CN106653393A - 一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法 - Google Patents

一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法 Download PDF

Info

Publication number
CN106653393A
CN106653393A CN201611219378.6A CN201611219378A CN106653393A CN 106653393 A CN106653393 A CN 106653393A CN 201611219378 A CN201611219378 A CN 201611219378A CN 106653393 A CN106653393 A CN 106653393A
Authority
CN
China
Prior art keywords
graphite oxide
polyaniline
manganese dioxide
composite material
hollow tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611219378.6A
Other languages
English (en)
Other versions
CN106653393B (zh
Inventor
李强
李国金
付广胜
韩军建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201611219378.6A priority Critical patent/CN106653393B/zh
Publication of CN106653393A publication Critical patent/CN106653393A/zh
Application granted granted Critical
Publication of CN106653393B publication Critical patent/CN106653393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明公开了一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法,其是在片状氧化石墨的表面生长有一层聚苯胺,在聚苯胺的表面生长有空心管状的二氧化锰。本发明的方法简单,所得产物形貌均匀,结合了氧化石墨、聚苯胺和二氧化锰三者的优势,作为超级电容器的电极材料时具有更好的性能。

Description

一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成 方法
技术领域
本发明涉及超级电容器领域和纳米材料合成领域,具体涉及一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法。
背景技术
超级电容器作为一种兼有传统电容器与二次电池优点的新型储能器件,能提供高于传统电容器的能量密度,以及相较于二次电池更加优异的功率密度和循环寿命,有望广泛应用在能量转化、航天系统、通讯工程以及微电子器件等领域。从能量存储机理来看,超级电容器主要有:以碳相关材料做电极,依靠在电极/电解液表面的电荷分离来存储能量的双电层电容器;以聚合物、金属氧化物做电极,依靠电极在电解液中的法拉第反应来存储能量的赝电容器。在聚合物中,聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTH)及其衍生物是用于超级电容器的三类主要导电聚合物。其中,聚苯胺(PANI)作为一种多功能导电高分子材料,以合成方法简单、原料价廉易得、良好的化学稳定性和热稳定性、较高的电导率及良好的电化学性能等优点而被广泛的用于超级电容器的电极材料。
碳材料,如活性炭、介孔碳、碳纳米管以及氧化石墨烯(GO)等,有着优良的稳定性。近年来,利用PANI与碳材料复合来改善导电聚合物电极材料电容性能的研究颇为引人注目。GO是石墨烯的重要衍生物,表面含有大量功能性基团,如羟基、羧基、环氧基、羰基等。这些含氧基团的接入赋予GO一些独特性质,如分散性、亲水性与优异的复合性能,使其成为一种潜在的制备复合薄膜的良好材料。此外,GO还具有比表面积大、机械性能优异等特性。GO在水以及极性有机溶剂中具有较好的溶解性,并且可在聚合物基体中形成纳米级分散。GO制备过程简单、原料石墨价廉易得,使其更适宜作为超级电容器的电极材料。
在过渡金属氧化物中,二氧化锰最适合作为超级电容器的电极材料,因为它价格低廉,自然界存储丰富,不会对环境造成污染,且具有很高的理论比电容。但由于较差的导电性以及形貌上的固有缺陷限制了其在超级电容器上的应用。若能将二氧化锰与其他材料组合起来,利用各自的优点,并注意其整体的形貌,作为超级电容器的电极时有望可以最大限度的提高整体的比电容,因此,具有很大的研究价值。
发明内容
本发明是为避免上述现有技术所存在的问题,提供一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法,以期可以将氧化石墨、聚苯胺及二氧化锰结合起来,利用各自的优点,作为超级电容器的电极材料,提高其性能。
本发明解决技术问题,采用如下技术方案:
本发明氧化石墨/聚苯胺/空心管状二氧化锰复合材料的合成方法,包括如下步骤:
(1)将氧化石墨与聚苯乙烯磺酸钠分散在去离子水中并进行细胞粉碎超声处理,然后离心去除固态不溶物,获得均匀分散液;
(2)将苯胺单体均匀溶于氯仿中,获得苯胺溶液;
(3)将过硫酸铵溶于稀盐酸中,然后倒入步骤(1)所得分散液中,搅拌均匀,得反应液;
(4)将步骤(2)所得苯胺溶液倒入步骤(3)所得反应液中,缓慢搅拌,使苯胺在氧化石墨表面进行聚合反应,然后离心分离,获得氧化石墨/聚苯胺复合材料;
(5)将氧化石墨/聚苯胺复合材料加入到去离子水中,超声分散均匀,加入醋酸锰并继续超声至分散均匀,然后搅拌10~12h,得混合液;
(6)将高锰酸钾溶于去离子水中,然后逐滴加入到步骤(5)所得混合液中,不间断搅拌20~24小时,所得产物离心分离、清洗,即获得氧化石墨/聚苯胺/空心管状二氧化锰复合材料。
其中:氧化石墨与苯胺单体的质量比为1:2~4;苯胺单体与过硫酸铵的质量比为1:0.5~2;氧化石墨、醋酸锰及高锰酸钾的质量比为1:1~2:0.5~1。
优选的,步骤(1)中氧化石墨、聚苯乙烯磺酸钠及去离子水的质量体积比为:15~20mg:0.3mL:15~20mL。步骤(2)中苯胺与氯仿的体积比为40~60μL:20mL。步骤(3)中所述稀盐酸的浓度为1M,过硫酸铵与稀盐酸的质量体积比为30~80mg:20mL。
优选的,步骤(1)中细胞粉碎超声处理的方式为超声2秒、间隙1秒,总时间30分钟。
过硫酸铵APS为氧化剂,溶于稀盐酸,是为整个聚合反应提供一个酸性的反应条件;
步骤(1)中的氧化石墨采用改良后的Hummers方法制备,这样合成的氧化石墨在相同功率超声的情况下更容易分散于去离子水中。
上述方法所合成的复合材料形貌新颖,是在片状氧化石墨的表面生长有一层聚苯胺,在所述聚苯胺的表面生长有空心管状的二氧化锰。
本发明的有益效果体现在:
1、本发明的方法简单,所得产物形貌均匀,结合了氧化石墨、聚苯胺和二氧化锰三者的优势,作为超级电容器的电极材料时具有更好的性能。
2、本发明以聚苯乙烯磺酸钠(PSS)作为分散剂,能使氧化石墨更均匀的分散于去离子水中,有利于下一步的聚合,有助于整体形貌的控制。
附图说明
图1为实施例1所得氧化石墨/聚苯胺/二氧化锰复合材料的XRD图;
图2为实施例1所得氧化石墨/聚苯胺/二氧化锰复合材料的XPS图;
图3为实施例1所得氧化石墨/聚苯胺/二氧化锰复合材料的透射电镜图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本实施例按如下步骤合成氧化石墨/聚苯胺/空心管状二氧化锰复合材料:
(1)按照改良后的Hummers方法制备氧化石墨(GO),具体步骤如下:
称取1g石墨粉放入圆底烧瓶,之后放入磁子,将烧杯放入冰水浴环境中并固定在磁力搅拌器上,整个实验过程均伴随着搅拌;沿着杯壁向上述烧杯中加入98%的浓硫酸,之后加入3.5g的高锰酸钾(注意高锰酸钾应在10min之内均匀的加完),加完过后再保持冰水浴搅拌5min;移去冰水浴环境,将整个实验转移到25℃的温水浴中进行搅拌24小时;整个实验环境再次转移至冰水浴中,用洗瓶在10min左右加入200mL的去离子水稀释,要注意加去离子水要先慢后快,加完之后继续搅拌一会;移除冰水浴的结晶皿,室温下逐滴加入2~3mL的30%的双氧水(一定要逐滴加入,防止实验反应过于激烈),去除剩余的高锰酸钾至不产生气泡为止,加完之后继续搅拌30min;将整体液体均量的转移到离心管中离心,之后倒掉上层清液得下面的沉淀,用事先配好的稀盐酸(36%的盐酸:去离子水的体积=1:9)离心清洗两遍后,将沉淀的产物均匀的分散于适量的去离子水后整体转入到透析袋中放置于结晶皿中进行透析(前两天每半天换下结晶皿中的去离子水,随后每天换下结晶皿的去离子水),大约透析一周,至结晶皿中的去离子水的pH接近于7;随后将透析袋中的液体转移到烧杯中,然后放置于冰箱中进行冷冻;当液体全部冷冻好之后将烧杯放置于冷冻干燥器里进行冷冻干燥处理,最后得到氧化石墨。
(2)将15mg氧化石墨与300μL聚苯乙烯磺酸钠分散在15mL去离子水中并进行细胞粉碎超声处理,然后离心去除固态不溶物,获得均匀分散液;细胞粉碎超声的时间分配为超声2秒、间隙1秒,总时间为30分钟;
(2)将50μL左右的苯胺单体均匀溶于20mL氯仿中,获得苯胺溶液;
(3)将30mg过硫酸铵溶于20mL浓度为1M的稀盐酸中,然后倒入到步骤(1)所得分散液中,搅拌均匀,得反应液;
(4)将步骤(2)所得苯胺溶液倒入步骤(3)所得反应液中,缓慢搅拌,使苯胺在氧化石墨表面进行聚合反应24h,然后离心分离,获得氧化石墨/聚苯胺复合材料;
(5)将氧化石墨/聚苯胺复合材料加入到20mL去离子水中,超声10min左右,分散均匀,然后加入25mg醋酸锰并继续超声10min至分散均匀,然后搅拌12h,得混合液;
(6)将10mg高锰酸钾溶于30mL去离子水中,然后逐滴加入到步骤(5)所得混合液中,不间断搅拌24小时,所得产物离心分离、清洗,即获得空心管状的氧化石墨/聚苯胺/二氧化锰复合材料。
图1为本实施例所得产物的XRD图,图中26°对应PANI的衍射峰,34°对应二氧化锰的衍射峰,表明产物中二氧化锰的存在。
图2为本实施例所得产物的XPS图,其中(a)为总谱图、(b)为单独的锰峰图,从图b中可以看出,Mn 2p3/2与Mn 2p1/2之间相差11.8eV,表明了二氧化锰成功的合成出来了。
图3为本实施例所得产物在不同放大倍数下的透射电镜图,从图中可以看出明显的晶格结构,以及二氧化锰的空心管状结构。
本实施例所得产物形貌新颖,结合了氧化石墨、聚苯胺和二氧化锰三者的优势,作为超级电容器的电极材料时具有更好的性能。此外,由于其特殊的形貌结构,将有更多的性能、更多的应用待测试和发掘。
以上所述仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料的合成方法,其特征在于,包括如下步骤:
(1)将氧化石墨与聚苯乙烯磺酸钠分散在去离子水中并进行细胞粉碎超声处理,然后离心去除固态不溶物,获得均匀分散液;
(2)将苯胺单体均匀溶于氯仿中,获得苯胺溶液;
(3)将过硫酸铵溶于稀盐酸中,然后倒入步骤(1)所得分散液中,搅拌均匀,得反应液;
(4)将步骤(2)所得苯胺溶液倒入步骤(3)所得反应液中,缓慢搅拌,使苯胺在氧化石墨表面进行聚合反应,然后离心分离,获得氧化石墨/聚苯胺复合材料;
(5)将氧化石墨/聚苯胺复合材料加入到去离子水中,超声分散均匀,加入醋酸锰并继续超声至分散均匀,然后搅拌10~12h,得混合液;
(6)将高锰酸钾溶于去离子水中,然后逐滴加入到步骤(5)所得混合液中,不间断搅拌20~24小时,所得产物离心分离、清洗,即获得氧化石墨/聚苯胺/空心管状二氧化锰复合材料。
2.根据权利要求1所述的合成方法,其特征在于:氧化石墨与苯胺单体的质量比为1:2~4;苯胺单体与过硫酸铵的质量比为1:0.5~2;氧化石墨、醋酸锰及高锰酸钾的质量比为1:1~2:0.5~1。
3.根据权利要求1所述的合成方法,其特征在于:步骤(1)中氧化石墨、聚苯乙烯磺酸钠及去离子水的质量体积比为:15~20mg:0.3mL:15~20mL。
4.根据权利要求1所述的合成方法,其特征在于:步骤(2)中苯胺与氯仿的体积比为40~60μL:20mL。
5.根据权利要求1所述的合成方法,其特征在于:步骤(3)中所述稀盐酸的浓度为1M,过硫酸铵与稀盐酸的质量体积比为30~80mg:20mL。
6.根据权利要求1所述的合成方法,其特征在于:步骤(1)中细胞粉碎超声处理的方式为超声2秒、间隙1秒,总时间30分钟。
7.一种权利要求1~6中任意一项所述合成方法所合成的氧化石墨/聚苯胺/空心管状二氧化锰复合材料,其特征在于:所述复合材料是在片状氧化石墨的表面生长有一层聚苯胺,在所述聚苯胺的表面生长有空心管状的二氧化锰。
CN201611219378.6A 2016-12-26 2016-12-26 一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法 Expired - Fee Related CN106653393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611219378.6A CN106653393B (zh) 2016-12-26 2016-12-26 一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611219378.6A CN106653393B (zh) 2016-12-26 2016-12-26 一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法

Publications (2)

Publication Number Publication Date
CN106653393A true CN106653393A (zh) 2017-05-10
CN106653393B CN106653393B (zh) 2018-05-25

Family

ID=58828314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611219378.6A Expired - Fee Related CN106653393B (zh) 2016-12-26 2016-12-26 一种氧化石墨/聚苯胺/空心管状二氧化锰复合材料及其合成方法

Country Status (1)

Country Link
CN (1) CN106653393B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016660A (zh) * 2007-03-07 2007-08-15 中南大学 超级电容器电极材料聚苯胺纳米纤维的制备方法
CN102432874A (zh) * 2011-07-14 2012-05-02 华东理工大学 石墨烯负载有序聚苯胺纳米棒阵列电极材料的制备方法
CN102977602A (zh) * 2012-12-11 2013-03-20 华东理工大学 一种制备二氧化锰/碳材料/导电聚合物复合材料的方法
CN104409222A (zh) * 2014-11-21 2015-03-11 华东理工大学 一种石墨烯/二氧化锰纳米片/聚苯胺纳米棒三元复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016660A (zh) * 2007-03-07 2007-08-15 中南大学 超级电容器电极材料聚苯胺纳米纤维的制备方法
CN102432874A (zh) * 2011-07-14 2012-05-02 华东理工大学 石墨烯负载有序聚苯胺纳米棒阵列电极材料的制备方法
CN102977602A (zh) * 2012-12-11 2013-03-20 华东理工大学 一种制备二氧化锰/碳材料/导电聚合物复合材料的方法
CN104409222A (zh) * 2014-11-21 2015-03-11 华东理工大学 一种石墨烯/二氧化锰纳米片/聚苯胺纳米棒三元复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QIANG LI ET AL: "Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors", 《JOURNAL OF POWER SOURCES》 *
YONGLIANG GUI ET AL: "Fabrication of poly(p-styrenesulfonate) grafted reduced graphene oxide/polyaniline/MnO2 hybrids with high capacitance performance", 《MATERIALS CHEMISTRY AND PHYSICS》 *
YUYING ZHENG ET AL: "Synthesis and electrochemical properties of graphite oxide/MnO2/conducting polymer ternary composite for supercapacitors", 《MICRO & NANO LETTERS》 *

Also Published As

Publication number Publication date
CN106653393B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
Ni et al. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
Dai et al. Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor
Yang et al. Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications
Mohamed et al. Dispersions of 1, 3, 4-oxadiazole-linked conjugated microporous polymers with carbon nanotubes as a high-performance electrode for supercapacitors
CN105175761B (zh) 一种细菌纤维素/聚苯胺/石墨烯膜材料的制备方法及其应用
CN105070527B (zh) 石墨烯/聚吡咯/二氧化锰三元复合电极材料的制备方法
Thirumal et al. Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications
CN102219997B (zh) 一种采用细菌纤维素为模板制备聚吡咯包覆细菌纤维素纳米导电复合材料的方法
Xu et al. Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel
Ahmad et al. Nanocomposite supercapacitor electrode from sulfonated graphene oxide and poly (pyrrole-(biphenyldisulfonic acid)-pyrrole)
CN104910378A (zh) 一种聚苯胺/氧化石墨烯纳米复合材料制备方法
Malik et al. Carbon quantum dots intercalated in polypyrrole (PPy) thin electrodes for accelerated energy storage
Sun et al. PPy/graphene nanosheets/rare earth ions: A new composite electrode material for supercapacitor
CN104021948B (zh) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
CN102627768A (zh) 超级电容器电极用石墨烯/聚吡咯纳米复合材料的制备方法
Li et al. Preparation of core–shell CQD@ PANI nanoparticles and their electrochemical properties
Wu et al. A high-performance asymmetric supercapacitors based on hydrogen bonding nanoflower-like polypyrrole and NiCo (OH) 2 electrode materials
Sun et al. Synthesis of highly conductive PPy/graphene/MnO2 composite using ultrasonic irradiation
CN103788646A (zh) 氮掺杂石墨烯/铁酸钴/聚苯胺纳米复合材料及其制备方法
Sun et al. Engineering of 0D/1D architectures in 3D networks over CDs/PPy-CPP biomass foam with high efficiency on seawater evaporation
CN108511201A (zh) 一种超薄MoS2纳米片/CNT复合材料及其制备方法
CN105885410A (zh) 一种硫化钼/聚吡咯/聚苯胺三元复合材料及其制备方法和应用
Geng et al. Facile construction of novel CoMoO4 microplates@ CoMoO4 microprisms structures for well-stable supercapacitors
Wang et al. Preparation of foam-like network structure of polypyrrole/graphene composite particles based on cellulose nanofibrils as electrode material
Guo et al. Microwave-assisted rapid synthesis of NiCo2S4 nanotube arrays on Ni foam for high-cycling-stability supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180525

Termination date: 20211226

CF01 Termination of patent right due to non-payment of annual fee