CN106653959B - 一种led外延片的制备方法 - Google Patents
一种led外延片的制备方法 Download PDFInfo
- Publication number
- CN106653959B CN106653959B CN201611042657.XA CN201611042657A CN106653959B CN 106653959 B CN106653959 B CN 106653959B CN 201611042657 A CN201611042657 A CN 201611042657A CN 106653959 B CN106653959 B CN 106653959B
- Authority
- CN
- China
- Prior art keywords
- layer
- growth
- gan
- passed
- type gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000000153 supplemental effect Effects 0.000 claims abstract description 20
- 239000010410 layer Substances 0.000 claims description 236
- 229910002601 GaN Inorganic materials 0.000 claims description 112
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 239000004411 aluminium Substances 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 21
- 230000004888 barrier function Effects 0.000 claims description 17
- 239000002346 layers by function Substances 0.000 claims description 15
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 9
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010348 incorporation Methods 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 238000005137 deposition process Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
本发明公开了一种LED外延片的制备方法,该方法可以进一步减少发光面积损失,增加补充层提高量子阱的生长质量,提高反向电压,降低器件内部漏电的同时,还利用In组分渐变的斜阱层,改变阱的禁带宽度,以俘获更多的电子和空穴,增大了电子与空穴的接触面积,提高发光面积,降低电子的运行速度,增大与空穴的接触的有效电子数。
Description
所属技术领域
本发明涉及LED的制备方法,具体涉及一种LED外延片的制备方法。
背景技术
近年来,被誉为“绿色照明”的发光二极管(Light Emitting Diode,LED)照明技术发展迅猛。与传统照明光源相比,白光发光二极管不仅功耗低,使用寿命长,尺寸小,绿色环保,更具有调制性能好,响应灵敏度高等优点。白光发光二极管一方面具有发射功率高、对人眼安全等特点;另一方面,具有反应速度快、调制性好,无电磁干扰、无需申请无线电频谱等优点。
发光二极管核心部分是由P型半导体和N型半导体组成的芯片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。
GaN基材料属于直接带隙半导体,并且其带隙从1.8~6.2V连续可调,是生产高亮度蓝光、绿光和白光LED的最常用材料。然而c方向生长的铝铟镓氮材料中存在很强的极化电场,该电场造成量子阱能带倾斜,使电子和空穴在空间上分离,降低了复合发光效率。而且能带倾斜产生的势垒尖峰会阻挡空穴的输运,加之空穴有效质量很大,使空穴在各个量子阱中分布极不均匀。
发光二极管是采用外延生长的方式生成的一种外延结构,该外延结构主要由衬底、提供电子的N型层、提供空穴的P型层以及复合区的有源层组成,主要应用于照明、交通信号灯、电视、手机等的背光源,背光源中的蓝、绿、白光主要是采用金属有机化学气相沉积法将氮化镓材料沉积到蓝宝石衬底上形成的。
在传统的氮化镓基二极管外延片结构中,贯穿整个P~N结的位错为造成二极管性能降低的主要因素之一,此类位错会造成内量子效率降低、反向漏电、抗静电击穿能力较差。
电子阻挡层PAlGaN在LED外延中是不可以或缺的,主要作用是利用AlGaN的高能带阻挡发光层的电子外溢至P层,但是也带来很多不好之处。
发明内容
本发明提供一种LED外延片的制备方法,该方法可以进一步减少发光面积损失,增加补充层提高量子阱的生长质量,提高反向电压,降低器件内部漏电的同时,还利用In组分渐变的斜阱层,改变阱的禁带宽度,以俘获更多的电子和空穴,增大了电子与空穴的接触面积,提高发光面积,降低电子的运行速度,增大与空穴的接触的有效电子数,提高发光二极管的发光效率。
为了实现上述目的,本发明提供一种LED外延片的制备方法,该制备方法包括如下步骤:
(1)准备衬底
H2环境中高温净化衬底;在1000℃~1100℃的H2气氛下,通入100L/min~130L/min的H2,保持反应腔压力100mbar~300mbar,处理衬底8min~10min;
(2)采用金属有机化合物化学气相沉积法在衬底上形成外延片
所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层;
优选的,在所述步骤(2)中,采用金属有机化合物化学气相沉积法,在550~580℃,保持反应腔压力300mbar~600mbar,通入流量为10000sccm~20000sccm的NH3、50sccm~100sccm的TMGa、100L/min~130L/min的H2、在衬底上生长厚度为20nm~40nm的低温缓冲层GaN。
优选的,在步骤(2)中,在低温缓冲层GaN生长U型GaN层:
首先生长2D型GaN层,生长温度为1050℃,厚度为0.05um,生长压力100torr;
然后快速降温增压生长3D型GaN层,生长温度为990℃,生长厚度为0.05um,生长压力为400torr。
优选的,在所述步骤(2)中,N型GaN为掺杂Si的N型GaN层,其生长工艺为:保持反应腔压力、温度不变,通入流量为30000sccm~60000sccm的NH3、200sccm~400sccm的TMGa、100L/min~130L/min的H2、20sccm~50sccm的SiH4,持续生长3μm~4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3~1E19atoms/cm3;保持反应腔压力、温度不变,通入流量为30000sccm~60000sccm的NH3、300sccm~400sccm的TMGa、110L/min~130L/min的H2、6sccm~10sccm的SiH4,持续生长300μm~400μm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3~1E18atoms/cm3。
优选的,在步骤(2)中,采用金属有机化合物化学气相沉积法生长10~15个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:
a.在N2或N2/H2混合气氛、850~870℃条件下生长GaN垒层;
b.在N2或N2/H2混合气氛、650~720℃条件下生长InGaN阱层;
c.补充层的生长:
阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为10~25s,同时以1.0~1.5℃/s的速度从阱层的生长温度开始升温,形成补充层;
d.斜阱层的生长:
再继续通入金属Ga源,同时以2.5~3℃/s的速度继续升温,形成In组分渐变的斜阱层。
优选的,在所述步骤(2)中,所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。
优选的,其中所述循环层中每一层的硅元素的掺杂浓度为1e17/cm3~1e19/cm3,掺杂有铝元素的层中铝元素的组分为0.02wt%~0.5wt%,掺杂有铟元素的层中铟元素的组分为0.02wt%~0.05wt%。
优选的,上述功能层的生长温度位于750℃~1000℃范围内、压力位于50torr~500torr范围内、转速位于为1000rpm~1500rpm范围内、生长速率位于3μm/h~5μm/h范围内。
优选的,在步骤(2)中,所述发光层为交替生长掺杂In的InxGa(1~x)N/GaN发光层,其生长工艺为:保持反应腔压力400mbar~500mbar、温度750℃~800℃,通入流量为60000sccm~80000sccm的NH3、20sccm~40sccm的TMGa、1500sccm~2000sccm的TMIn、100L/min~130L/min的N2,生长掺杂In的2.5nm~3.5nm的InxGa(1~x)N层,x=0.26~0.28,发光波长450nm~455nm;接着升高温度至750℃~850℃,保持反应腔压力300mbar~400mbar,通入流量为50000sccm~70000sccm的NH3、20sccm~100sccm的TMGa、100L/min~130L/min的N2,生长8nm~15nm的GaN层;重复InxGa(1~x)N的生长,然后重复GaN的生长,交替生长InxGa(1~x)N/GaN发光层,控制周期数为10~12个。
优选的,在步骤(2)中,采用如下方式生成P型GaN层:保持反应腔压力400mbar~900mbar、温度950℃~1000℃,通入流量为50000sccm~70000sccm的NH3、20sccm~100sccm的TMGa、100L/min~130L/min的H2、1000sccm~3000sccm的Cp2Mg,持续生长50nm~200nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3~1E20atoms/cm3。
本发明具有如下优点:可以进一步减少发光面积损失,增加补充层提高量子阱的生长质量,提高反向电压,降低器件内部漏电的同时,还利用In组分渐变的斜阱层,改变阱的禁带宽度,以俘获更多的电子和空穴,增大了电子与空穴的接触面积,提高发光面积,降低电子的运行速度,增大与空穴的接触的有效电子数,提高发光二极管的发光效率。
具体实施方式
实施例一
H2环境中高温净化衬底;在1000℃的H2气氛下,通入100L/min的H2,保持反应腔压力100mbar,处理衬底8min。
所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层。
采用金属有机化合物化学气相沉积法,在550℃,保持反应腔压力300mbar,通入流量为10000sccm的NH3、50sccm的TMGa、100L/min的H2、在衬底上生长厚度为20nm的低温缓冲层GaN。
在低温缓冲层GaN生长U型GaN层:首先生长2D型GaN层,生长温度为1050℃,厚度为0.05um,生长压力100torr;然后快速降温增压生长3D型GaN层,生长温度为990℃,生长厚度为0.05um,生长压力为400torr。
N型GaN为掺杂Si的N型GaN层,其生长工艺为:保持反应腔压力、温度不变,通入流量为30000sccm的NH3、200sccm的TMGa、100L/min~130L/min的H2、20sccm的SiH4,持续生长3μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3;保持反应腔压力、温度不变,通入流量为30000sccm的NH3、300sccm的TMGa、110L/min的H2、6sccm的SiH4,持续生长300μm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3。
采用金属有机化合物化学气相沉积法生长10个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:在N2或N2/H2混合气氛、850℃条件下生长GaN垒层;在N2或N2/H2混合气氛、650℃条件下生长InGaN阱层;阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为10s,同时以1.0℃/s的速度从阱层的生长温度开始升温,形成补充层;再继续通入金属Ga源,同时以2.5/s的速度继续升温,形成In组分渐变的斜阱层。
所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。
其中所述循环层中每一层的硅元素的掺杂浓度为1e17/cm3,掺杂有铝元素的层中铝元素的组分为0.02wt%,掺杂有铟元素的层中铟元素的组分为0.02wt%。
上述功能层的生长温度位于750℃范围内、压力位于50torr范围内、转速位于为1000rpm范围内、生长速率位于3μm/h范围内。
所述发光层为交替生长掺杂In的In0.26Ga0.74N/GaN发光层,其生长工艺为:保持反应腔压力400mbar、温度750℃,通入流量为60000sccm的NH3、20sccm的TMGa、1500sccm的TMIn、100L/min的N2,生长掺杂In的2.5nm的In0.26Ga0.74N层,发光波长450nm;接着升高温度至750℃,保持反应腔压力300mbar,通入流量为50000sccm的NH3、20sccm的TMGa、100L/min的N2,生长8nm的GaN层;重复In0.26Ga0.74N的生长,然后重复GaN的生长,交替生长In0.26Ga0.74N/GaN发光层,控制周期数为10个。
采用如下方式生成P型GaN层:保持反应腔压力400mbar~900mbar、温度950℃,通入流量为50000sccm的NH3、20sccm的TMGa、100L/min~130L/min的H2、1000sccm的Cp2Mg,持续生长50nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3。
实施例二
H2环境中高温净化衬底;在1050℃的H2气氛下,通入120L/min的H2,保持反应腔压力200mbar,处理衬底9min。
所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层。
采用金属有机化合物化学气相沉积法,在570℃,保持反应腔压力450mbar,通入流量为15000sccm的NH3、75sccm的TMGa、120L/min的H2、在衬底上生长厚度为20nm~40nm的低温缓冲层GaN。
在低温缓冲层GaN生长U型GaN层:首先生长2D型GaN层,生长温度为1050℃,厚度为0.05um,生长压力100torr;然后快速降温增压生长3D型GaN层,生长温度为990℃,生长厚度为0.05um,生长压力为400torr。
N型GaN为掺杂Si的N型GaN层,其生长工艺为:保持反应腔压力、温度不变,通入流量为45000sccm的NH3、300sccm的TMGa、120L/min的H2、40sccm的SiH4,持续生长3.5μm掺杂Si的N型GaN,Si掺杂浓度7.5E18atoms/cm3;保持反应腔压力、温度不变,通入流量为40000sccm的NH3、350sccm的TMGa、120L/min的H2、8sccm的SiH4,持续生长350μm掺杂Si的N型GaN,Si掺杂浓度7.5E17atoms/cm3。
采用金属有机化合物化学气相沉积法生长12个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:在N2或N2/H2混合气氛、860℃条件下生长GaN垒层;在N2或N2/H2混合气氛、700℃条件下生长InGaN阱层;阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为15s,同时以1.3℃/s的速度从阱层的生长温度开始升温,形成补充层;再继续通入金属Ga源,同时以2.7℃/s的速度继续升温,形成In组分渐变的斜阱层。
所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。
其中所述循环层中每一层的硅元素的掺杂浓度为1e18/cm3,掺杂有铝元素的层中铝元素的组分为0.4wt%,掺杂有铟元素的层中铟元素的组分为0.03wt%。
上述功能层的生长温度位于800℃范围内、压力位于200torr范围内、转速位于为1200rpm范围内、生长速率位于4μm/h范围内。
所述发光层为交替生长掺杂In的In0.27Ga0.73N/GaN发光层,其生长工艺为:保持反应腔压力450mbar、温度775℃,通入流量为70000sccm的NH3、30sccm的TMGa、1700sccm的TMIn、100L/min~130L/min的N2,生长掺杂In的3nm的In0.27Ga0.73N层,发光波长453nm;接着升高温度至800℃,保持反应腔压力360mbar,通入流量为60000sccm的NH3、70sccm的TMGa、12L/min的N2,生长10nm的GaN层;重复In0.27Ga0.73N的生长,然后重复GaN的生长,交替生长In0.27Ga0.73N/GaN发光层,控制周期数为11个。
采用如下方式生成P型GaN层:保持反应腔压力600mbar、温度975℃,通入流量为60000sccm的NH3、50sccm的TMGa、120L/min的H2、2000sccm的Cp2Mg,持续生长100nm的掺Mg的P型GaN层,Mg掺杂浓度1E19atoms/cm3~1E20atoms/cm3。
实施例三
H2环境中高温净化衬底;在1100℃的H2气氛下,通入130L/min的H2,保持反应腔压力300mbar,处理衬底10min。
所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层。
采用金属有机化合物化学气相沉积法,在580℃,保持反应腔压力600mbar,通入流量为20000sccm的NH3、100sccm的TMGa、130L/min的H2、在衬底上生长厚度为40nm的低温缓冲层GaN。
在低温缓冲层GaN生长U型GaN层:首先生长2D型GaN层,生长温度为1050℃,厚度为0.05um,生长压力100torr;然后快速降温增压生长3D型GaN层,生长温度为990℃,生长厚度为0.05um,生长压力为400torr。
N型GaN为掺杂Si的N型GaN层,其生长工艺为:保持反应腔压力、温度不变,通入流量为60000sccm的NH3、400sccm的TMGa、130L/min的H2、50sccm的SiH4,持续生长4μm掺杂Si的N型GaN,Si掺杂浓度1E19atoms/cm3;保持反应腔压力、温度不变,通入流量为60000sccm的NH3、400sccm的TMGa、130L/min的H2、6sccm~10sccm的SiH4,持续生长400μm掺杂Si的N型GaN,Si掺杂浓度1E18atoms/cm3。
采用金属有机化合物化学气相沉积法生长10~15个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:在N2或N2/H2混合气氛、870℃条件下生长GaN垒层;在N2或N2/H2混合气氛、720℃条件下生长InGaN阱层;阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为25s,同时以1.5℃/s的速度从阱层的生长温度开始升温,形成补充层;再继续通入金属Ga源,同时以3℃/s的速度继续升温,形成In组分渐变的斜阱层。
所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。
其中所述循环层中每一层的硅元素的掺杂浓度为1e19/cm3,掺杂有铝元素的层中铝元素的组分为0.5wt%,掺杂有铟元素的层中铟元素的组分为0.05wt%。
上述功能层的生长温度位于1000℃范围内、压力位于500torr范围内、转速位于为1500rpm范围内、生长速率位于5μm/h范围内。
所述发光层为交替生长掺杂In的In0.28Ga 0.72N/GaN发光层,其生长工艺为:保持反应腔压力500mbar、温度800℃,通入流量为80000sccm的NH3、40sccm的TMGa、2000sccm的TMIn、130L/min的N2,生长掺杂In的2.5nm~3.5nm的In0.28Ga 0.72N层发光波长455nm;接着升高温度至850℃,保持反应腔压力300mbar~400mbar,通入流量为70000sccm的NH3、100sccm的TMGa、130L/min的N2,生长15nm的GaN层;重复In0.28Ga 0.72N的生长,然后重复GaN的生长,交替生长In0.28Ga 0.72N/GaN发光层,控制周期数为12个。
采用如下方式生成P型GaN层:保持反应腔压力900mbar、温度1000℃,通入流量为70000sccm的NH3、100sccm的TMGa、130L/min的H2、1000sccm~3000sccm的Cp2Mg,持续生长50nm~200nm的掺Mg的P型GaN层,Mg掺杂浓度1E20atoms/cm3。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。
Claims (6)
1.一种LED外延片的制备方法,该制备方法包括如下步骤:
(1)准备衬底
H2环境中高温净化衬底;在1000℃~1100℃的H2气氛下,通入100L/min~130L/min的H2,保持反应腔压力100mbar~300mbar,处理衬底8min~10min;
(2)采用金属有机化合物化学气相沉积法在衬底上形成外延片
所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层;
其特征在于,在步骤(2)中,采用金属有机化合物化学气相沉积法生长10~15个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:
a. 在N2或N2/H2混合气氛、850~870℃条件下生长GaN垒层;
b. 在N2或N2/H2混合气氛、650~720℃条件下生长InGaN阱层;
c. 补充层的生长:
阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为10~25s,同时以1.0~1.5℃/s的速度从阱层的生长温度开始升温,形成补充层;
d.斜阱层的生长:
再继续通入金属Ga源,同时以2.5~3℃/s的速度继续升温,形成In组分渐变的斜阱层;
在所述步骤(2)中,所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、 铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。
2.如权利要求1所述的方法,其特征在于,其中所述循环层中每一层的硅元素的掺杂浓度为1e17/cm3~1e19/cm3,掺杂有铝元素的层中铝元素的组分为0.02wt%~0.5wt%,掺杂有铟元素的层中铟元素的组分为0.02wt%~0.05wt%。
3.如权利要求2所述的方法,其特征在于,上述功能层的生长温度位于750℃~1000℃范围内、压力位于50torr~500torr范围内、转速位于为1000rpm~1500rpm范围内、生长速率位于3μm/h~5μm/h范围内。
4.如权利要求3所述的方法,其特征在于,在所述步骤(2)中,采用金属有机化合物化学气相沉积法,在550~580℃,保持反应腔压力300mbar~600mbar,通入流量为10000sccm~20000sccm的NH3、50sccm~100sccm的TMGa、100L/min~130L/min的H2、在衬底上生长厚度为20nm~40nm的低温缓冲层GaN。
5.如权利要求4所述的方法,其特征在于,在步骤(2)中,在低温缓冲层GaN上生长U型GaN层:
首先生长2D型GaN层,生长温度为1050℃,厚度为0.05um,生长压力100torr;
然后快速降温增压生长3D型GaN层,生长温度为990℃,生长厚度为0.05um,生长压力为400torr。
6.如权利要求5所述的方法,其特征在于,在所述步骤(2)中,N型GaN为掺杂Si的N型GaN层,其生长工艺为:保持反应腔压力、温度不变,通入流量为30000sccm~60000sccm的NH3、200sccm~400sccm的TMGa、100L/min~130L/min的H2、20sccm~50sccm的SiH4,持续生长3μm~4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3~1E19atoms/cm3;保持反应腔压力、温度不变,通入流量为30000sccm~60000sccm的NH3、300sccm~400sccm的TMGa、110L/min~130L/min的H2、6sccm~10sccm的SiH4,持续生长300μm~400μm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3~1E18atoms/cm3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611042657.XA CN106653959B (zh) | 2016-11-24 | 2016-11-24 | 一种led外延片的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611042657.XA CN106653959B (zh) | 2016-11-24 | 2016-11-24 | 一种led外延片的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106653959A CN106653959A (zh) | 2017-05-10 |
CN106653959B true CN106653959B (zh) | 2019-07-02 |
Family
ID=58812547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611042657.XA Active CN106653959B (zh) | 2016-11-24 | 2016-11-24 | 一种led外延片的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106653959B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449268B (zh) * | 2018-10-31 | 2020-05-26 | 湘能华磊光电股份有限公司 | 一种降低P型GaN层电阻率的LED外延结构及其生长方法 |
CN112048710B (zh) * | 2020-09-07 | 2023-09-19 | 湘能华磊光电股份有限公司 | 一种减少led发光波长蓝移量的led外延生长方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4450112B2 (ja) * | 2009-06-29 | 2010-04-14 | 住友電気工業株式会社 | 窒化物系半導体光素子 |
CN101931037A (zh) * | 2010-08-03 | 2010-12-29 | 上海半导体照明工程技术研究中心 | GaN基LED外延片、芯片及器件 |
CN102623596A (zh) * | 2012-04-25 | 2012-08-01 | 华灿光电股份有限公司 | 一种具有倾斜量子阱结构的氮化镓半导体发光二极管 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009124317A2 (en) * | 2008-04-04 | 2009-10-08 | The Regents Of The University Of California | Mocvd growth technique for planar semipolar (al, in, ga, b)n based light emitting diodes |
-
2016
- 2016-11-24 CN CN201611042657.XA patent/CN106653959B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4450112B2 (ja) * | 2009-06-29 | 2010-04-14 | 住友電気工業株式会社 | 窒化物系半導体光素子 |
CN101931037A (zh) * | 2010-08-03 | 2010-12-29 | 上海半导体照明工程技术研究中心 | GaN基LED外延片、芯片及器件 |
CN102623596A (zh) * | 2012-04-25 | 2012-08-01 | 华灿光电股份有限公司 | 一种具有倾斜量子阱结构的氮化镓半导体发光二极管 |
Also Published As
Publication number | Publication date |
---|---|
CN106653959A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108461592B (zh) | 一种发光二极管外延片及其制造方法 | |
CN100530722C (zh) | 发光二极管器件结构及其制作方法 | |
CN115188863B (zh) | 发光二极管外延片及其制备方法 | |
CN101355127B (zh) | 提高ⅲ族氮化物发光效率的led量子阱结构及其生长方法 | |
TW201027809A (en) | A light emitting diode structure and a method of forming a light emitting diode structure | |
CN106159048B (zh) | 一种发光二极管外延片及其生长方法 | |
CN114695612B (zh) | 一种氮化镓基发光二极管外延结构及其制备方法 | |
CN109346575A (zh) | 一种发光二极管外延片及其制备方法 | |
CN104051586A (zh) | 一种GaN基发光二极管外延结构及其制备方法 | |
CN103811601A (zh) | 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法 | |
CN108336198A (zh) | 一种发光二极管外延片及其制造方法 | |
CN103413877A (zh) | 外延结构量子阱应力释放层的生长方法及其外延结构 | |
CN109904066B (zh) | GaN基发光二极管外延片的制备方法 | |
CN106653959B (zh) | 一种led外延片的制备方法 | |
US20120295422A1 (en) | METHOD FOR FABRICATING InGaN-BASED MULTI-QUANTUM WELL LAYERS | |
CN108281519A (zh) | 一种发光二极管外延片及其制造方法 | |
CN106601879B (zh) | 一种用于led的氮化镓基半导体的制备方法 | |
CN105679898B (zh) | 具有翘曲调节结构层的led外延结构及其生长方法 | |
CN106601878B (zh) | 一种具有高光效的led制备方法 | |
CN103854976B (zh) | 一种具有p层特殊掺杂结构的外延生长方法 | |
KR20070091434A (ko) | 질화물 반도체 발광 다이오드를 제조하는 방법 및 그것에의해 제조된 발광 다이오드 | |
CN115377260A (zh) | 一种led外延片、制备方法及电子设备 | |
CN109346574A (zh) | 一种提高氮化镓基led发光二极管亮度的外延片及生长方法 | |
CN112736168A (zh) | 非极性GaN基微型发光二极管及制备方法 | |
CN107910411B (zh) | 发光二极管及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |