CN106653577A - 一种电沉积制备n型半导体ZnO薄膜的方法 - Google Patents

一种电沉积制备n型半导体ZnO薄膜的方法 Download PDF

Info

Publication number
CN106653577A
CN106653577A CN201710048551.9A CN201710048551A CN106653577A CN 106653577 A CN106653577 A CN 106653577A CN 201710048551 A CN201710048551 A CN 201710048551A CN 106653577 A CN106653577 A CN 106653577A
Authority
CN
China
Prior art keywords
electro
type semiconductor
deposition
zno film
conductive glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710048551.9A
Other languages
English (en)
Other versions
CN106653577B (zh
Inventor
李丽波
王福日
杨雪莹
王文涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201710048551.9A priority Critical patent/CN106653577B/zh
Publication of CN106653577A publication Critical patent/CN106653577A/zh
Application granted granted Critical
Publication of CN106653577B publication Critical patent/CN106653577B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种电沉积制备n型半导体ZnO薄膜的方法,它涉及一种制备n型半导体ZnO薄膜的方法。本发明要解决现有方法制备透光性n型半导体ZnO薄膜对光的透过率低、工艺复杂等问题。本发明的方法如下:一、导电玻璃的前处理;二、电沉积制备n型半导体ZnO薄膜;三、ZnO薄膜的热处理。本发明的方法制备的n型半导体ZnO薄膜对光的透过率达到了80%,而且大大节省了生产成本,简化了生产工艺,还具有沉积速度快,操作安全等特征,非常适合大规模制备n型半导体ZnO薄膜。

Description

一种电沉积制备n型半导体ZnO薄膜的方法
技术领域
本发明涉及一种制备n型半导体ZnO薄膜的方法。
背景技术
ZnO是典型的II-VI族直接带隙半导体,禁带宽度为3.37 eV,由于ZnO材料的特殊结构,在制备过程中比较容易实现掺杂;这种结构使得ZnO在可见光范围的透过率很高,是良好的太阳能电池n型半导体材料和窗口层材料重要组成部分。ZnO的含量丰富,成本低廉,且无毒,具有高度的热稳定性,同时易于掺杂,且电阻率可在10-3-105 Ω·cm范围内变动,显示出了极好的光电特性。n型半导体ZnO能用许多方法制备,如喷雾热解法、脉冲激光沉积法、金属有机化学气相沉积法、电沉积法等。其中电沉积方法操作简单,可在低温下操作,成本低,适合大规模工业生产而备受关注。
发明内容
本发明目的是为了解决现有方法制备太阳能电池n型半导体ZnO薄膜透过率低的问题,而提供了一种电沉积制备n型半导体ZnO薄膜的方法。
本发明的一种电沉积制备n型半导体ZnO薄膜的方法是按照以下步骤进行的:
一、导电玻璃的前处理
对导电玻璃进行前处理,待用;
二、电沉积制备n型半导体ZnO薄膜
采用石墨作为阳极,以步骤一前处理后的导电玻璃作为工作电极,将阳极和工作电极放入n型半导体ZnO薄膜电沉积液中并在电解槽中通入氧气,进行恒压电沉积,沉积后,取出工作电极,用蒸馏水清洗;
三、ZnO薄膜的热处理
将步骤二得到的ZnO薄膜在温度为60 ℃条件下,进行热处理30 min, 随炉冷却至室温,即完成制备n型半导体ZnO薄膜;
其中,步骤一所述的导电玻璃为FTO导电玻璃,
步骤二所述的n型半导体ZnO薄膜沉积液是由1.5~2.0 mol/L的Zn(NO3)2溶液和25mol/L KNO3,1 mol/L柠檬酸溶液组成,ZnO电沉积液的pH值为5.5;
步骤二所述的沉积电压条件为:1.6 V,沉积时间为10 min,温度为50~70 ℃。
本发明包括以下有益效果:
本发明运用电沉积方法在FTO导电玻璃上制备透光率高的n型半导体ZnO薄膜,不但大大节省了生产成本,而且还具有沉积速率快,清洁生产,生产效率高等特征,非常适合大规模制备n型半导体ZnO薄膜。采用电沉积的方法制备的n型半导体ZnO薄膜分布均匀、严密并且杂质含量也很少,在可见光区范围内透光率很高,达到80%以上。
附图说明
图1是采用本发明的方法的n型半导体ZnO薄膜的XRD示意图,2Theta表示X射线的入射角度的两倍。曲线A表示基体的XRD示意图,曲线B表示电沉积后的ZnO薄膜;
图2是本发明的具体实施方式一电沉积前FTO的SEM图;
图3是本发明的具体实施方式一中ZnO薄膜的SEM图;
图4是本发明的具体实施方式一中ZnO薄膜的AFM图;
图5是本发明的具体实施方式一中得到的n型半导体ZnO薄膜的波长-透光率曲线图;
图6是本发明的具体实施方式一中得到的n型半导体ZnO薄膜的半导体类型测试图。
具体实施方式
具体实施方式一:本实施方式所述的电沉积制备n型半导体ZnO薄膜的方法,
它包括如下步骤:
一、导电玻璃的前处理
对导电玻璃进行前处理,待用;
二、电沉积制备n型半导体ZnO薄膜
采用石墨作为阳极,以步骤一前处理后的导电玻璃作为工作电极,将阳极和工作电极放入n型半导体ZnO薄膜电沉积液中并在电解槽中通入氧气,进行恒压电沉积,沉积后,取出工作电极,用蒸馏水清洗;
三、ZnO薄膜的热处理
将步骤二得到的ZnO薄膜在温度为60 ℃条件下,进行热处理30 min, 随炉冷却至室温,即完成制备n型半导体ZnO薄膜;
其中,步骤一所述的导电玻璃为FTO导电玻璃,
步骤二所述的n型半导体ZnO薄膜沉积液是由2.0 mol/L的Zn(NO3)2溶液和25 mol/LKNO3,1 mol/L柠檬酸溶液组成,ZnO电沉积液的pH值为5.5;
步骤二所述的沉积电压条件为:1.6 V,沉积时间为10 min,温度为60 ℃。
本实施方式采用电沉积的方法在FTO导电玻璃上制备n型半导体ZnO薄膜,本实验实施方式用电沉积制备n型半导体ZnO薄膜的透光率达到了80%以上,为大规模生产n型半导体材料ZnO薄膜开辟了新途径。
本发明运用电沉积方法在FTO导电玻璃上制备透光率高的n型半导体ZnO薄膜,不但大大节省了生产成本,而且还具有沉积速率快,清洁生产,生产效率高等特征,非常适合大规模制备n型半导体ZnO薄膜。
具体实施方式二:本实施方式是对具体实施方式一所述的电沉积制备n型半导体ZnO薄膜的方法进一步说明,所述步骤一为:依次将FTO导电玻璃放到稀盐酸中清洗1次、蒸馏水洗FTO导电玻璃8次,用洗衣粉水超声清洗5次、用蒸馏水冲洗8次、丙酮清洗导电玻璃4次、用蒸馏水冲洗8次、以及无水乙醇清洗导电玻璃6次,用蒸馏水冲洗8次,然后吹干。
具体实施方式三:本实施方式是对具体实施方式一所述的电沉积制备n型半导体ZnO薄膜的方法进一步说明,所述步骤二中n型半导体ZnO 电沉积液的pH值均是用63%的浓硝酸溶液进行调节的。
图1为ZnO薄膜的XRD图。图中下面部分为基体的XRD谱图,分别在2θ=31.6°,34.4°,36.3°,60.0°出现了四个峰,此峰是六方纤锌矿结构ZnO的峰位。
图2和图3分别为FTO导电玻璃基体和沉积ZnO薄膜的SEM图。对比两图看出FTO导电玻璃基体电沉积的ZnO薄膜结构为颗粒状,颗粒大小几乎一致,分布均匀,结构致密,孔隙率较小,杂质含量少,铺满了基体表面。
图4为ZnO薄膜的AFM图,薄膜分布均匀,平铺在整个导电玻璃上。
图5为得到的n型半导体ZnO薄膜的波长-透光率曲线图。制备的ZnO薄膜在300 nm~900 nm波长范围内的透过率变化情况的扫描曲线图。当波长大于350 nm时随着波长的增加透过率逐渐增大,达到接近900 nm时透过率逐渐趋于平稳。说明ZnO薄膜在可见光区范围内透光率很高,能达到80%以上,完全能够起到透光性半导体材料的作用。
图6为得到的n型半导体ZnO薄膜的半导体类型测试图。冷热两端的电势差为-173mV,电压值为负,因此可以判断通过正交试验得到的最优条件下制备的ZnO薄膜为n型半导体。

Claims (3)

1.一种电沉积制备n型半导体ZnO薄膜的方法,其特征在于:一种电沉积制备n型半导体ZnO薄膜的方法是按照以下步骤进行的:
一、导电玻璃的前处理
对导电玻璃进行前处理,待用;
二、电沉积制备n型半导体ZnO薄膜
采用石墨作为阳极,以步骤一前处理后的导电玻璃作为工作电极,将阳极和工作电极放入n型半导体ZnO薄膜电沉积液中并在电解槽中通入氧气,进行恒压电沉积,沉积后,取出工作电极,用蒸馏水清洗;
三、ZnO薄膜的热处理
将步骤二得到的ZnO薄膜在温度为60 ℃条件下,进行热处理30 min, 随炉冷却至室温,即完成制备n型半导体ZnO薄膜;
其中,步骤一所述的导电玻璃为FTO导电玻璃,
步骤二所述的n型半导体ZnO薄膜沉积液是由1.5~2.0 mol/L的Zn(NO3)2溶液和25 mol/L KNO3,1 mol/L柠檬酸溶液组成,ZnO电沉积液的pH值为5.5;
步骤二所述的沉积电压条件为1.6 V,沉积时间为10 min,温度为50~70 ℃。
2.根据权利要求1所述的一种电沉积制备n型半导体ZnO薄膜的方法,其特征在于:步骤一所述的前处理步骤为:依次将FTO导电玻璃放到稀盐酸中清洗1次、蒸馏水洗FTO导电玻璃8次,用洗衣粉水超声清洗5次、用蒸馏水冲洗8次、丙酮清洗导电玻璃4次、用蒸馏水冲洗8次、以及无水乙醇清洗导电玻璃6次,用蒸馏水冲洗8次,然后吹干。
3.根据权利要求1所述的一种电沉积制备n型半导体ZnO薄膜的方法,其特征在于:步骤二中所述的n型半导体ZnO 电沉积液的pH值均是用63%的浓硝酸溶液进行调节的。
CN201710048551.9A 2017-01-23 2017-01-23 一种电沉积制备n型半导体ZnO薄膜的方法 Expired - Fee Related CN106653577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710048551.9A CN106653577B (zh) 2017-01-23 2017-01-23 一种电沉积制备n型半导体ZnO薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710048551.9A CN106653577B (zh) 2017-01-23 2017-01-23 一种电沉积制备n型半导体ZnO薄膜的方法

Publications (2)

Publication Number Publication Date
CN106653577A true CN106653577A (zh) 2017-05-10
CN106653577B CN106653577B (zh) 2019-07-26

Family

ID=58842204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710048551.9A Expired - Fee Related CN106653577B (zh) 2017-01-23 2017-01-23 一种电沉积制备n型半导体ZnO薄膜的方法

Country Status (1)

Country Link
CN (1) CN106653577B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233973A (zh) * 2020-09-22 2021-01-15 南方科技大学 一种调控宽禁带半导体材料缺陷及掺杂特性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107318A (ko) * 2003-06-13 2004-12-20 재단법인 포항산업과학연구원 산화아연의 전해증착법
CN101113533A (zh) * 2007-08-17 2008-01-30 中国科学院上海硅酸盐研究所 改进的电化学沉积工艺制备单一c轴取向氧化锌薄膜方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107318A (ko) * 2003-06-13 2004-12-20 재단법인 포항산업과학연구원 산화아연의 전해증착법
CN101113533A (zh) * 2007-08-17 2008-01-30 中国科学院上海硅酸盐研究所 改进的电化学沉积工艺制备单一c轴取向氧化锌薄膜方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李丹: "电化学沉积制备ZnO纳米晶薄膜及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
王文涛: "铜铟硒太阳能电池缓冲层及窗口层的制备", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233973A (zh) * 2020-09-22 2021-01-15 南方科技大学 一种调控宽禁带半导体材料缺陷及掺杂特性的方法

Also Published As

Publication number Publication date
CN106653577B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
US20200176618A1 (en) Perovskite solar battery and tandem solar battery including same
Cao et al. Novel perovskite/TiO 2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors
CN102709395B (zh) 一种CdZnTe薄膜紫外光探测器的制备方法
CN102220615B (zh) 制备CdS/ZnO纳米管阵列光电极的方法
CN107946393B (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
KR20110107760A (ko) 박막 광기전 전지
CN108598268A (zh) 一种环境条件下印刷制备高效平面异质结钙钛矿太阳电池的方法
CN105070664A (zh) 光电子器件ZnO/ZnS异质结纳米阵列膜制备方法
CN104465844A (zh) 一种MoS2/Si p-n结太阳能电池器件及其制备方法
CN206293472U (zh) 一种单节钙钛矿太阳能电池及其钙钛矿太阳能电池模块
CN105576128A (zh) 一种控制钙钛矿太阳能电池吸光层形貌的方法
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
CN101262027A (zh) 中性pH条件双电位阶跃电沉积制备铜铟硒薄膜的方法
CN106876595A (zh) 一种n型硅异质结太阳能电池及其制备方法
CN106653577A (zh) 一种电沉积制备n型半导体ZnO薄膜的方法
US20160218230A1 (en) Method of producing glass substrate for patterned solar cell and thin-film solar cell using the glass substrate
CN106711333A (zh) 一种钙钛矿太阳能电池渐变异质结电子传输层的制备方法
Ohm et al. Bifacial Cu (In, Ga) Se2 solar cells with submicron absorber thickness: back-contact passivation and light management
Maurya et al. A review on high performance photovoltaic cells and strategies for improving their efficiency
Aliaghayee et al. A new method for improving the performance of dye sensitized solar cell using macro-porous silicon as photoanode
CN204315613U (zh) 一种叠层太阳能电池
US9496450B2 (en) Method for manufacturing photoelectric conversion device
CN103073194A (zh) 一种ZnO纳米柱和ZnO纳米片层复合结构材料的制备方法
CN103165695B (zh) 一种CdTe薄膜太阳能电池
Shiraz et al. TiO 2/nanoporous silicon hybrid contact for heterojunction crystalline solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190726

Termination date: 20200123

CF01 Termination of patent right due to non-payment of annual fee