Preparation and application of CPC/Keggin-Al30 modified montmorillonite composite for Cr (VI) removal
Wang et al. Application of polypyrrole-based adsorbents in the removal of fluoride: a review
Yang et al. Synthesis of calcium–aluminum-layered double hydroxide and a polypyrrole decorated product for efficient removal of high concentrations of aqueous hexavalent chromium
Qiu et al. Designing a 3D-MoS2 nanocomposite based on the Donnan membrane effect for superselective Pb (II) removal from water
Verma et al. Graphene-based composites for phosphate removal
Sharma et al. Preparation of cellulose acetate-Sn (IV) iodophosphate nanocomposite for efficient and selective removal of Hg2+ and Mn2+ ions from aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191225

Address after: Room 10401-294, unit 1, building 2, Liren Science Park, Gaoxin 6 road, Zhangba Street office, hi tech Zone, Xi'an City, Shaanxi Province

Applicant after: Shaanxi longbinlide New Material Technology Co.,Ltd.

Address before: 710054 No. 58, middle section, Yanta Road, Shaanxi, Xi'an

Applicant before: Xi'an University of Science and Technology

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240417

Address after: 710000, Third Floor, Building 17, Qinchuangyuan (Jinghe) Intelligent Manufacturing Innovation Industrial Park Project (Phase I), Jinghe New City, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi Mengtelaite Environmental Protection Technology Co.,Ltd.

Country or region after: China

Address before: Room 10401-294, unit 1, building 2, Liren Science Park, Gaoxin 6 road, Zhangba Street office, Gaoxin District, Xi'an City, Shaanxi Province, 710075

Patentee before: Shaanxi longbinlide New Material Technology Co.,Ltd.

Country or region before: China