CN106661632B - Rna扩增方法 - Google Patents

Rna扩增方法 Download PDF

Info

Publication number
CN106661632B
CN106661632B CN201580044409.6A CN201580044409A CN106661632B CN 106661632 B CN106661632 B CN 106661632B CN 201580044409 A CN201580044409 A CN 201580044409A CN 106661632 B CN106661632 B CN 106661632B
Authority
CN
China
Prior art keywords
rna
molecule
dna
target molecule
rna target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201580044409.6A
Other languages
English (en)
Other versions
CN106661632A (zh
Inventor
郑旻
龚小松
王焱
A·M·麦考伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Rad Laboratories Inc
Original Assignee
Bio Rad Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Rad Laboratories Inc filed Critical Bio Rad Laboratories Inc
Publication of CN106661632A publication Critical patent/CN106661632A/zh
Application granted granted Critical
Publication of CN106661632B publication Critical patent/CN106661632B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了检测并扩增短RNA的方法。

Description

RNA扩增方法
相关申请的交叉引用
本申请要求2014年8月19日提交的美国临时专利申请号62/039,094的优先权,其通过引用纳入本文用于所有目的。
发明背景
细胞中出现多种类型的非编码短RNA。这类RNA的示例包括但不限于miRNA、snoRNA、piRNA、或lncRNA。
发明内容
提供了扩增短RNA分子的方法。在一些实施方式中,该方法包括:获得包含短RNA靶分子的RNA样品;使包含短RNA靶分子的样品和至少一种含RNA的模板分子与逆转录酶接触,其中该短RNA靶分子退火至含RNA的模板分子并且该逆转录酶通过延伸退火的短RNA分子来逆转录该含RNA的模板分子,以形成包含退火至模板RNA分子的短RNA靶分子/cDNA杂合多核苷酸的双链体;使该双链体接触RNA酶H活性,从而在该双链体中的退火至短RNA靶分子/cDNA杂合多核苷酸的脱氧核糖核苷酸的含RNA的模板分子的部分中切下核糖核苷酸;通过用逆转录酶延伸退火至单链短RNA靶分子/cDNA杂合体的第一寡核苷酸引物,来逆转录短RNA靶分子/cDNA杂合多核苷酸的至少短RNA靶分子部分,以形成包含与短RNA靶分子互补的序列的DNA分子;和,用DNA聚合酶扩增包含与短RNA靶分子互补的序列的DNA分子,从而扩增该短RNA序列。
在一些实施方式中,从外源性来源添加第一寡核苷酸引物。
在一些实施方式中,短RNA是miRNA、snoRNA、piRNA、或lncRNA。
在一些实施方式中,短RNA长度为30个或更少核苷酸。
在一些实施方式中,含RNA的模板分子是来自样品的天然产生的RNA分子。在一些实施方式中,第一寡核苷酸引物具有12-16个核苷酸并且包含不与单链短RNA靶分子/cDNA杂合多核苷酸互补的5’部分和与单链短RNA靶分子/cDNA杂合多核苷酸互补的3’部分。在一些实施方式中,第一寡核苷酸引物包含与单链短RNA靶分子/cDNA融合多核苷酸互补的至少6个核苷酸的长度。在一些实施方式中,第一寡核苷酸引物的3’部分长度为6-10个核苷酸。在一些实施方式中,第一寡核苷酸引物的5’部分长度为3-6个核苷酸。
在一些实施方式中,DNA聚合酶具有6-10个核苷酸的DNA足迹。在一些实施方式中,DNA聚合酶连接至具有4-6个核苷酸的DNA足迹的DNA-结合结构域。
在一些实施方式中,含RNA的模板分子对于样品是异源的。在一些实施方式中,含RNA的模板分子包含(i)与短RNA靶标互补并且含RNA的3’部分和(ii)当含RNA的模板分子退火至短RNA靶分子时形成5’突出端的5’部分。在一些实施方式中,除了与3’部分连接的5’部分的1-2个核糖核苷酸部分以外,5’部分是DNA。在一些实施方式中,第一引物是通过RNA酶H活性释放的5’DNA部分。在一些实施方式中,3’部分和5’部分是RNA。在一些实施方式中,样品的接触包括使该样品与短RNA靶标和具有5’部分和3’部分的多个含RNA的模板分子接触,其中所述3’部分包含至少4个核苷酸的简并序列,使得该多个模板分子包含具有不同3’部分和相同5’部分的多样的含RNA的分子。
在一些实施方式中,向双链体添加RNA酶H酶,从而使该双链体与RNA酶H活性接触。
在一些实施方式中,RNA酶H酶来自逆转录酶。
在一些实施方式中,扩增包括生成扩增子,并且该方法还包括对该扩增子进行核苷酸测序。
在一些实施方式中,该方法还包括对样品中的短RNA靶分子的量进行定量。
还提供了扩增长度少于30个核苷酸的非-聚A加尾RNA的方法。在一些实施方式中,该方法包括:通过延伸具有与所述RNA互补的至少6个连续核苷酸的第一引物逆转录该RNA,以产生除引物序列以外包含至少10个核苷酸的长度的序列的第一链cDNA,其与该RNA互补,用DNA聚合酶-DNA结合结构域融合物来扩增第一链cDNA以延伸第二引物,其中该DNA聚合酶具有6-10个碱基对的足迹并且该DNA结合结构域具有3-5个碱基对的足迹,并且其中第二引物包含与第一链cDNA的3’区互补的连续碱基对,以产生双链cDNA。
在一些实施方式中,第一引物包含不与RNA互补的5’部分。
在一些实施方式中,第二引物包含与第一链cDNA的3’区互补的12-16个连续碱基对。
在一些实施方式中,该聚合酶是Taq Stoffel片段或其类似物。
在一些实施方式中,DNA结合结构域是Sso7d DNA结合结构域。
在一些实施方式中,RNA是miRNA、snoRNA、piRNA、或lncRNA。
在一些实施方式中,第一引物具有与RNA互补的6-12个连续核苷酸。
在一些实施方式中,5’部分长度为3-6个核苷酸。
在一些实施方式中,扩增包括生成扩增子,并且该方法还包括对该扩增子进行核苷酸测序。在一些实施方式中,该方法还包括对样品中的非-聚A加尾RNA的量进行定量。
还提供了从非-聚A加尾RNA生成cDNA的方法。在一些实施方式中,该方法包括:用末端转移酶向靶非-聚A加尾RNA的3’末端添加随机聚-W(A/T)或聚-S(G/C)核苷酸序列以形成在该分子的3’末端处包含简并核苷酸序列的RNA分子;使包含随机聚-W或聚-S核苷酸序列的RNA分子经历一定条件使得该包含随机聚-W或聚-S核苷酸序列的RNA分子退火以形成通过随机聚-W或聚-S核苷酸序列退火至彼此的第一和第二RNA分子的双链体;并且用DNA聚合酶延伸双链体中分子的3’末端以形成(i)与双链体的第一RNA分子互补的第一cDNA和(ii)与双链体的第二RNA分子互补的第二cDNA,其中该第一和第二cDNA还包含5’序列,其是随机聚-W或聚-S核苷酸序列的互补物。
在一些实施方式中,RNA是miRNA、snoRNA、piRNA、或lncRNA。
在一些实施方式中,该方法还包括用RNA酶H活性消化RNA分子。
在一些实施方式中,该方法还包括用退火至简并序列的互补物的引物扩增第一或第二cDNA。
在一些实施方式中,添加还包括使非-聚A加尾RNA接触聚A聚合酶(例如,酵母聚A聚合酶)。
在一些实施方式中,扩增包括生成扩增子,并且该方法还包括对该扩增子进行核苷酸测序。
在一些实施方式中,该方法还包括对样品中的非-加尾RNA的量进行定量。
本文他处描述本发明的其他方面。
附图的简要说明
图1显示了使用含RNA的模板检测靶短RNA的方法的步骤。虽然该图将靶RNA称为“miRNA”,应理解可也检测其他类型的RNA。
图2显示了使用含RNA的模板检测靶短RNA的方法的步骤,该模板是合成RNA寡核苷酸。虽然该图将靶RNA称为“miRNA”,应理解可也检测其他类型的RNA。
图3显示了使用含RNA的模板检测靶短RNA的方法的步骤,该模板是RNA/DNA寡核苷酸。虽然该图将靶RNA称为“miRNA”,应理解可也检测其他类型的RNA。
图4显示了将“第一”引物杂交至靶RNA/cDNA杂合体的一些不同可能的实施方式。如该图的部分A所示,第一引物的部分可退火至靶RNA序列的3’部分和cDNA序列的5’部分。或者,该图的部分B显示一个实施方式,其中第一引物仅退火至cDNA序列。该图的部分B的实施方式将最常应用在使用合成模板时,因为该合成模板的序列将是已知的。然而,应理解部分B实施方式也可用于使用内源性模板RNA的情况中,并且模板RNA序列是已知的。
图5A和B显示了逆转录并且然后使用加尾逆转录(RT)引物扩增短(例如,20-25个核苷酸的长度)多核苷酸序列的方法的步骤。例如,可使用具有与具有小核苷酸足迹的DNA结合结构域蛋白连接的小核苷酸足迹的聚合酶来实现扩增。
图6显示了向RNA添加聚-W或聚-S 3’尾(例如,用末端转移酶),使RNA退火(例如,通过聚-W或聚-S序列),进行逆转录反应,并且用RNA酶H活性消除初始靶RNA的反应的步骤。然后可根据需要检测并分析所得的cDNA。
定义
术语“聚合酶”是指进行模板引导的多核苷酸合成的酶。该术语同时包括全长多肽和具有聚合酶活性的结构域。DNA聚合酶是本领域技术人员熟知的,包括但不限于从激烈火球菌(Pyrococcus furiosus)、滨海嗜热球菌(Thermococcus litoralis)和海栖热袍菌(Thermotoga maritime)分离或衍生的DNA聚合酶或其修饰形式。它们包括DNA-依赖聚合酶和RNA-依赖聚合酶,如逆转录酶。已知至少5个DNA-依赖DNA聚合酶家族,虽然大多数属于A、B和C家族。各家族之间没有或几乎没有序列相似性。大多数A家族聚合酶是可含有多重酶促功能(包括聚合酶、3′到5′外切核酸酶活性和5′到3′外切核酸酶活性)的单链蛋白质。B家族聚合酶通常有具有聚合酶和3′到5′外切核酸酶活性的单个催化结构域,以及辅助因子。C家族聚合酶通常是具有聚合和3′到5′外切核酸酶活性的多亚基蛋白质。在大肠杆菌中,已经发现了3种类型的DNA聚合酶,DNA聚合酶I(A家族)、DNA聚合酶II(B家族)和DNA聚合酶III(C家族)。在真核细胞中,核复制中涉及3种不同的B家族聚合酶,DNA聚合酶α、δ和ε,并且A家族聚合酶,聚合酶γ用于线粒体DNA复制。其它类型的DNA聚合酶包括噬菌体聚合酶。相似地,RNA聚合酶通常包括真核RNA聚合酶I、II和III,和细菌RNA聚合酶以及噬菌体和病毒聚合酶。RNA聚合酶可以是DNA-依赖的和RNA-依赖的。
本文使用的“热稳定聚合酶”指使用DNA或RNA作为模板通过向核苷酸链中加入核苷酸单元以催化多核苷酸合成的酶且该酶在高于45℃的温度下达到最佳活性。
术语“Sso7-样蛋白”或“Sso7”指多肽变体、等位基因、突变体和种间同源物,其(1)氨基酸序列与PCT公开号WO 2012/177695的SEQ ID NO:4或10具有大于约60%的氨基酸序列相同性,65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%或更高的氨基酸序列相同性。该术语包括全长Sso7多肽和具有序列非特异性双链结合活性的多肽片段。Sso7-样蛋白包括Sac7d、Sac7e、Ssh7b、和Sto7e。Sso7d的示例性突变体包括PCR公开号WO 2012/138417中所述的那些。
“结构域“指蛋白质或蛋白质复合物的单元,包含多肽子序列、完整多肽序列,或多个多肽序列,这些序列中该单元具有限定的功能。该功能理解为广义定义并且可以是配体结合、催化活性或者可对蛋白质结构有稳定化效果。
术语“DNA结合结构域”是指以序列非特异性方式结合DNA的蛋白质结构域。在一些实施方式中,DNA结合结构域是以显著的亲和性结合至DNA的蛋白质结构域,因为已知没有核酸以比具有相同核苷酸组成但核苷酸序列不同的另一种核酸高100倍的亲和性结合至蛋白质结构域。
术语“接合”或“连接”是指本领域已知的用于功能性连接蛋白质结构域的任何方法,包括但不限于用或不用中间结构域的重组融合,内含肽-介导的融合,非共价结合,和共价键合,包括二硫键键合;氢键键合;静电键合;和构象键合,例如,抗体-抗原,和生物素-亲和素结合。
术语“核酸扩增”或“扩增反应”指用于倍增核酸靶序列拷贝的任何体外方法。这类方法包括但不限于聚合酶链反应(PCR)、DNA连接酶链反应(参见美国专利号4,683,195和4,683,202;《PCR方案:方法和应用指南》(Innis等编,1990))、(LCR)、QBeta RNA复制酶、和基于RNA转录(如TAS和3SR)的扩增反应以及本领域技术人员已知的其它反应。
“扩增”指将溶液置于足以扩增多核苷酸的条件下的步骤。扩增反应的组分包括,例如,引物、多核苷酸模板、聚合酶、核苷酸等。术语扩增一般是指靶核酸的“指数型”增长。然而,本文所用的扩增也可指核酸的选择靶序列数量的线性增长,如由循环测序所得。
“聚合酶链反应”或“PCR”是指靶双链DNA的特定区段或子序列得以几何级数式扩增的一种方法。PCR是本领域技术人员所熟知的;参见例如,美国专利号4,683,195和4,683,202;和《PCR方案:方法和应用指南》,Innis等编,1990。示例性PCR反应条件一般包括两步或三步循环。两步循环具有变性步骤,之后是杂交/延伸步骤。三步循环包括变性步骤,之后是杂交步骤,之后是独立的延伸步骤。PCR可以终点PCR(即仅在终点处监测)或定量PCR(“实时”监测)的方式进行。
“寡核苷酸引物”或“引物”指退火至靶核酸上的序列并且用作核酸合成的起始点的寡核苷酸序列。引物可以是各种长度的并且通常长度小于50个核苷酸,例如长度为12-30个核苷酸。可基于本领域技术人员已知的原理设计用于PCR的引物的长度和序列,参见例如Innis等(同上)。
术语“核酸”和“多核苷酸”在本文中可互换使用以表示脱氧核糖核苷酸或核糖核苷酸及其单链或双链形式的聚合物。该术语包括含有已知核苷酸类似物或修饰的主链残基或连接的核酸,其可以是合成、天然产生的和非天然产生的,其与参比核酸具有相似结合性质,且以与参比核苷酸相似的方式代谢。这种类似物的示例包括但不限于:硫代磷酸(酯)、氨基磷酸(酯)、甲基膦酸(酯)、手性甲基膦酸(酯)、2-O-甲基核糖核苷酸和肽核酸(PNA)。
术语“多肽”、“肽”和“蛋白质”在本文中可互换使用以表示氨基酸残基的聚合物。该术语可用于表示其中一个或多个氨基酸残基是相应天然产生氨基酸的人造化学模拟物的氨基酸聚合物,以及天然产生的氨基酸聚合物和非天然产生的氨基酸聚合物。
术语“氨基酸”指天然产生的和合成的氨基酸,以及作用方式类似于天然产生氨基酸的氨基酸类似物和氨基酸模拟物。天然产生的氨基酸是由遗传密码编码的氨基酸,以及随后修饰的氨基酸,如羟基脯氨酸、γ-羧基谷氨酸和O-磷酸丝氨酸。氨基酸类似物指与天然产生的氨基酸具有相同基本化学结构的化合物,即α碳结合于氢、羧基、氨基和R基,如高丝氨酸、正亮氨酸、甲硫氨酸亚砜、甲硫氨酸甲基锍。这种类似物具有修饰的R基(如正亮氨酸)或修饰的肽主链,但保留了与天然产生的氨基酸基本相同的化学结构。氨基酸模拟物指结构不同于氨基酸的普通化学结构,但作用方式类似于天然产生氨基酸的化合物。
本文中氨基酸可按IUPAC-IUB生物化学命名委员会推荐的俗称三字母符号或单字母符号表述。同样,核苷酸可指其普遍接受的单字母代码。
“保守修饰变体”可应用于氨基酸和核酸序列。对于特定的核酸序列,保守修饰变体指编码相同或基本相同的氨基酸序列的核酸,或者当核酸不编码氨基酸序列时,指基本相同的序列。由于遗传密码的简并性,大量功能相同的核酸编码任何给定的蛋白质。例如,密码子GCA、GCC、GCG和GCU都编码氨基酸丙氨酸。因此,在密码子指定丙氨酸的每个位置上,可将所述密码子改变成所述的任何相应密码子而不改变编码的多肽。这类核酸变异是“沉默变异”,这是保守修饰变异的一种。本文编码多肽的每种核酸序列也描述该核酸的每种可能的沉默变异。本领域技术人员应认识到,可修饰核酸中的各个密码子(除了AUG和TGG,AUG通常是甲硫氨酸的唯一密码子,TGG通常是色氨酸的唯一密码子),以产生功能相同的分子。因此,在所述的各序列中隐含了编码多肽的各核酸沉默变异。
至于氨基酸序列,在编码序列中改变、加入或删除一个氨基酸或较少百分数氨基酸的某一核酸、肽、多肽或蛋白质序列单独取代、缺失或添加是“保守修饰变体”,其中所述改变导致氨基酸被化学上相似的氨基酸所取代。提供功能上相似氨基酸的保守取代表是本领域熟知的。此类保守修饰的变体是本发明的多态性变体、种间同源物和等位基因的补充且并不排除它们。
在2个或更多个核酸或多肽序列情况中,术语“相同的”或百分数“相同性”是指2个或更多个相同的序列或子序列。在所示的具体区域,或在整个参比序列上(如果没有另外说明),采用以下序列比较算法之一或通过手工比对和目测检查测量时,当就比较窗口或指定区域上的最大对应性而言,这些序列有特定百分数的核苷酸或氨基酸残基相同(例如,至少60%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同性),则序列彼此间“基本相同”。这些定义也指测试序列的互补物。
对于序列比较,一般将一条序列用作与测试序列比较的参比序列。使用序列比较算法时,测试和参比序列均输入计算机,必要时指定子序列坐标,指定序列算法程序参数。通常使用默认程序参数,或者可指定替代性的参数。然后,该序列比较算法基于程序参数计算出测试序列相对于参比序列的序列相同性或相似性百分数。
本文所用的“比较窗”包括参考连续位置,例如,20至600个连续位置,约50至约200,或约100至约150的区段,其中在2个序列进行最优比对之后,序列可与相同数量连续位置的参比序列比较。比对序列用于比较的方法是本领域熟知的。可通过,例如Smith和Waterman的局部同源性算法(Adv.Appl.Math.2:482,1970),通过Needleman和Wunsch的同源性比对算法(J.Mol.Biol.48:443,1970),通过Pearson和Lipman的相似性搜索法(Proc.Nat’l.Acad.Sci.USA 85:2444,1988),通过计算机执行这些算法(威斯康星州麦迪逊(Madison,Wis)575 Science Dr.的遗传学计算组(Genetics Computer Group)的威斯康星遗传学软件包(Wisconsin Genetics Software Package)中的GAP、BESTFIT、FASTA和TFASTA),或通过手工比对和目测(参见例如,Ausubel等,《新编分子生物学实验指南》(Current Protocols in Molecular Biology)(1995增刊))进行最优序列比对以便比较。
适合确定序列相同性和序列相似性百分数的算法分别是BLAST和BLAST 2.0算法,分别描述于Altschul等(Nuc.Acids Res.25:3389-402,1977)和Altschul等(J.Mol.Biol.215:403-10,1990)。进行BLAST分析的软件可从国家生物技术信息中心(National Center for Biotechnology Information)公开获得(http://ncbi.nlm.nih.gov/)。此算法包括:首先通过鉴定查询序列中长度为W的短字来鉴定高评分序列对(HSP),与数据库序列中长度相同的字比对时它们能匹配或满足一些正值的阈值评分T。T称为相邻字评分阈值(Altschul等,同上)。这些初始相邻字命中用作启动搜索的种子,以便找到含有它们的较长HSP。只要可提高累积比对评分,该字命中在两个方向上沿各序列延伸。出现以下情况时中止字命中在各个方向上的延伸:累积比对评分比其最大获得值降低X;由于一个或多个负评分残基比对的累积,累积评分变为零或零以下;或者达到任一序列的末端。BLAST算法参数W、T和X决定比对的灵敏度和速度。BLAST程序使用的默认值为:字长(W)11,BLOSUM62评分矩阵(参见Henikoff和Henikoff,Proc.Natl.Acad.Sci.USA89:10915(1989))比对(B)50,期望值(E)10,M=5,N=-4,以及比较两条链。
BLAST算法也对两条序列间的相似性进行统计学分析(参见例如,Karlin和Altschul,Proc.Nat’l.Acad.Sci.USA 90:5873-5787(1993))。BLAST算法提供的一种相似性测量是最小概率和(P(N)),它表明两条核苷酸或氨基酸序列之间偶尔发生匹配的概率。例如,如果测试核酸与参比核酸比较时的最小概率和小于约0.2,更优选小于约0.01,最优选小于约0.001,那么认为该核酸与参比序列相似。
发明详述
I.引言
虽然短RNA在大量生物背景中引起了极大的兴趣,但短RNA的扩增和检测可能是困难的。本文提供了多种用于从扩增和检测来自样品的短RNA的方法。
在一些实施方式中,该方法并不采用初始引物延伸步骤,其中使用靶短RNA作为模板,延伸引物,以形成cDNA。不同的是,在一些实施方式中,该方法包括使用靶短RNA本身作为引物以在不同模板多核苷酸上进行引物延伸。如下文更详细所述,模板多核苷酸可以是样品中内源性存在的第二RNA,或者可以是外源性含RNA的寡核苷酸(例如,即来自样品)。
本文所述的其他方法允许使用短RNA作为模板来进行引物延伸。在这些实施方式中的一些中,采用与具有小核苷酸足迹的DNA-结合蛋白融合的具有小核苷酸足迹的聚合酶来进行引物延伸。在一些实施方式中,引物具有(1)与靶短RNA的3’部分互补的3’部分和(2)形成突出端的5’部分(即,其与靶短RNA不互补并且不退火至该靶短RNA)。使用具有DNA结合结构域的小足迹聚合酶使得能够在聚合酶如Taq聚合酶将会不足或会无法延伸引物的环境中延伸靶短RNA。由于初始引物具有5’突出端,所得的cDNA将比靶短RNA更长(例如,引物5’突出端中的核苷酸数量)。然后,可使用退火至(即互补于)所得的cDNA的3’部分的“正向”引物和用作“反向”引物的具有5’突出端的引物来联合扩增该cDNA。
可使用本文所述的方法检测并扩增的示例性靶RNA,其包括但不限于miRNA、snRNA、snoRNA、piRNA、或lncRNA。微小RNA(miRNA),一般长度为18至25nt,是非蛋白质编码RNA,其可抑制靶mRNA的翻译(参见,例如,Croce和Calin,Cell 122(1):6-7(2005))。其他小RNA包括小核质RNA(snRNA)和小核仁RNA(snoRNA)。这些小RNA可在例如,mRNA剪接(U1,U2,和U4至U6 snRNA)、mRNA和rRNA加工(U7 snRNA;U3和U8 snoRNA)、和通过2′羟基(盒C/DsnoRNA)甲基化或通过假尿苷形成(盒H/ACA snoRNA)的RNA修饰的位点选择中发挥功能。通过联合哺乳动物中Piwi蛋白质来鉴定Piwi-相互作用RNA(piRNA)。piRNA的长度范围可以是26-30个核苷酸。也描述了长非编码RNA(1ncRNA)。
II.方法
如上文简要描述,在一些实施方式中,该方法并不需要或包括对靶RNA的逆转录,直至在靶RNA本身用作引物之后。在一些实施方式中,另一种含RNA的多核苷酸可用作逆转录的模板,其中靶RNA用作引物。在这些实施方式中,靶RNA将连接至所得的cDNA。因此,所得的多核苷酸将部分包含RNA核苷酸(即,靶RNA序列)并且部分包含DNA(即,在逆转录中添加的核苷酸)。
图1示例性地显示了上述实施方式。在图1,步骤11中,使靶miRNA接触数种条件以使靶miRNA退火至含RNA模板,形成靶标/模板双链体。该含RNA模板可以是,例如,mRNA或其他更长的RNA,其来自与靶RNA(例如,miRNA)来源相同或不同的生物样品。下文描述了其他不同的含RNA的模板选项。
如图1,步骤12中所示,退火的靶标/模板复合物可接触具有逆转录酶活性的蛋白质,使得逆转录酶活性延伸靶RNA的3’末端以生成与模板RNA的至少部分互补的cDNA。可使用用于逆转录反应的任何条件。所得的cDNA将包含由靶RNA组成的5’部分和由cDNA组成的3’部分。所得的靶RNA/cDNA杂合多核苷酸可以是任何长度,其整合靶RNA长度和与模板RNA互补的至少一些脱氧核苷酸。RNA靶标/cDNA杂合多核苷酸的cDNA部分的长度将取决于模板RNA的长度以及靶RNA退火至模板RNA的位置。在一些实施方式中,cDNA将为至少10、20、30、40、50、100、或150个核苷酸,例如,10-100或50-500个核苷酸。
可使用各种逆转录酶中的任意酶。示例性的逆转录酶包括但不限于鼠白血病病毒(MLV)逆转录酶、禽类成髓细胞血症病毒(AMV)逆转录酶、呼吸道合胞病毒(RSV)逆转录酶、犬感染性贫血病毒(EIAV)逆转录酶、劳氏-相关病毒-2(RAV2)逆转录酶、SUPERSCRIPT II逆转录酶、SUPERSCRIPT I逆转录酶、THERMOSCRIPT逆转录酶和MMLV RNA酶H-逆转录酶。在其他实施方式中,可使用具有RNA聚合酶功能的DNA聚合酶。例如,在锰存在下,DNA聚合酶Tth和Z05可具有逆转录酶的功能。逆转录酶的浓度可变化并且可凭经验确定并取决于使用的特定逆转录酶。
随后可从剩余的含RNA的模板多核苷酸中切下与新形成的cDNA互补的模板RNA部分。在一些实施方式中,为此使用RNA酶H。RNA酶H(核糖核酸酶H)是内源性核酸酶,其特异性水解退火至DNA的RNA的磷酸二酯键。RNA酶并不消化单链或双链DNA。在形成cDNA之后,RNA酶H可应用于RNA模板/cDNA双链复合物。由于RNA酶H的特定活性,将从RNA模板中仅去除退火至cDNA的脱氧核苷酸的RNA核苷酸。或者,在一些实施方式中,使用的逆转录酶将具有固有的RNA酶H活性,其将切割并降解RNA,如上所述。该方面分别例示于,例如,图1-3的步骤13、23和33中。
在上述步骤之后,与靶RNA/cDNA杂合体的cDNA部分互补的引物(为方便起见,称为“第一引物”)可退火至cDNA,并且可进行第二逆转录反应。在该第二逆转录反应(分别例示于图1-3的步骤14、24和34)中,退火至cDNA的第一引物经延伸以形成与靶RNA互补的第二cDNA。如下文详述,第一引物可退火至cDNA序列或者可退火至靶RNA和cDNA两者,退火至两个序列之间的连接处。第一引物可外源性添加,或者如下文所述,在一些环境中可通过RNA酶H活性生成。因此,所得的第二cDNA包含与全部或基本全部靶RNA互补的序列,并且还包含第一引物序列。随后可使用标准技术根据需要扩增第二cDNA。这分别例示于图1-3的步骤15、25和35。例如,在一些实施方式中,使用聚合酶链反应来扩增第二cDNA。例如,在一些实施方式中,与第二cDNA的3’部分互补的“反向”引物可与第一引物和热稳定聚合酶在热循环条件下联用,以生成包含靶RNA序列的双链DNA。如果需要,PCR可定量进行并实时监测。
如上所述,该方法可采用含RNA模板多核苷酸。图1所示的实施方式是来自生物样品的天然产生的RNA。在替代性实施方式中,含RNA的模板多核苷酸可以是合成多核苷酸。例如,如图2所示,含RNA的模板是合成RNA寡核苷酸。在另一个替代中,合成含RNA的模板部分是DNA且部分是RNA(图3所示)。在这些实施方式中,模板的5’末端部分是DNA并且模板的3’末端部分是RNA。如图3所示,在后一种选项中,RNA酶H活性释放模板的DNA部分,其然后可在第二逆转录步骤中发挥第一引物的作用,而不需要添加外源性第一引物。
模板的3’末端部分将与靶RNA互补,或者至少基本互补,使得模板的3’末端部分在一定条件下退火至靶RNA,该条件中逆转录酶发挥活性并且可使用含RNA的模板多核苷酸作为模板来延伸靶RNA。5’部分不与靶RNA互补并且用作非退火尾部。模板的3’末端部分将足够长以允许退火至靶RNA,并且可以是,例如,至少4、5、6、7、8、9、10或更多个核苷酸的长度,例如,5-30或更多个核苷酸。当然,模板的退火序列将不比靶RNA本身更长。由RNA组成的模板的部分将超过模板的退火部分延伸至少1个(例如,1、2、3、或更多个)核苷酸(所述另一种方式,模板的5’非退火部分是DNA,除了有核糖核苷酸组成的短部分(例如,1、2、3或更多个核苷酸)以外)。这例示于图3中,由垂直线限定。这些特定核苷酸是RNA的作用在于,在逆转录步骤中形成的所得cDNA中的互补核苷酸将是DNA,从而针对这些特定核苷酸形成RNA/DNA双链体,其能够被RNA酶H活性切割。虽然没有用图1-2中的垂直线显示,这种相同的特征出现在这些实施方式中,因为整个模板是由RNA组成并且由此形成可被RNA酶H降解的RNA/DNA双链体。如上所述,RNA酶H切下RNA/DNA双链体中的RNA,并且因此刚好在模板的退火序列之后存在一个或多个RNA核苷酸,这将使得RNA/DNA双链体的区域随后可被RNA酶H活性切割。至少一部分,理想地,全部模板的降解,使得第一引物随后退火至cDNA,且没有(或者具有减少的)来自与cDNA互补的模板的部分的竞争。
模板的5’末端部分可在长度上变化,但在一些模板由RNA和DNA组成的实施方式中,模板的5’末端中的至少前3个核苷酸将是DNA。在一些实施方式中,5’末端部分是4、5、6、7、8或更多个DNA核苷酸,例如,3-100或更多个核苷酸。
在一些实施方式中,可以多个含RNA的模板多核苷酸的形式提供合成含RNA的模板多核苷酸,其中RNA序列中的一些或全部(即,至少模板的3’末端)是简并序列。通过在模板的3’末端提供随机序列,可扩增超过一种短RNA靶标。因此,例如,可生成小RNA的文库。
如上所述,该方法包括第二逆转录步骤,以基于与靶RNA/cDNA杂合多核苷酸的cDNA部分互补的引物(“第一引物”)生成第二cDNA,之后通过使用第一引物和反向引物扩增。分别在图1-3的步骤14、24和34中例示了第二逆转录步骤。第一引物至少部分与靶RNA/cDNA杂合多核苷酸的cDNA互补,使得第一引物退火至cDNA中的互补序列。在来自样品的内源性RNA作为模板的实施方式中,不必已知cDNA部分的序列。因此,在一些实施方式中,至少第一引物的3’部分可设计成与靶RNA的3’末端的部分互补,使得第二逆转录步骤导致使用靶RNA作为引物的第一引物的延伸。该方面例示于图4,选项“A”。例如,第一引物的5’部分可与cDNA互补并且第一引物的3’部分可与靶RNA互补,从而退火至cDNA和靶RNA的连接点。在替代性实施方式中,第一引物可以仅与cDNA部分互补。例如,当使用合成含RNA的模板时,可使用这些实施方式,因为然后将知晓模板的3’序列并且因此第一引物可设计成互补性的。后一方面例示于图4,选项“B”。
扩增步骤(例如,分别是图1-3的步骤15、25或35)可包括延伸第一引物和反向引物以形成包含靶RNA序列的双链扩增子(尽管是DNA而不是RNA形式)。该扩增将一般包括用DNA聚合酶的引物延伸(包括但不限于聚合酶链反应(PCR))。可用于本发明的DNA聚合酶可以是能够复制DNA分子的任何聚合酶。示例性的DNA聚合酶是热稳定聚合酶,尤其适用于PCR。热稳定的聚合酶可以从多种嗜热细菌分离得到,例如水生栖热菌(Thermus aquaticus(Taq))、布鲁克栖热菌(Thermus brockianus(Tbr))、黄栖热菌(Thermus flavus(Tfl))、红栖热菌(Thermus ruber(Tm))、嗜热栖热菌(Thermus thermophilus(Tth))、滨海热球菌(Thermococcus litoralis(Tli))以及热菌属的其他菌种、嗜酸热原体(Thermoplasmaacidophilum(Tac))、那不勒斯栖热袍菌(Thermotoga neapolitana(Tne))、海栖热袍菌(Thermotoga maritima(Tma))、以及热袍菌属(Thermotoga)的其他菌种、激烈火球菌(Pyrococcus furiosus(Pfu))、沃氏火球菌(Pyrococcus woesei(Pwo)、以及其他火球菌属(Pyrococcus)的其他菌种、嗜热脂肪芽孢杆菌(Bacillus sterothermophilus(Bst))、嗜酸热硫化叶菌(Sulfolobus acidocaldrius(Sac))、硫磺矿硫化叶菌(Sulfolobussolfataricus(Sso))、隐蔽热网菌(Pyrodictium occultum(Poc))、阿比热网菌(Pyrodictium abyssi(Pab))、和嗜热自养甲烷杆菌(Methanobacteriumthermoautotrophicum(Mth))、以及它们的突变体、变体或衍生物。
在一些实施方式中,聚合酶是包含聚合酶结构域和DNA结合结构域的杂交聚合酶。已知这些杂交聚合酶具有提高的处理能力。参见例如,美国专利申请公开号2006/005174;2004/0219558;2004/0214194;2004/0191825;2004/0081963;2004/0002076;2003/0162173;2003/0148330;2003/0138830和美国专利号6,627,424和7,445,898,它们以其全部内容通过引用纳入本文用于所有目的,尤其是关于聚合酶、杂交/嵌合聚合酶以及用于制备和使用这些聚合酶的方法的全部启示。在一个方面中,杂交聚合物缺乏3’-5’外切核酸酶活性。在一个实施方式中,这些杂交聚合酶在聚合酶结构域中包括提供外切核酸酶缺陷的双重点突变。在一个具体的实施方式中,杂交聚合酶在聚合酶结构域中可包括双重点突变D141A/E143A。
在一些实施方式中,杂交聚合酶的DNA结合结构域来自热稳定的生物体并且在较高的温度下(例如在45℃以上)提供增强的引物退火。例如,Sso7d和Sac7d分别是来自超嗜热古细菌硫磺矿硫化叶菌(Sulfolobus solfataricus)和嗜酸热硫化叶菌(Sulfolobusacidocaldarius)的小(约7kd MW)、碱性染色体蛋白(例如,参见Choli等,Biochimica etBiophysica Acta 950:193-203,1988;Baumann等,Structural Biol.1:808-819,1994;和Gao等,Nature Struc.Biol.5:782-786,1998)。这些蛋白以不依赖序列的方式结合DNA,在一些情况下,一旦结合,使得DNA的Tm升高最多达40℃(McAfee等,Biochemistry 34:10063-10077,1995)。这些蛋白质及其同系物常常用作改善的聚合酶融合蛋白中的序列非特异性DNA结合结构域。Sso7d、Sac7d、Sac7e及相关序列(在这里称为“Sso7序列”或“Sso7结合域”)是本领域已知的(例如,参见登录号(P39476(Sso7d);P13123(Sac7d);和P13125(Sac7e)))。这些序列通常具有至少75%或更大,80%,85%,90%,或95%或更大的氨基酸序列相同性。例如,Sso7蛋白通常具有至少75%的Sso7d序列相同性。
在其他实施方式中,有用的杂交聚合酶描述于例如美国专利申请公开号2006/005174;2004/0219558;2004/0214194;2004/0191825;2004/0081963;2004/0002076;2003/0162173;2003/0148330;2003/0138830;PCT公开号WO 2012/138417;以及美国专利号6,627,424和7,445,898,它们各自以其全部内容通过引用纳入本文用于所有目的,尤其是关于聚合酶、杂交/嵌合聚合酶以及用于制备和使用这些聚合酶的方法的全部启示。生成杂交蛋白的方法和杂交聚合酶蛋白的示例公开于WO2004011605,其通过引用全文纳入本文用于所有目的,并且具体用于与生成杂交蛋白相关的所有技术启示。
在一些实施方式中,DNA聚合酶具有较小的核苷酸足迹,并且因此,具有针对DNA底物的低结合亲和性。最优地,这种聚合酶与同样具有小足迹的DNA结合蛋白融合,其中与单独DNA聚合酶相比,该融合体具有增加的DNA亲和性。例如,在一些实施方式中,DNA聚合酶具有6-10个核苷酸的核苷酸足迹,并且连接至具有3-6个核苷酸足迹的序列非特异性DNA结合蛋白。所得的融合蛋白将具有小核苷酸足迹(例如,9-16个核苷酸),其与未修饰的聚合酶相比具有增加的结合亲和性,使得在模板(和引物)较短时,例如,在模板太短而无法容纳2个常规大小的引物(例如,长18-20nt)时,融合聚合酶能以模板特异性的方式高效延伸短引物。例如,在一些实施方式中,模板具有少于40、35、30、28、26、25、或24个核苷酸。一种示例性的具有小核苷酸足迹的DNA聚合酶是Taq聚合酶的Stoffel片段或来自另一种热稳定(例如,A家族)聚合酶的类似片段。Stoffel片段是缺少Taq的氨基末端289个氨基酸的Taq聚合酶片段,并且缺少5’-3’外切核酸酶活性。Stoffel片段类似物是指缺少氨基末端的5’-3’外切核酸酶结构域的A家族聚合酶。例如,在一些实施方式中,类似物具有对应于Stoffel片段的那些的氨基酸但缺少对应于Taq的前289个氨基酸的N-末端氨基酸。例如,KlenTaq缺少Taq的前280个氨基酸。
在一些实施方式中,按照本文所述的扩增方法确定样品中靶RNA的初始量。在一些实施方式中,可使用定量扩增来确定样品中靶RNA的初始量。定量扩增方法(例如,定量PCR或定量线性扩增)涉及扩增核酸模板(例如,分别对应于图1-3的步骤15、25或35的步骤),直接或间接(例如,确定Ct值)确定扩增的DNA的量,然后基于扩增循环数计算初始模板的量。使用反应扩增DNA基因座是熟知的(参见美国专利号4,683,195和4,683,202;《PCR方案:方法和应用指南》(PCR PROTOCOLS:A GUIDE TO METHODS AND APPLICATIONS)(Innis等编,1990))。通常,使用PCR来扩增DNA模板。然而,替代性扩增方法已有描述且也可使用,前提是与扩增切割的DNA的方法相比,这些替代性方法以较高的程度扩增完整的DNA。定量扩增的方法公开于,例如,美国专利号6,180,349;6,033,854;和5,972,602,以及例如,Gibson等,Genome Research 6:995-1001(1996);DeGraves等,Biotechniques 34(1):106-10,112-5(2003);Deiman B等,MolBiotechnol.20(2):163-79(2002)。可“实时”监测扩增。
在一些实施方式中,定量扩增是基于监测代表扩增(例如PCR)反应循环中模板拷贝的信号(例如探针的荧光)。在PCR的初始循环中,由于形成的扩增子的量不能支持来自试验的可测量的信号输出,观察到非常低的信号。在初始循环之后,随着形成的扩增子的量增加,信号强度增加至可测量的水平并在后续循环中达到平台(此时PCR进入非对数期)。通过信号强度对循环次数作图,从PCR反应获得可测量的信号的特定循环可以推导和用于倒推计算PCR开始之前靶标的量。该方法确定的特定循环的次数通常称为循环阈值(Ct)。示例性的方法描述于例如Heid等,Genome Methods 6:986-94(1996),参照水解探针。
一种检测扩增产物的方法是5′-3′外切核酸酶“水解”PCR试验(也称为TaqManTM试验)(美国专利号5,210,015和5,487,972;Holland等,PNAS USA 88:7276-7280(1991);Lee等,Nucleic Acids Res.21:3761-3766(1993))。该试验检测扩增反应期间双重标记的荧光探针(TaqManTM探针)的杂交和切割产生的特定PCR产物的累积。荧光探针由用荧光报告染料和淬灭染料双重标记的寡核苷酸组成。PCR期间,如果并且只是如果与正在扩增的片段退火,则该探针被DNA聚合酶的5′-外切核酸酶活性切割。探针的切割导致报告染料的荧光强度增加。
依赖于使用能量转移的检测扩增产物的另一种方法是“信标探针”方法,描述于Tyagi和Kramer,Nature Biotech.14:303-309(1996),其也是美国专利号5,119,801和5,312,728的主题。该方法使用能够形成发夹结构的寡核苷酸杂交探针。在杂交探针的一端上(5′或3′端)存在供体荧光团,且在另一端上存在受体部分。在Tyagi和Kramer方法中,该受体部分是淬灭剂,即该受体吸收由供体释放的能量,但随后其本身不产生荧光。因此,当信标处于开放构象时,供体荧光团的荧光是可检测的,而当信标处于发夹(闭合)构象时,供体荧光团的荧光被淬灭。应用于PCR时,与PCR产物的一条链退火的分子信标探针处于开发构象并检测到荧光,而保持未杂交的那些不会产生荧光(Tyagi和Kramer,NatureBiotechnol.14:303-306(1996))。结果,荧光的量将随着PCR产物的量的增加而增加,因而可用作PCR进程的测量。本领域技术人员将理解定量扩增的其他方法也是可得的。
用于进行核酸定量扩增的多种其他技术也是已知的。例如,一些方法采用一种或多种结构化后使得寡核苷酸退火至靶核酸时产生荧光变化的探针寡核苷酸。例如,一种这样的方法包括利用荧光能量共振转移(FRET)的二元荧光团方法,例如LightCyclerTM杂交探针,其中两个寡探针与扩增子退火。寡核苷酸设计成在离开与高效的能量转移相容的距离处以头-尾取向与荧光团杂交。结构化形成当与核酸结合或者掺入延伸产物中时发射信号的标记的寡核苷酸的其他例子包括:ScorpionsTM探针(例如,Whitcombe等,NatureBiotechnology 17:804-807,1999,和美国专利号6,326,145),SunriseTM(或AmplifluorTM)探针(例如,Nazarenko等,Nuc.Acids Res.25:2516-2521,1997,和美国专利号6,117,635),以及形成次级结构导致信号降低而没有淬灭剂并且与靶标杂交时发射信号增强的探针(例如Lux probesTM)。
在其他实施方式中,可以使用插入双链DNA时产生信号的插入试剂。示例性的试剂包括SYBR GREENTM、SYBR GOLDTM和EVAGREENTM。由于这些试剂不是模板特异性的,推定基于模板特异性扩增产生信号。这可以通过监测温度导致的信号变化得到证实,因为模板序列的熔点通常比例如引物-二聚体等高很多。
在一些实施方式中,由样品中的核苷酸测序拷贝确定DNA区域的量,然后确定样品中具有相同序列的拷贝的相对数或绝对数。虽然可使用标准Sanger双脱氧或其他核苷酸测序方法,使用高通量测序法对于富集片段的测序是特别有效的,例如,新一代测序方法如HiSeqTM、MiSeqTM、或基因组分析仪(Genome Analyzer)(各自购自亿明达(Illumina))、SOLiDTM或Ion TorrentTM(各自购自生命技术公司(Life Technologies))和454TM测序(来自罗氏诊断公司(Roche Diagnostics))。参见,例如,WO 03/004690、WO 03/054142、WO 2004/069849、WO 2004/070005、WO 2004/070007、WO 2005/003375、WO0006770、WO0027521、WO0058507、WO0123610、WO0157248、WO0157249、WO02061127、WO03016565、WO03048387、WO2004018497、WO2004018493、WO2004050915、WO2004076692、WO2005021786、WO2005047301、WO2005065814、WO2005068656、WO2005068089、WO2005078130、和Seo等,Proc.Natl.Acad.Sci.USA(2004)101:5488-5493。在一些实施方式中,测序包括单分子实时(SMRT)测序。SMRT测序是在其催化与模板核酸链互补的荧光标记的核苷酸纳入时实时观察单DNA聚合酶分子的过程。SMRT测序的方法是本领域已知的并且初始描述于Flusberg等,Nature Methods,7:461-465(2010),其通过引用纳入本文用于所有目的。
在一些实施方式中,确定了基于靶RNA或DNA的扩增子的核苷酸序列。核酸测序的方法是本领域已知的。序列分析的示例包括,但不限于,Maxam-Gilbert测序、Sanger测序、毛细管阵列DNA测序、热循环测序(Sears等,Biotechniques,13:626-633(1992))、固相测序(Zimmerman等,Methods Mol.Cell Biol.,3:39-42(1992))、与质谱如基质辅助激光解吸/电离飞行时间质谱法联用的测序(MALDI-TOF/MS;Fu等,Nature Biotech.,16:381-384(1998))、和通过杂交测序(Chee等,Science,274:610-614(1996);Drmanac等,Science,260:1649-1652(1993);Drmanac等,Nature Biotech.,16:54-58(1998))。在一些实施方式中,通过单分子实时(SMRT)测序对扩增子进行测序。SMRT测序是在其催化与模板核酸链互补的荧光标记的核苷酸纳入时实时观察单DNA聚合酶分子的过程。SMRT测序的方法是本领域已知的并且初始描述于Flusberg等,Nature Methods,7:461-465(2010),其通过引用纳入本文用于所有目的。
在一些实施方式中,核苷酸测序不包括对DNA区域的模板依赖性复制。在一些实施方式中,通过纳米孔测序对扩增子进行测序。纳米孔测序是多核苷酸或核酸片段在施加的电势下通过孔(如蛋白质孔)同时记录通过孔的离子电流的调节的过程。纳米孔测序的方法是本领域已知的;参见,例如,Clarke等,Nature Nanotechnology 4:265-270(2009),其通过引用纳入本文用于所有目的。
在一些实施方式中,扩增子与另一个核酸杂交。在一些实施方式中,核酸连接到固体支持物。例如,在一些实施方式中,DNA杂交至微阵列。例如,在监测DNA中多个序列的存在、缺失或量中,可使用微阵列。在一些实施方式中,来自不同样品的DNA可杂交至一个或多个核酸,从而确定样品之间一个或多个特定序列的不同量。因此,例如,可比较病态和健康的细胞,或在不同时间获得的细胞,或在治疗前后或期间的细胞。
上述RNA检测方法的变体包括使用2个短靶RNA用作互相的逆转录引物。该方面例示于图6。在该实施方式中,提供了包含至少2种不同序列的RNA的混合物。该混合物可具有不同序列的超过2种RNA。由于RNA可能在序列上互相无关,它们将不必以未修饰的形式互相退火。因此,在仅核苷酸A/T或仅G/C存在下,混合物中的RNA可经过末端转化酶(TdT)(模板独立的核苷酸聚合)。所得的3’加尾RNA分子将具有聚-W(A/T)或聚-S(G/C)3’尾。TdT具有较低的效率以向RNA分子的3’末端添加DNA,因此,在一些实施方式中,可使用酵母聚-A聚合酶来向RNA分子的3’末端添加几个(例如,约3nt)DNA-A序列以产生具有非常短3’末端DNA尾的RNA/DNA杂合体,其可用作TdT的底物。由于尾的随机天然和低复杂性,该尾将允许3’尾中的一些退火至其他3’尾,使得RNA对互为引物。除了末端转移酶以外,在一些实施方式中,聚A聚合酶(其催化向RNA的3’末端从ATP到AMP的模板独立添加,参见,例如,Martin和Keller,RNA 4:226-230(1998)),例如,酵母聚A聚合酶包括在末端转移酶反应中。在一些实施方式中,初始时设置反应温度,使得聚A聚合酶有活性并随后改变该温度,使得末端转移酶有活性。聚A聚合酶的纳入可向RNA提供几个A核苷酸,使其成为末端转移酶的更好底物。可通过包含RNA酶H或逆转录酶的固有RNA酶H活性以生成具有5’聚-W或G尾的单链互补cDNA来去除靶RNA序列。cDNA可随后如上所述检测,例如,通过PCR、qPCR、或基于杂交的方法如微阵列,或基于测序的方法,包括但不限于RNAseq或新一代测序方法,如上所述。
在单独的实施方式中,可通过使用短、任选加尾的引物的初始逆转录步骤来扩增短靶RNA。该短引物具有与靶RNA 3’末端互补的至少3’部分,和任选的不与靶RNA互补的5’部分,并且相反将发挥长度增链剂的作用。该方面例示于图5。具有加尾引物的逆转录产生包含与加尾引物的“尾”互补的额外核苷酸的cDNA。可随后使用退火至cDNA的序列的加尾引物和正向引物(理想地,在其3’末端处或附近)来扩增cDNA。
上述方法对于扩增非常短的RNA特别有用,例如,具有25或更少核苷酸,例如,20-25个核苷酸的长度的RNA。RT-PCR是监测mRNA表达水平的强力工具,然而,由于极短的长度(miRNA一般范围是21-25nt),该方法不能直接或容易地对miRNA和其他非常短(25nt或更少核苷酸)的RNA实施。一般的PCR引物需要超过17nt以在得到Taq聚合酶的支持的PCR反应中有效发挥作用,并且需要2种引物来支持指数型扩增。因此,miRNA(或相应cDNA)的长度太短无法容纳2个标准引物。然而,已经发现与具有小核苷酸足迹(4-6个核苷酸)的DNA结合结构域连接的具有小核苷酸足迹(例如,6-10个核苷酸的长度)的聚合酶允许使用短至12或更少(例如,10,11个)核苷酸的长度的引物。如上所述,一种示例性的具有小核苷酸足迹的聚合酶是Taq聚合酶的Stoffel片段或来自另一种热稳定(例如,A家族)聚合酶的类似片段并且一个示例性的DNA结合结构域是Sso7d结构域。因此,上述引物可具有,例如,6、7、8、9、10、11、12,例如,6-12、6-10、9-12个与靶RNA互补的连续核苷酸和任选的不与靶RNA互补的额外“尾”。在一些实施方式中,尾是4、5或6(例如,4-6)个核苷酸,虽然尾也可以更长或更短。正向引物也可设计成具有8、10、11、12、13、14、15或16(例如,8-15或12-16)或更多个核苷酸,从而使得正向和加尾引物存在于cDNA或互补序列上以允许高效扩增。任选地,加尾引物和正向引物将重叠1、2、3或更多碱基对。参见图5的部分B。在一些实施方式中,
事实上,连接至小核苷酸足迹DNA结合结构域的小核苷酸足迹聚合酶还可以类似的方式使用以扩增任何短聚核苷酸。例如,福尔马林或甲醛固定,石蜡包埋(FFPE)的组织可含有高度片段化的多核苷酸(RNA或DNA),其对于使用标准PCR试剂如Taq聚合酶扩增而言可能是一种挑战。因此,上述用于扩增短RNA的方法可类似地用于扩增短(例如,20-25个核苷酸)DNA序列,包括但不限于FFPE样品中的那些。
可使用在重组遗传学领域中使用的常规条件来进行许多上述步骤(例如,逆转录、扩增等)。公开本发明所用一般方法的基础文本包括Sambrook和Russell,MolecularCloning,A Laboratory Manual(《分子克隆,实验室手册》)(第3版,2001);Kriegler,GeneTransfer and Expression:A Laboratory Manual(《基因转移和表达:实验室手册》)(1990);以及Current Protocols in Molecular Biology(《新编分子生物学实验指南》)(Ausubel等编,1994-1999))。
样品可以是含有短RNA的任何混合物。在许多实施方式中,样品衍生自生物流体、细胞或组织。该样品可以是粗的或纯化的。在一些情况中,该样品是来自一个或多个细胞的RNA的制备物。在一些实施方式中,细胞是动物细胞,包括但不限于人或非人哺乳动物细胞。非人哺乳动物细胞包括但不限于灵长类细胞、小鼠细胞、大鼠细胞、猪细胞和牛细胞。在一些实施方式中,细胞是植物或真菌(包括但不限于酵母)细胞。细胞可以是,例如,培养的原代细胞、永生化培养细胞或者可来自活检或组织样品的细胞,任选地经培养和刺激以在试验之前分裂。在透化和/或DNA修饰步骤之前和/或期间,培养的细胞可处于悬浮或粘附状态。细胞可来自动物组织、活检等。例如,细胞可来自肿瘤活检。
在一些实施方式中,样品包括仅具有降解的,或者由于核酸降解而难以扩增的可扩增短区域(例如,其中靶区域具有少于50、40、30、25、或20个连续可扩增核苷酸)的RNA或DNA靶标。例如,由于固定,福尔马林固定的样品可仅具有核酸的短序列。在其他实施方式中,在阅读了本文所述方法的扩增比一般可在PCR中扩增的序列短的序列的能力之后,可通过该方法扩增已经暴露于降解核酸的化学或温度条件的以往核酸样品。
实施例
实施例1:通过基于miRNA的引发(priming)来生成miRNA-特异性cDNA的模型系统。
模拟天然存在的miRNA尺寸的22个核苷酸的长度的短合成RNA分子(RNA1,5’GCAUCAGCGACACACUCAAGAG)退火至较长的合成RNA(RNA2,38nt长,5’UGAUGACCCCAGGUAACUCUUGAGUGUGUCGCUGAUGC)的3’部分,留下单链的RNA2的5’部分。然后,RNA2(2nM)和RNA1(20pM)与逆转录试剂(iScript cDNA合成试剂盒,SuperScript III,和与RNA酶H预混合的SuperScript III)混合,并且按照相应试剂盒的生产商的推荐孵育。随后,向含有1xDyNamo qPCR主混合物和250nM的各PCR引物(PCR1:5’GCATCAGCGAC和PCR2:5’CTCTTGAGTGTG)的qPCR反应中添加2μl稀释(25倍)的逆转录反应。对整个混合物进行推荐用于DyNamo主混合物的扩增方案并在实时PCR设备(CFX384)上分析。结果显示,当在逆转录步骤期间没有添加RNA底物时,仅观察到非特异性扩增。当在逆转录中存在两种RNA时,观察到预计靶标的扩增。此外,当使用的逆转录酶具有高RNA酶H活性(酶所固有(iScript逆转录酶)或通过掺混(SuperScript III+RNA酶H))时,比采用RNA酶H活性减弱的逆转录酶(RTase)(SueprScript III)的情况更早地观察到Cq值。结果支持(1)短RNA链(例如,该实施例中的RNA1)可用作逆转录反应的引物以延伸长RNA模板(例如,该实施例中的RNA2),以产生RNA-DNA杂合体,(2)逆转录酶的RNA酶H活性切割或使RNA-DNA碱基配对涉及的RNA(作为RNA2的部分)产生切口,其生成可经延伸以产生原始短RNA链(RNA1)的cDNA的其他短RNA引物,和(3)该cDNA然后可通过常规qPCR扩增以允许对该短RNA的原始输入量进行定量。
实施例2:没有逆转录引物的miRNA定量
合成miR-16(200pM)与(100ng)含有低量的小分子量RNA(例如,miRNA、snoRNA等)的纯化Hela RNA混合,其然后经过使用iScript cDNA合成试剂盒中的MMLV逆转录酶和缓冲液(包含10%甘油以及dATP和dTTP各自900μM,dGTP和dCTP各自450μM的缓冲液)的逆转录。作为对照,100ng的上述Hela RNA和合成miR-16也单独(没有混合在一起)经过使用相同试剂的逆转录。随后,使用SsoAdvanced Universal SYBR Green Supermix(伯乐公司(Bio-Rad,Inc))分析2μl的稀释(25倍)的逆转录反应,并且在实时PCR设备(CFX96)上分析针对miR-16的特异性引物(hsamiR16BF:5’GGGGTAGCAGCACGTA;hsamiR16BR:5’GGGGCGCCAATATTTAC)。结果显示,当在逆转录步骤期间没有添加引物时,仅在其存在于与Hela RNA的混合物中时,高效检测到掺入的miR-16(参见下表)。该结果表明,miR-16可采用其他RNA分子作为模板并且发挥待被逆转录酶延伸的引物的作用,并生成RNA-DNA融合物。可通过切割RNA-DNA融合物的DNA区相对的RNA链来生成其他逆转录引物,由此能够生成针对原始miR-16 RNA的cDNA。然后可使用miR-16特异性引物扩增cDNA,导致qPCR中可检测到的扩增。
表1.结果总结
Figure BDA0001227700070000241
实施例3:通过半简并引发的miRNA扩增
在改良的缓冲液(包含10%甘油以及dATP和dTTP各900μM,dGTP和dCTP各450μM)存在下,合成miR-16 RNA(2-200pM)与含有末端脱氧转移酶、酵母聚A聚合酶和MMLV逆转录酶的酶混合物混合。该混合物然后经过37℃下孵育20分钟(允许酵母聚A聚合酶发挥作用),25℃下孵育15分钟(允许TdT酶发挥作用),37℃下孵育20分钟(允许逆转录酶发挥作用),和85℃下孵育5分钟(灭活所有酶)。随后,在250nM的miR-16-特异性引物(与实施例2相同)存在下向SsoAdvanced Universal SYBR Green Sueprmix中添加2μl的上述反应(稀释25倍),并在实时设备(CFX96)设备上扩增并分析。作为阳性对照,使用相同试剂和引物平行扩增合成miR-16 cDNA。结果显示,含有合成miR-16 RNA或miR-16 cDNA的反应产生阳性扩增信号。基于解链曲线分析,来自基于mir-16 RNA的反应的扩增产物的Tm(80℃)显著高于阳性对照反应的Tm(72℃)。
为了确定来自基于miR-16 RNA的反应的扩增产物的特性,将该产物克隆到TOPO载体中,并且对11个克隆进行测序。miR-16序列以高度相同性与11个克隆各自含有的序列比对上。结果表明,当使用TdT和酵母聚A聚合酶的组合延伸miR-16的3’末端以包含半简并序列时,来自不同延伸的分子的半简并区可退火至彼此并用作逆转录反应中的引物,由此使得针对miR-16的cDNA生成并随后在qPCR中扩增。
实施例4:使用短引物和Sso-融合聚合酶对miRNA cDNA进行qPCR扩增
合成miR-16 cDNA(22nt,5’TAGCAGCACGTAAATATTGGCG,以20pM)用作起始模板。其与250nM的各两种miR16-特异性PCR引物16Cfor(11nt,5’TAGCAGCACGT)和16Crevc(12nt,5’CGCCAATATTTA),和DyNAmo qPCR supermix混合,其含有与Tbr聚合酶的聚合酶结构域融合的Sso7结构域的融合聚合酶。对该混合物施予以下扩增方案:95℃-15分钟,94℃-10秒,45x(41℃-20秒,60℃-10秒)。成功扩增预定靶标,针对扩增的产物,产生21的Cq值和62℃的Tm。该实施例证明Sso-融合聚合酶可高效利用非常短的引物(例如,11-12nt长)以支持PCR扩增。
实施例5:在PCR中Sso-融合聚合酶可更高效利用短引物
在野生型Taq聚合酶(Taq,1单位/反应)或与Stoffel片段的Sso7d融合物(Sst,1单位/反应)存在下,λDNA(2.5ng/反应)作为模板与PCR引物(各150nM)一起使用。使用的引物是732R16(16nt,5’TTCGATATATTCACTC)和57F12(12nt,5’TTCGTCATAACT)。最后的反应缓冲液含有20mM Tris(pH 8.4)、50mM KCl、2mM MgCl2、和0.2mM的各dNTP。退火温度在46℃至64℃之间梯度变化并且之后是72℃下的延伸。通过在扩增完成之后向反应添加dsDNA结合染料来确定扩增的产物的量,并在荧光酶标仪上分析。荧光信号的强度与扩增的产物的量和PCR扩增的效率相关联。当使用的退火温度为46℃至50℃时,由Sst融合聚合酶产生的扩增产物产生9000单位的荧光信号,而野生型Taq聚合酶的荧光信号低于1000单位。此外,当在12nt引物的5’末端处的第一(57F12/1,gTCGTCATAACT)或第二残基(57F12/2,TgCGTCATAACT)中引入错配时,Sst仍然支持高效扩增并且产生与完全互补的12nt引物相比相似量的扩增的产物。这表明,在PCR扩增中,Sst可利用短于12nt的引物。
本文引用的所有文件(例如,专利、专利申请、书籍、期刊论文或其它公开物)通过引用全文纳入本文以用于所有目的,就好像将各篇单独的文件特定且单独地通过引用全文纳入本文用于所有目的一样。对于通过引用纳入的此类文件与本说明书中所含公开内容相矛盾的内容,均意于以本说明书为准和/或本说明书优先于任何相矛盾的材料。
可获得本发明的多种修改形式和变化形式而不背离本发明的精神和范围,这对于本领域技术人员而言是显见的。本文所述的的具体实施方式仅起示例作用,且不意于构成任何方式的限制。
Figure IDA0001227700140000011
Figure IDA0001227700140000021

Claims (21)

1.一种扩增短RNA分子的方法,所述方法包括,
获得包含短RNA靶分子的RNA样品;
使包含所述短RNA靶分子的样品和至少一种含RNA的模板分子与逆转录酶接触,其中所述短RNA靶分子退火至所述含RNA的模板分子并且所述逆转录酶通过延伸退火的单链短RNA靶分子来逆转录所述含RNA的模板分子,以形成包含退火至模板RNA分子的单链短RNA靶分子/cDNA杂合多核苷酸的双链体;
使所述双链体接触RNA酶H活性,从而在该双链体中的退火至单链短RNA靶分子/cDNA杂合多核苷酸的脱氧核糖核苷酸的含RNA的模板分子的部分中切下核糖核苷酸;
通过用逆转录酶延伸退火至单链短RNA靶分子/cDNA杂合多核苷酸的第一寡核苷酸引物,来逆转录短RNA靶分子/cDNA杂合多核苷酸的至少短RNA靶分子部分,以形成包含与所述短RNA靶分子互补的序列的DNA分子;和
用DNA聚合酶扩增包含与所述短RNA靶分子互补的序列的DNA分子,从而扩增所述短RNA靶分子,
所述含RNA的模板分子是来自样品的天然产生的RNA分子,其中所述第一寡核苷酸引物具有12-16个核苷酸并且包含不与单链短RNA靶分子/cDNA杂合多核苷酸互补的5’部分和与单链短RNA靶分子/cDNA杂合多核苷酸互补的3’部分,或
所述含RNA的模板分子对于所述样品是异源的,其中所述含RNA的模板分子包含(i)与短RNA靶分子互补并且包含RNA的3’部分和(ii)当含RNA的模板分子退火至该短RNA靶分子时形成5’突出端的5’部分。
2.如权利要求1所述的方法,其特征在于,从外源性来源添加所述第一寡核苷酸引物。
3.如权利要求1所述的方法,其特征在于,所述短RNA靶分子是miRNA、snoRNA、piRNA、或lncRNA。
4.如权利要求1所述的方法,其特征在于,短RNA靶分子长度为30个或更少核苷酸。
5.如权利要求1所述的方法,其特征在于,所述含RNA的模板分子是来自样品的天然产生的RNA分子。
6.如权利要求5所述的方法,其特征在于,所述第一寡核苷酸引物具有12-16个核苷酸并且包含不与单链短RNA靶分子/cDNA杂合多核苷酸互补的5’部分和与单链短RNA靶分子/cDNA杂合多核苷酸互补的3’部分。
7.如权利要求5所述的方法,其特征在于,所述第一寡核苷酸引物包含与单链短RNA靶分子/cDNA杂合多核苷酸互补的至少6个核苷酸的长度。
8.如权利要求6所述的方法,其特征在于,第一寡核苷酸引物的3’部分长度为6-10个核苷酸。
9.如权利要求6或8所述的方法,其特征在于,所述第一寡核苷酸引物的5’部分长度为3-6个核苷酸。
10.如权利要求5所述的方法,其特征在于,所述DNA聚合酶具有6-10个核苷酸的DNA足迹。
11.如权利要求10所述的方法,其特征在于,所述DNA聚合酶连接至具有4-6个核苷酸的DNA足迹的DNA-结合结构域。
12.如权利要求1所述的方法,其特征在于,所述含RNA的模板分子对于所述样品是异源的。
13.如权利要求12所述的方法,其特征在于,所述含RNA的模板分子包含(i)与短RNA靶分子互补并且包含RNA的3’部分和(ii)当含RNA的模板分子退火至该短RNA靶分子时形成5’突出端的5’部分。
14.如权利要求13所述的方法,其特征在于,除了与3’部分连接的5’部分的1-2个核糖核苷酸部分以外,所述5’部分是DNA。
15.如权利要求14所述的方法,其特征在于,所述第一寡核苷酸引物是通过RNA酶H活性释放的5’DNA部分。
16.如权利要求13所述的方法,其特征在于,所述3’部分和5’部分是RNA。
17.如权利要求13所述的方法,其特征在于,样品的接触包括使包含短RNA靶分子的样品与具有5’部分和3’部分的多个含RNA的模板分子接触,其中所述3’部分包含至少4个核苷酸的简并序列,使得所述多个模板分子包含具有不同3’部分和相同5’部分的多样的含RNA的分子。
18.如权利要求1所述的方法,其特征在于,向所述双链体添加RNA酶H酶,从而使所述双链体与RNA酶H活性接触。
19.如权利要求1所述的方法,其特征在于,RNA酶H酶来自逆转录酶。
20.如权利要求1所述的方法,其特征在于,扩增包括生成扩增子,并且所述方法还包括对所述扩增子进行核苷酸测序。
21.如权利要求1所述的方法,所述方法还包括对所述样品中的短RNA靶分子的量进行定量。
CN201580044409.6A 2014-08-19 2015-08-17 Rna扩增方法 Expired - Fee Related CN106661632B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462039094P 2014-08-19 2014-08-19
US62/039,094 2014-08-19
PCT/US2015/045480 WO2016028671A1 (en) 2014-08-19 2015-08-17 Rna amplification methods

Publications (2)

Publication Number Publication Date
CN106661632A CN106661632A (zh) 2017-05-10
CN106661632B true CN106661632B (zh) 2021-11-05

Family

ID=55347789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580044409.6A Expired - Fee Related CN106661632B (zh) 2014-08-19 2015-08-17 Rna扩增方法

Country Status (4)

Country Link
US (2) US10072285B2 (zh)
EP (2) EP3473730B1 (zh)
CN (1) CN106661632B (zh)
WO (1) WO2016028671A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017268369B2 (en) * 2016-05-18 2022-09-01 Integrated Nano-Technologies, Inc. Method for detection of a PCR product
CN108129571A (zh) * 2017-12-25 2018-06-08 上海捷瑞生物工程有限公司 Taq DNA连接酶融合蛋白
CN109234813B (zh) * 2018-09-11 2021-11-16 南京迪康金诺生物技术有限公司 一种构建链特异rna文库的方法及应用
CN110055316A (zh) * 2019-03-28 2019-07-26 天津大学 一种用于检测微小rna的由末端脱氧核苷酸转移酶介导的反转录pcr方法
EP3901286A1 (en) * 2020-04-24 2021-10-27 Mirnax Biosens, S.L. Bivalent reverse primer
WO2021089643A1 (en) * 2019-11-04 2021-05-14 Mirnax Biosens, S.L. Bivalent reverse primer
CN113140255B (zh) * 2021-04-19 2022-05-10 湖南大学 一种预测植物lncRNA-miRNA相互作用的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627424B1 (en) 2000-05-26 2003-09-30 Mj Bioworks, Inc. Nucleic acid modifying enzymes
AU2002351198B2 (en) 2001-11-28 2008-08-14 Bio-Rad Laboratories, Inc. Methods of using improved polymerases
WO2005010159A2 (en) * 2003-07-17 2005-02-03 Children's Hospital Medical Center Rolling circle amplification of micro-rna samples
WO2007035684A2 (en) 2005-09-16 2007-03-29 Primera Biosystems, Inc. Method for quantitative detection of short rna molecules
US8580494B2 (en) * 2006-08-25 2013-11-12 Research Foundation For Mental Hygiene, Inc. Methods and compositions for amplification and detection of MicroRNAs
US20080194416A1 (en) 2007-02-08 2008-08-14 Sigma Aldrich Detection of mature small rna molecules
US20080241831A1 (en) * 2007-03-28 2008-10-02 Jian-Bing Fan Methods for detecting small RNA species
WO2009036332A1 (en) 2007-09-14 2009-03-19 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
US8338094B2 (en) * 2007-11-27 2012-12-25 Bio-Rad Laboratories, Inc. Reduced inhibition of one-step RT-PCR
CN101952461B (zh) * 2008-01-14 2017-12-05 应用生物系统有限公司 用于检测核糖核酸的组合物、方法和试剂盒
US8962253B2 (en) 2009-04-13 2015-02-24 Somagenics Inc. Methods and compositions for detection of small RNAs
CN101633957A (zh) * 2009-06-26 2010-01-27 北大工学院绍兴技术研究院 用于检测小rna的方法及试剂盒
US8618253B2 (en) * 2010-05-25 2013-12-31 Samsung Techwin Co., Ltd. Modified RNAse H and detection of nucleic acid amplification
US9012183B2 (en) * 2011-02-23 2015-04-21 Board Of Regents, The University Of Texas System Use of template switching for DNA synthesis
US20130231261A1 (en) 2012-02-17 2013-09-05 Institute For Systems Biology Rnase h-based rna profiling

Also Published As

Publication number Publication date
CN106661632A (zh) 2017-05-10
EP3473730B1 (en) 2020-06-24
EP3473730A1 (en) 2019-04-24
EP3183364A4 (en) 2017-11-29
US11021735B2 (en) 2021-06-01
EP3183364A1 (en) 2017-06-28
EP3183364B1 (en) 2018-11-28
WO2016028671A1 (en) 2016-02-25
US20160053305A1 (en) 2016-02-25
US20180305739A1 (en) 2018-10-25
US10072285B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
CN106661632B (zh) Rna扩增方法
US11466315B2 (en) Fast PCR for STR genotyping
US20210155922A1 (en) Methods for adding adapters to nucleic acids and compositions for practicing the same
US20210381042A1 (en) Methods for Adding Adapters to Nucleic Acids and Compositions for Practicing the Same
JP4918409B2 (ja) 核酸配列の増幅方法
JP6144697B2 (ja) 改善された活性を有するdnaポリメラーゼ
CN112689673A (zh) 转座体使能的dna/rna测序(ted rna-seq)
JP6970205B2 (ja) Dnaおよびrnaの同時濃縮を含むプライマー伸長標的濃縮およびそれに対する向上
JP6140182B2 (ja) 改善された活性を有するdnaポリメラーゼ
JP6224613B2 (ja) 改善された活性を有するdnaポリメラーゼ
US20140093878A1 (en) Mutant endonuclease v enzymes and applications thereof
WO2022121754A1 (zh) 一种检测一种或多种聚合酶活性的方法
WO2022120914A1 (zh) 一种检测样品中一种或多种核酸分子扩增产物长度的方法
US7344834B2 (en) Method for DNA amplification using DNA blocking probes
KR101768948B1 (ko) 엑소뉴클레아제 활성이 결여된 폴리머라제를 이용한 fret 기반의 핵산검출 방법
US20220170094A1 (en) Single tube preparation of dna and rna for sequencing
US10781481B2 (en) miRNA transcriptome methods and compositions
CN118834937A (zh) 核酸恒温扩增方法及试剂盒
CN117144067A (zh) 用于多重化核酸检测的组合物和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211105