CN106654323A - 恢复阳极污染造成的电压损失的方法和工艺 - Google Patents

恢复阳极污染造成的电压损失的方法和工艺 Download PDF

Info

Publication number
CN106654323A
CN106654323A CN201610909552.3A CN201610909552A CN106654323A CN 106654323 A CN106654323 A CN 106654323A CN 201610909552 A CN201610909552 A CN 201610909552A CN 106654323 A CN106654323 A CN 106654323A
Authority
CN
China
Prior art keywords
anode
time
predetermined period
fuel cell
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610909552.3A
Other languages
English (en)
Inventor
P·T·余
J·张
B·阿克什曼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN106654323A publication Critical patent/CN106654323A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

一种用于减少燃料电池中的燃料电池电压损失的方法,所述燃料电池包括:阳极催化剂层,其包括阳极催化剂;以及阴极催化剂层,其包括阴极催化剂,其中质子交换层插置在所述阳极催化剂层与所述阴极催化剂层之间。所述方法包括启动所述燃料电池的关闭的步骤。在关闭期间氧化污染所述阳极催化剂的一氧化碳或一氧化碳类的物质,使得从所述阳极催化剂除去一氧化碳或一氧化碳类的物质。

Description

恢复阳极污染造成的电压损失的方法和工艺
技术领域
在至少一个实施方案中,本发明涉及用于恢复燃料电池中阳极电压损失的方法。
背景技术
燃料电池在诸多应用中被作用电源。特别是,人们提出将燃料电池用在汽车中替代内燃机。一种常用的燃料电池设计采用固体聚合物电解质(“SPE”)膜或者质子交换膜(“PEM”)来提供阳极和阴极之间的离子传输。
在质子交换膜型的燃料电池中,氢作为燃料被提供至阳极,氧作为氧化剂被提供至阴极。氧可以是纯氧(O2)或者空气(O2和N2的混合物)。PEM燃料电池通常具有膜电极组件(“MEA”),其中固体聚合物膜在一个表面上具有阳极催化剂,在相反面具有阴极催化剂。典型的PEM燃料电池的阳极和阴极层由多孔导电材料例如编织石墨、石墨化片材或碳素纸制成从而使燃料和氧化剂能分别分散在面朝供应燃料和氧化剂的电极的膜表面上。每个电极都具有负载在碳颗粒上的细磨的催化剂颗粒(如铂颗粒)以促进氢在阳极的氧化和氧在阴极的还原。质子从阳极通过离子导电聚合物膜流向阴极,并在阴极处它们与氧气结合生成水,而所述水从电池中排出。MEA被夹在一对多孔气体扩散层(“GDL”)之间,多孔气体扩散层反过来被夹在一对导电元件或板之间。板起着阳极和阴极集电器的作用,并且包括适量的通道和由一对导电元件或板构成的开口。板起着阳极和阴极集电器的作用,并且包括适量的通道和形成于其中的开口,用于在各自的阳极和阴极催化剂的表面上分配燃料电池的气态反应物。为了有效地产生电力,PEM燃料电池的聚合物电解质膜必须为薄的、化学稳定的、可传输质子的、不导电且不透气的。在典型的应用中,燃料电池以多个独立的燃料电池堆的阵列而设置,以提供高水平的电力。
PEM燃料电池中的低负载Pt阳极非常易受CO或者类CO物质的污染,这阻碍了氢气氧气反应动力学并造成性能损失。例如,阳极催化剂的一氧化碳污染导致燃料电池中的电压下降。目前没有明确的用于燃料电池堆/模块操作的阳极恢复程序。
因此,有必要将阳极恢复程序建立到燃料电池系统操作中,以恢复阳极电极污染造成的性能损失。
发明内容
本发明通过在至少一个实施方案中提供用于减少燃料电池或燃料电池的堆中的阳极电压损失的方法,解决了现有技术中的一个或多个问题。燃料电池包括质子交换层、阳极侧和阴极侧,阳极侧包括阳极催化剂层,阴极侧具有阴极催化剂层,阳极催化剂层包括阳极催化剂,阴极催化剂层包括阴极催化剂。质子交换层插置在阳极催化剂层和阴极催化剂层之间。扩散层和流场位于每一个催化剂层上方。代表性的是,催化剂层特别是阳极催化剂层中含有的阳极催化剂(即,铂族金属)由于污染而容易产生电压损失。通常情况下,多个这样的燃料电池被合并成一个堆。本实施方案的方法包括启动燃料电池或包括多个燃料电池的燃料电池堆的关闭的步骤。在关闭期间,燃料电池中一氧化碳或一氧化碳类污染物被氧化,使得一氧化碳从所述阳极催化剂中被除去。恢复阳极电压损失不仅有利于堆的耐用性,也有利于操作的稳健性和燃料效率。
在另一个实施方案中,提供了一种实施本文上述方法的燃料电池系统。该燃料电池系统包括燃料电池堆,所述燃料电池堆包括多个燃料电池。每个燃料电池包括质子交换层、阳极侧和阴极侧,阳极侧包括阳极催化剂层,阴极侧具有阴极催化层。阳极催化剂层包括阳极催化剂(例如,铂),阴极催化剂层包括阴极催化剂(铂族金属)。质子交换层插置在阳极催化剂层和阴极催化剂层之间。该燃料电池系统还包括燃料电池控制器,燃料电池控制器启动燃料电池的关闭和在关闭期间阳极催化剂上设置的一氧化碳或一氧化碳类污染物的氧化,使得从阳极催化剂中除去一氧化碳。
附图说明
图1是质子交换膜燃料电池的示意性横截面;
图2是具有图1中所示设计的燃料电池的堆的示意性横截面;
图3是通过本发明的实施方案将一氧化碳氧化成二氧化碳的图示;
图4是描绘用于通过受控的匮乏(starvation)增加阳极电势以及恢复燃料电池中电池电压的方法的流程图;
图5是对于图4的方法的燃料电池电压随时间变化的曲线图;
图6是描绘用于在启动燃料电池关闭时通过受控的吹气将氧气引入到阳极并恢复燃料电池中电池电压的方法的流程图;
图7是对于图6的方法的燃料电池电压随时间变化的曲线图;
图8是描绘用于在启动燃料电池关闭时通过从阴极到阳极受控的氧气跨越将氧气引入到阳极并恢复燃料电池中电池电压的方法的流程图;
图9是对于图8的方法的燃料电池电压随时间变化的曲线图;
图10是对于强制冷却的循环的电池电压随时间变化的曲线图;
图11是对于强制冷却循环的高频(1kHZ)电阻的曲线图。
具体实施方式
现在详细参考本发明的目前优选的组分、实施方案和方法,其构成发明人目前已知的本发明的最佳实施方式。所述附图并不一定是按比例绘制的。然而,应理解的是所公开的实施方案仅仅是本发明的示例性的,其可以体现为不同的和替代的形式。因此,本文公开的具体细节不应被解释为限制性的,而仅仅作为本发明任意方面的代表性基础和/或作为本领域技术人员多方面地应用本发明的代表性基础。
除了在实施例中,或者另外明确地说明之外,本说明书中表示材料或反应条件和/或用途的量的所有用数字将被理解为以词“大约”修饰的来描述本发明的最宽范围。在所述数值限值范围内的实施通常是优选的。此外,除非有明确相反的表述,百分比、“……的份”以及比值均以重量计;对与本发明有关的给定目的而言为合适或优选的材料的组或类的描述意味着该组或类中任意两个或两个以上成员的混合物是同样合适或优选的;化学术语中成分的描述是指任何时候在说明书的具体组合中添加的成分,且不一定排除混合物一旦混合后成分之间的化学相互作用;首字母缩写或缩写的第一个定义适用于本文所有后续使用的相同缩写,最初定义的缩写的正常语法变型同样适用该原则;以及,除非有明确相反的表述,属性的测量是由与以前或以后引用的相同属性的相同方法所确定的。
还应该理解的是,本发明不局限于以下所述的具体实施方案和方法,因为具体的组分和/或条件当然可以加以改变。此外,在这里使用的术语仅仅用于描述本发明的特定实施方案的目的并且不意图以任何方式加以限制。
还必须注意的是,如说明书和所附权利要求中所使用,单数形式“一”和“所述”包括复数指示物,除非上下文另有清楚指示。举例来说,参考单数组件旨在包括多个组分。
术语“标准电极电势”是指标准状态下的可逆电极的电势(即,所形成的电压),其中,溶质处于1摩尔/升的有效浓度,每种纯固体、纯液体或水(溶剂)的活性是1,每种气态试剂的压力是1个大气压,且温度是25℃。标准电极电势是还原电势。本发明的上下文中,术语“氧化电势”将是在与界定还原电势的反应相反的方向上进行的反应的电势。因此,氧化电势将是在相同条件下发生的反应的还原电势的负数。
参照图1,提供了质子交换燃料电池的示意性横截面。已知这种设计的燃料电池有些容易受到其催化剂层的污染,从而导致性能的损失。燃料电池10包括质子交换层12(例如,质子交换膜)、阳极催化剂层14,和阴极催化剂层16。阳极和阴极催化剂层的厚度通常在1μm到50μm的范围内。质子交换层12、阳极催化剂层14和阴极催化剂层16被统称为膜电极组件。阳极催化剂层14和阴极层16各自独立地包括铂族金属(例如铂、钌、铑、钯、锇和铱)。铂是在质子交换燃料电池中最广泛使用的催化剂。在改进方案中,铂族金属是呈负载在载体颗粒(例如碳颗粒或金属氧化物颗粒)上的细磨的催化剂颗粒(例如,Pt)的形式。在进一步的改进方案中,催化剂颗粒的平均直径是从1nm到100nm,且载体颗粒的平均直径是从20nm到500nm。燃料电池10还包括气体扩散层20和22。阳极流场板24布置在气体扩散层20和阳极催化剂层14上,且阴极流场板26布置在气体扩散层22和阴极催化剂层16上。在操作期间,将来自燃料源30的含有燃料的气体供应到阳极侧32。含有燃料的气体流过在阳极流场板24中形成的流通道34,其进行互连,从而通过出口36离开。含有燃料的气体的流受控制阀38控制。通常,含有燃料的气体包括分子氢作为燃料。类似地,将来自氧气源40的含有氧气的气体供应到燃料电池的阳极侧42。含有氧气的气体流过在阴极流场板26中形成的流通道44,其进行互连,从而通过出口46离开。含有氧气的气体的流受控制阀48控制。通常,含有氧气的气体(例如,空气)包括分子氧。控制阀38和48与燃料电池控制器50处于电子通信。在阳极侧,燃料被氧化,而在阴极侧,氧气被还原。在阳极侧上产生的质子通过质子交换层12被输送到阴极侧。当氢气是燃料时,燃料电池的总体反应是阳极半电池反应和阴极半电池反应的和,如通过以下等式提供的:
2H2+O2→2H2O。
该反应导致在阳极与阴极之间的电压,其中阴极比阳极更正。图2提供了示出具有多个拥有图1的一般设计的燃料电池的燃料电池堆的示意性横截面。具体来说,所述燃料电池堆包括多个燃料电池10。虽然本发明不限于燃料电池堆中的任何特定数目的燃料电池,但通常燃料电池堆包括4到400个燃料电池。
下文陈述的用于恢复燃料电池中的电池电压的方法操作以通过将一氧化碳氧化成二氧化碳而从铂族金属且具体来说是从铂除去一氧化碳或一氧化碳类物质,如图3中所描绘。一般来说,根据本文陈述的方法,通过调整去往阳极侧和阴极侧的燃料电池反应气体流以使得阳极侧的氧化电势达到氧化一氧化碳的电压,或在阳极中或在阳极Pt催化剂表面上存在分子氧,而将一氧化碳氧化。如所说明的,一氧化碳分子52被吸附在铂族金属表面54上。一氧化碳的氧化导致一氧化碳被氧化且随后从铂表面54释放出。一氧化碳的除去允许氢原子56更容易地吸附到铂族金属表面54上。有利的是,在燃料电池堆中的燃料电池的关闭期间实施本文陈述的方法。在此上下文中,“关闭”是指去往阳极的含有燃料的气体和去往阴极的含有氧气的气体的流的切断达到顶峰的过程。
参照图1、4和5,提供了用于通过受控的匮乏来增加阳极电势且恢复燃料电池中的电池电压的方法。图4提供了描绘用于通过受控的匮乏来增加阳极电势且恢复燃料电池中的电池电压的方法的流程图。图5是此实施方案的燃料电池电压的曲线图。在步骤a)中,通过燃料电池控制器50启动燃料电池堆中的燃料电池的电负荷的降低。在此步骤中,首先将所述堆的电流密度减小到例如0.05A/cm2到0.15A/cm2的范围,随后减少供应到阳极的H2的量,使得阳极计量比低于1,即,供应到阳极的H2与产生指定电流所需的H2的摩尔比小于1。在变型中,减少供应到阳极的H2的量,使得供应到阳极的H2与产生指定电流所需的H2的摩尔比在0.9与0.5之间。在一个改进方案中,将去往阳极侧的氢气流量(即,升/秒)减小到小于在燃料电池的操作期间正常使用的流量的50%。在其他改进方案中,将去往阳极侧的氢气流量以优先递增的顺序减小到小于在燃料电池的操作期间正常使用的流量的50%、40%、30%、20%、10%或5%。在另一改进方案中,将去往阳极侧的氢气流量减小到零氢气流量。在此步骤中,燃料电池控制器50将控制信号发送到控制阀38,使得含有燃料的气体(例如,含有氢气的气体)的流量在第一预定时间周期内减小。在改进方案中,所述第一预定时间周期是从1秒到10秒。图5示出了当供应到阳极的H2与产生指定电流所需的H2的摩尔比减小时出现燃料电池电压的下降。由于H2在计量比之下,所以阳极电势(其为相对于标准氢电极的阳极半反应电势)被极化到高于约1V的电势(即,氧化电势),而总的燃料电池电压为约-0.1伏到-0.2伏,如图5中所描绘的。高于0.85V的阳极电势足以电化学地氧化来自Pt表面的CO。在步骤b)中,对于燃料电池电压恢复的第二预定时间周期重新建立去往阳极的氢气流量,如图5中所示的。第二预定时间在第一预定时间之后。在改进方案中,所述第二预定时间周期是从约1秒到10秒。在步骤c)中,完成关闭的剩余步骤。这样的剩余步骤可包括流量的完全停止、燃料电池的冷却,以及燃料电池电子器件的断电。
参照图1、6和7,提供了用于通过受控的含有氧气的气体(例如,空气)奔流将氧气引入到阳极且恢复燃料电池中的电池电压的方法。参照图6,提供了描绘用于恰在关闭之前通过受控的含有氧气的气体(例如,空气)奔流将氧气引入到阳极且恢复燃料电池中的电池电压的方法的流程图。图7提供了此实施方案的燃料电池电压对时间的曲线图。在步骤a)中,通过在第一预定时间周期内拖动燃料电池上的负载的同时停止阴极含有氧气的气体(例如,空气)流,而在关闭之前启动H2接收。在改进方案中,所述第一预定时间周期是从1秒到10秒。在另一改进方案中,所述第一预定时间周期是基本上即时的。最终耗尽了阴极中的氧气,这导致燃料电池电压的下降,如图7中所描绘的。图7描绘了氢气由于阴极侧上的氧气的耗尽而从阳极侧进入到阴极侧中。在步骤b)中,含有氧气的气体(例如,空气)被迫从氧气源40在预定时间周期内进入燃料电池的阳极腔室中,这导致燃料电池电压的下降以及阳极处的氧化电势的同时增加。第二预定时间在第一预定时间之后。在改进方案中,所述第二预定时间周期是从0.1秒到10秒。氧气源40的实例包括到周围空气的阀,或简单且低成本的独立空气泵。一旦阳极暴露于氧气,由于阳极电势高于约0.85V,所以CO物质被化学氧化。在步骤c)中,在第三预定时间周期内使用氢气冲洗阳极腔室以取代阳极中的含有氧气的气体(例如,空气),且所述堆回到为关闭程序的剩余部分就绪的氢气浸泡条件(氢气在质子传导膜12的两侧上)。所述第三预定时间周期在所述第二预定时间周期之后。在改进方案中,所述第一、第二和第三预定时间周期中的每一者独立地是从0.1秒到10秒。
参照图1、图8和图9,提供了用于通过受控的氧气接收将氧气引入到阳极且恢复燃料电池中的电压的方法。参照图8,提供了描绘用于在起始燃料电池关闭时通过受控的氧气接收将氧气引入到阳极且恢复燃料电池中的电池电压的方法的流程图。图9提供了此实施方案的燃料电池电压对时间的曲线图。在步骤a)中,启动关闭,其中在第一预定时间周期内停止阳极气体(例如,含有燃料的气体(例如,氢气))的流量,同时维持去往阴极的含有氧气的气体的流量(例如,压缩机的最小旋转)以维持阴极压力。阴极中的氧气将穿过膜渗透到阳极。一些跨越的氧气与Pt表面上的CO或CO类的物质反应,而剩余氧气与氢气反应。电池电压将最终下降到小于0.1V。在步骤b)中,在第一预定时间周期之后的第二预定时间周期内停止阴极含有氧气的气体(例如,空气)流量。在步骤c)中,在第二预定时间周期之后的第三预定时间周期内恢复去往阳极的氢气流量。在改进方案中,所述第一、第二和第三预定时间周期中的每一个独立地是从1秒到400秒。在步骤d)中,起始关闭过程的剩余步骤。
参照图10和图11,提供了示出强制冷却的效果的曲线图,其中氧气进入燃料电池的阳极侧。在强制冷却中,在停止去往阳极侧和阴极侧的气体流量时,冷却剂降低燃料电池的温度。阳极处的温度的下降导致压力的下降,由此将空气抽入到阳极中。图10是对于强制冷却的循环的电池电压随时间变化的曲线图。图11是对于强制冷却循环的高频(1kHZ)电阻的曲线图。图10示出电池电压在每个冷却循环的起始处增加,而图11示出每个冷却循环的起始处的电阻中的急剧下降。此所需的效果是由于二氧化碳被氧化且由此被从阳极催化剂层中的铂除去。
虽然在上文描述了示例性实施方案,但并不意味着这些实施方案描述本发明的所有可能的形式。而是,说明书中使用的词是描述性的词,而不是限制性的词,且应理解,在不脱离本发明的精神和范围的情况下,可以进行各种变化。另外,可组合各种实施的实施方案的特征以形成本发明的其他实施方案。

Claims (10)

1.一种用于减少燃料电池的阳极电压损失的方法,所述燃料电池包括:质子交换层;阳极侧,其包括阳极催化剂层;和阴极侧,其具有阴极催化剂层,所述阳极催化剂层包括阳极催化剂,且所述阴极催化剂层包括阴极催化剂,所述质子交换层插置在所述阳极催化剂层与所述阴极催化剂层之间,所述方法包括:
启动所述燃料电池的关闭;以及
在操作或关闭期间氧化设置在所述阳极催化剂上的一氧化碳,使得从所述阳极催化剂除去所述一氧化碳。
2.根据权利要求1所述的方法,其中所述阳极催化剂是铂族金属。
3.根据权利要求1所述的方法,其中所述阳极催化剂是铂。
4.根据权利要求1所述的方法,其中通过调整去往所述阳极侧和所述阴极侧的燃料电池反应气体流量,使得所述阳极侧的氧化电势达到氧化一氧化碳的电压,而氧化一氧化碳。
5.根据权利要求4所述的方法,其中通过在第一预定时间周期内减少去往所述阳极侧的氢气流量而氧化一氧化碳。
6.根据权利要求5所述的方法,其中将所述氢气流量减少到小于在正常燃料电池操作期间使用的流量的50%。
7.根据权利要求5所述的方法,其进一步包括在所述第一预定时间周期之后的第二预定时间周期内重新建立去往所述阳极侧的氢气流量。
8.根据权利要求4所述的方法,其中通过以下操作来氧化一氧化碳:
a)在第一预定时间周期内具有所述燃料电池上的负荷的同时停止去往所述阴极侧的含有氧气的气体流量;
b)在第二预定时间周期内将含有氧气的气体引入到所述阳极侧,使得氧化一氧化碳,所述第二预定时间周期在所述第一预定时间周期之后;以及
c)在所述第二预定时间周期之后的第三预定时间周期内使用氢气冲洗所述阳极侧。
9.根据权利要求8所述的方法,其中所述含有氧气的气体是空气。
10.根据权利要求4所述的方法,其中通过以下操作来氧化一氧化碳:
a)在第一预定时间周期内停止去往所述阳极的氢气流量,同时维持去往所述阴极的含有氧气的气体的流量,使得氧气从所述阴极侧跨过到所述阳极侧,由此氧化一氧化碳;
b)在所述第一预定时间周期之后的第二预定时间周期内停止去往所述阴极侧的所述含有氧气的气体流量;以及
c)在所述第二预定时间周期之后的第三预定时间周期内重新建立去往所述阳极侧的氢气流量。
CN201610909552.3A 2015-10-28 2016-10-18 恢复阳极污染造成的电压损失的方法和工艺 Pending CN106654323A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/925485 2015-10-28
US14/925,485 US10439241B2 (en) 2015-10-28 2015-10-28 Methods and processes to recover the voltage loss due to anode contamination

Publications (1)

Publication Number Publication Date
CN106654323A true CN106654323A (zh) 2017-05-10

Family

ID=58545797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610909552.3A Pending CN106654323A (zh) 2015-10-28 2016-10-18 恢复阳极污染造成的电压损失的方法和工艺

Country Status (4)

Country Link
US (1) US10439241B2 (zh)
JP (1) JP2017103216A (zh)
CN (1) CN106654323A (zh)
DE (1) DE102016119587A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818933B2 (en) * 2016-03-12 2020-10-27 University Of Wyoming Methods, catalysts, and supports for electrochemical devices
JP2020177786A (ja) * 2019-04-17 2020-10-29 トヨタ自動車株式会社 燃料電池セルにおけるアノード触媒の硫黄被毒を回復する方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645661A (zh) * 2004-01-20 2005-07-27 布莱特·D·文森特 燃料电池系统
CN1801516A (zh) * 1998-06-01 2006-07-12 松下电器产业株式会社 燃料电池的活化方法
CN1870338A (zh) * 2001-03-06 2006-11-29 纽韦拉燃料电池欧洲有限责任公司 与操作燃料电池的方法有关的装置
CN101048909A (zh) * 2004-10-29 2007-10-03 丰田自动车株式会社 燃料电池系统以及方法
US20130017458A1 (en) * 2010-03-30 2013-01-17 Panasonic Corporation Fuel cell system and operation method thereof
US20130224616A1 (en) * 2012-02-29 2013-08-29 Nissan Motor Co., Ltd. Fuel cell system
CN104600339A (zh) * 2013-10-31 2015-05-06 现代自动车株式会社 通过使用电极反转来恢复燃料电池性能的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801516A (zh) * 1998-06-01 2006-07-12 松下电器产业株式会社 燃料电池的活化方法
CN1870338A (zh) * 2001-03-06 2006-11-29 纽韦拉燃料电池欧洲有限责任公司 与操作燃料电池的方法有关的装置
CN1645661A (zh) * 2004-01-20 2005-07-27 布莱特·D·文森特 燃料电池系统
CN101048909A (zh) * 2004-10-29 2007-10-03 丰田自动车株式会社 燃料电池系统以及方法
US20130017458A1 (en) * 2010-03-30 2013-01-17 Panasonic Corporation Fuel cell system and operation method thereof
US20130224616A1 (en) * 2012-02-29 2013-08-29 Nissan Motor Co., Ltd. Fuel cell system
CN104600339A (zh) * 2013-10-31 2015-05-06 现代自动车株式会社 通过使用电极反转来恢复燃料电池性能的方法

Also Published As

Publication number Publication date
US10439241B2 (en) 2019-10-08
US20170125828A1 (en) 2017-05-04
DE102016119587A1 (de) 2017-05-04
JP2017103216A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
US6986962B2 (en) Basic polymer electrolyte fuel cell
US8900435B2 (en) Separating gas using ion exchange
US8158300B2 (en) Permselective composite membrane for electrochemical cells
NO343985B1 (en) Polymer electrolyte membrane (PEM) water electrolyser cell, stack and system and a method for producing hydrogen in said PEM water electrolyser system
US20110195324A1 (en) Methods and processes to recover voltage loss of pem fuel cell stack
KR20040038824A (ko) 연료전지시스템의 운전방법 및 연료전지시스템
CN101682062B (zh) 燃料电池系统和燃料电池的活化方法
EP3623501B1 (en) Carbon dioxide electrolytic device
Ayers et al. PEM electrolysis, a forerunner for clean hydrogen
US7276305B2 (en) Method of operating fuel cell
Zou et al. Insights into electrochemical hydrogen compressor operating parameters and membrane electrode assembly degradation mechanisms
US9437886B2 (en) Fuel cell system and method for stopping power generation in fuel cell system
WO2020138338A1 (ja) 燃料電池の活性化方法及び活性化装置
JP2016035910A (ja) 燃料電池システムの運転方法
CN106654323A (zh) 恢复阳极污染造成的电压损失的方法和工艺
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
US20100092826A1 (en) Fuel cell and fuel cell system
CN105392925B (zh) 氢气回收设备和操作方法
KR20050111625A (ko) 직접 메탄올형 연료전지 및 그 연료극의 용출방지방법,품질관리방법, 운전방법
WO2005104284A1 (en) Method and apparatus for shutting down a pem fuel cell system
CA2574873C (en) Hydrogen peroxide scavenging in a fuel cell system
JP2006302578A (ja) 燃料電池の運転方法及び燃料電池システム
JP2006236663A (ja) ダイレクト固体高分子電解質型燃料電池システム
JP2009048953A (ja) 燃料電池、電極および電子機器
JP2005294107A (ja) 燃料電池及びこれを用いた燃料電池システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication