CN106653095B - 一种快速收集阈值电压分布的方法 - Google Patents

一种快速收集阈值电压分布的方法 Download PDF

Info

Publication number
CN106653095B
CN106653095B CN201610971021.7A CN201610971021A CN106653095B CN 106653095 B CN106653095 B CN 106653095B CN 201610971021 A CN201610971021 A CN 201610971021A CN 106653095 B CN106653095 B CN 106653095B
Authority
CN
China
Prior art keywords
voltage
scanning
threshold voltage
range
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610971021.7A
Other languages
English (en)
Other versions
CN106653095A (zh
Inventor
席与凌
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201610971021.7A priority Critical patent/CN106653095B/zh
Publication of CN106653095A publication Critical patent/CN106653095A/zh
Application granted granted Critical
Publication of CN106653095B publication Critical patent/CN106653095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor

Abstract

本发明公开了一种快速收集阈值电压分布的方法,通过将传统采用统一电压扫描步长的一次扫描方式优化为采用不同电压扫描步长的二次扫描方式,第一次扫描采用较大的步长进行,根据存储单元失效数目,大致判断阈值电压分布范围,当出现第一个存储单元失效时,可依此判断阈值电压分布的开始值;当存储单元全部失效时,可依此判断阈值电压分布的结束值,确定阈值电压分布的大致范围后,采用较小的步长进行第二次扫描,从而可大大缩短收集阈值电压分布所需的时间,也保证了测试的准确性。

Description

一种快速收集阈值电压分布的方法
技术领域
本发明涉及半导体测试技术领域,更具体地,涉及一种快速收集阈值电压分布的方法。
背景技术
在存储类Flash(闪存)产品的测试生产过程中,我们经常需要收集存储单元的阈值电压分布,以此来验证制造工艺的优劣或测试条件的好坏。
对于存储类Flash芯片的阈值电压测试,当前应用较多的一种方法为:扫描读取电压,记录存储器单元阵列在每个电压下单元开启或关闭导致的存储单元功能读取失效数量,通过简单的差值计算,计算出所有存储单元的阈值电压分布。
由于上述方法采用的是一次性扫描方式,当扫描电压步长较大时,测试效率虽然较高,但测试结果误差大,导致可信度较低;而当扫描电压步长较小时,测试点变多,虽然测试精确度提高了,但测试效率却降低了,导致测试时间过长,从而影响了生产效率。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种快速收集阈值电压分布的方法,以减少收集存储类Flash芯片存储器单元阵列阈值电压分布的时间。
为实现上述目的,本发明的技术方案如下:
一种快速收集阈值电压分布的方法,包括以下步骤:
步骤S01:定义扫描时的电压扫描范围及电压扫描步长;
步骤S02:从电压扫描范围的起点开始,以多倍电压扫描步长对存储单元进行第一次扫描,记录首次出现功能读取失效的存储单元时的第一电压值,以及全部存储单元出现功能读取失效时的第二电压值;
步骤S03:根据第一次扫描的结果,确定存储单元的阈值电压理论分布范围;
步骤S04:从阈值电压理论分布范围的起点开始,以单倍电压扫描步长对存储单元进行第二次扫描,记录首次出现功能读取失效的存储单元时的第三电压值,以及全部存储单元出现功能读取失效时的第四电压值;
步骤S05:根据第二次扫描结果,计算出存储单元的阈值电压实际分布范围。
优选地,所述阈值电压理论分布范围的起点电压大于电压扫描范围的起点电压。
优选地,所述阈值电压理论分布范围的终点电压小于电压扫描范围的终点电压。
优选地,所述阈值电压理论分布范围满足:
(V1–M·Vstep)~V2)
其中,V1代表第一电压值,V2代表第二电压值,Vstep代表电压扫描步长,M代表第一次扫描时电压扫描步长的倍率。
优选地,第一次扫描时电压扫描步长的倍率M为5~20。
优选地,步骤S04中,自第四电压值起继续扫描至少三个电压扫描步长。
优选地,步骤S04中,当第四电压值小于第二电压值时,继续扫描至第二电压值。
从上述技术方案可以看出,本发明通过将传统采用统一电压扫描步长的一次扫描方式优化为采用不同电压扫描步长的二次扫描方式,第一次扫描采用较大的步长进行,根据存储单元失效数目,大致判断阈值电压分布范围,当出现第一个存储单元失效时,可依此判断阈值电压分布的开始值;当存储单元全部失效时,可依此判断阈值电压分布的结束值,确定阈值电压分布的大致范围后,采用较小的步长进行第二次扫描,从而可大大缩短收集阈值电压分布所需的时间,也保证了测试的准确性。
附图说明
图1是本发明的一种快速收集阈值电压分布的方法流程图;
图2是一种阈值电压分布示意图;
图3是现有测试方法中使用统一的电压扫描步长进行阈值电压扫描时的示意图;
图4是本发明的方法中采用多倍电压扫描步长进行第一次扫描时的示意图;
图5是本发明的方法中采用单倍电压扫描步长进行第二次扫描时的示意图;
图6是采用本发明的方法在“冗余”与“实际”范围内利用不同的电压扫描步长进行扫描时的对比示意图;
图7是采用本发明的方法和现有测试方法进行阈值电压分布测试的结果对比示意图。
具体实施方式
本发明旨在介绍一种可在较短的时间内精确测量存储单元阈值电压分布的方法。本发明的一种快速收集阈值电压分布的方法,包括以下步骤:
步骤S01:定义扫描时的电压扫描范围及电压扫描步长;
步骤S02:从电压扫描范围的起点开始,以多倍电压扫描步长对存储单元进行第一次扫描,记录首次出现功能读取失效的存储单元时的第一电压值,以及全部存储单元出现功能读取失效时的第二电压值;
步骤S03:根据第一次扫描的结果,确定存储单元的阈值电压理论分布范围;
步骤S04:从阈值电压理论分布范围的起点开始,以单倍电压扫描步长对存储单元进行第二次扫描,记录首次出现功能读取失效的存储单元时的第三电压值,以及全部存储单元出现功能读取失效时的第四电压值;
步骤S05:根据第二次扫描结果,计算出存储单元的阈值电压实际分布范围。
下面结合图2~图7,对本发明的具体实施方式作进一步的详细说明。
为保证阈值电压分布测试的准确性,我们一般在较大的范围内进行电压扫描,而实际阈值电压分布只占整个扫描范围较小的一部分。通过对Flash存储单元阈值电压分布的研究发现,假设电压扫描范围为(Vstart~Vstop),阈值电压分布的“实际”范围为(Vbegin~Vend),那么,“实际”范围约只占整个扫描范围较小的一部分。而(Vstart~Vbegin)、(Vend~Vstop)这两段电压区间内没有阈值电压分布,可称之为“冗余”电压,却约占整个范围的较大一部分,如图2所示。图中横坐标代表电压,纵坐标代表存储单元失效数目,曲线A为阈值电压分布。
按照现有的测量方法,在“冗余”的电压范围以及“实际”的电压范围内,均采取相同的步长电压进行扫描,如图3上部折线B所示。由于“冗余”范围在整个扫描范围中的占比较大,因此,扫描时较大一部分的时间都浪费在了不必要的“冗余”部分。而实际上,“冗余”部分因为没有阈值电压分布,因此它的电压扫描其实是不必要的。如果要在确保测试精度的情况下减少测试时间,那么,优化“冗余”部分的电压扫描时间便成为关键。
优化的关键在于如何快速地剔除“冗余”部分的电压。本发明提供了一种可称之为“二次扫描”的快速收集阈值电压分布的方法。
首先进行测试准备,定义待测单元总数为N,扫描范围为(Vstart~Vstop),扫描步长为Vstep。假设所使用的测试向量在Vstart处扫描结果为全部PASS,即失效单元数为0;在Vstop处扫描结果为全部FAIL,即失效单元数为N。
那么,第一次电压扫描时,我们从Vstart处以M·Vstep的多倍步长快速扫描,M代表电压扫描步长的倍率,通常取自然数,例如M可为5~20。如图4上部折线C所示。本发明不限于此。当出现第一个(或第一批)存储单元FAIL时,记录此时的电压值为V1(即第一电压值);记录每个电压下的失效单元数,当存储单元全部FAIL,即失效数等于N时,记录此时的电压值为V2(即第二电压值),图示为粗略得到的阈值电压分布曲线A’。根据第一次扫描的结果,确定阈值电压分布的“实际”范围(即阈值电压理论分布范围)约为((V1–M·Vstep)~V2))。可以看出,所述阈值电压理论分布范围的起点电压(V1–M·Vstep)大于电压扫描范围的起点电压Vstart;所述阈值电压理论分布范围的终点电压V2小于电压扫描范围的终点电压Vstop
接着,在确定的范围((V1–M·Vstep)~V2))内,进行第二次扫描,扫描步长为单倍步长,即正常步长Vstep,如图5上部折线D所示。记录每个扫描点的存储单元失效数,当出现第一个(或第一批)存储单元FAIL时,记录此时的电压值为V3(即第三电压值);当存储单元全部FAIL,即失效数等于N时,记录此时的电压值为V4(即第四电压值)。并且,为确保测试准确性,在第一次出现存储单元全部FAIL时,可自第四电压值V4起继续扫描至少三个电压扫描步长。进一步地,当第四电压值V4小于第二电压值V2时,可继续扫描至第二电压值V2
“二次扫描”的根本目的是将“冗余”电压范围剔除出去,只对“实际”电压范围进行精确扫描。其关键点是在第一次扫描时,利用较大的扫描步长快速剔除“冗余”电压范围,并根据第一次扫描的结果确定阈值电压分布的大致范围;在第二次扫描时,采用较小的步长以提高测试准确性,即在“冗余”与“实际”范围内利用不同的步长进行扫描,如图6上部叠加的折线C、D所示。利用此方法,不仅大大缩短了收集阈值电压分布所需的时间,同时也保证了测试的准确性。
假设每单步扫描的时间为T,那么按照现有的方法,总的测试时间为:
T·(Vstart–Vstop)/Vstep
而使用本发明的新方法后,实际测试时间为:
T·(Vstop–Vstart)/(M·Vstep)+T·(V2–(V1-M·Vstep))/Vstep
其中,T·(Vstop–Vstart)/(M·Vstep)为第一次扫描所需时间,T·(V2–(V1-M·Vstep))/Vstep为第二次扫描所需时间。
为方便计算,假设扫描范围为0V~2.5V,阈值电压实际分布范围为0.88V~1.63V,Vstep=0.01V,M=10,则第一次的扫描电压为10·0.01V=0.1V,第二次的扫描电压为0.01V,取每次扫描的时间T为0.1s,代入上述公式后,得出按照现有方法的测试时间为25s,而使用本发明新方法后的测试时间为11.5s。
通过上述可以看出,本发明虽然相比以往多了一次扫描,但是,在“冗余”电压范围内,因为采用了例如十倍的步长(10·Vstep)进行扫描,所以扫描时间很短,而在阈值电压分布“实际”范围内,扫描步长保持不变,保证了测试的准确性。
最后,计算阈值电压分布:根据第二次扫描的结果计算出“实际”范围内阈值电压的实际分布结果,如图5、6中阈值电压分布曲线A所示;而在“冗余”范围内,没有阈值电压分布。
利用本发明可以减少收集阈值电压分布的时间。
以实际生产过程为例,分别利用传统方法和本发明“二次扫描”的方法收集某Flash的存储单元阈值电压分布:
1.该存储单元总数为1048576,扫描范围为0~2.5V,扫描步长为0.01V,使用传统的“一次扫描”方法进行测试,结果如下:
扫描电压(V) 0.01 0.02 …… 1.2 1.21 1.22 …… 1.87 1.88 1.89 …… 2.5
存储单元失效数 0 0 0 0 1 1 …… 1048571 1048573 1048576 1048576 1048576
2.使用本发明“二次扫描”的方法进行测试,首先使用0.1V的步长进行第一次扫描,结果如下:
扫描电压(V) 0.1 0.2 …… 1.2 1.3 1.4 …… 1.9 2 …… 2.5
存储单元失效数 0 0 0 0 4 790 …… 1048527 1048576 1048576 1048576
根据第一次扫描的结果,使用0.01V的步长进行第二次扫描,结果如下:
扫描电压(V) 1.21 1.22 1.23 1.24 …… 1.87 1.88 1.89 …… 2.01
存储单元失效数 0 0 1 3 …… 1048568 1048571 1048576 1048576 1048576
3.根据测试结果,计算存储单元阈值分布,并绘制成图标。
对上述两种不同方法的总结:
测试方法 第一次起始 第一次结束 第一次步长 第二次起始 第二次结束 第二次步长 耗时
传统扫描 0V 2.5V 0.01V / / / 41s
本发明扫描 0V 2.5V 0.1V 1.21 2.01 0.01 18s
从图7可以看出,两次测试结果一致,图中曲线A-2代表应用传统方法得到的存储单元阈值分布,曲线A-1代表应用本发明“二次扫描”方法得到的存储单元阈值分布,两条曲线高度重叠,显示出本发明方法的实用性。但是,使用本发明“二次扫描”的方法,相比现有技术却大大节约了测试时间,从而大大提高了生产效率。
综上所述,本发明通过将传统采用统一电压扫描步长的一次扫描方式优化为采用不同电压扫描步长的二次扫描方式,第一次扫描采用较大的步长进行,根据存储单元失效数目,大致判断阈值电压分布范围,当出现第一个存储单元失效时,可依此判断阈值电压分布的开始值;当存储单元全部失效时,可依此判断阈值电压分布的结束值,确定阈值电压分布的大致范围后,采用较小的步长进行第二次扫描,从而可大大缩短收集阈值电压分布所需的时间,也保证了测试的准确性。
以上所述的仅为本发明的优选实施例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (5)

1.一种快速收集阈值电压分布的方法,其特征在于,包括以下步骤:
步骤S01:定义扫描时的电压扫描范围及电压扫描步长;
步骤S02:从电压扫描范围的起点开始,以多倍电压扫描步长对存储单元进行第一次扫描,记录首次出现功能读取失效的存储单元时的第一电压值,以及全部存储单元出现功能读取失效时的第二电压值;
步骤S03:根据第一次扫描的结果,确定存储单元的阈值电压理论分布范围;所述阈值电压理论分布范围满足:
( (V1–M·Vstep)~V2)
其中,V1代表第一电压值,V2代表第二电压值,Vstep代表电压扫描步长,M代表第一次扫描时电压扫描步长的倍率;
步骤S04:从阈值电压理论分布范围的起点开始,以单倍电压扫描步长对存储单元进行第二次扫描,记录首次出现功能读取失效的存储单元时的第三电压值,以及全部存储单元出现功能读取失效时的第四电压值,并自第四电压值起继续扫描至少三个电压扫描步长;
步骤S05:根据第二次扫描结果,计算出存储单元的阈值电压实际分布范围。
2.根据权利要求1所述的快速收集阈值电压分布的方法,其特征在于,所述阈值电压理论分布范围的起点电压大于电压扫描范围的起点电压。
3.根据权利要求1所述的快速收集阈值电压分布的方法,其特征在于,所述阈值电压理论分布范围的终点电压小于电压扫描范围的终点电压。
4.根据权利要求1所述的快速收集阈值电压分布的方法,其特征在于,第一次扫描时电压扫描步长的倍率M为5~20。
5.根据权利要求1所述的快速收集阈值电压分布的方法,其特征在于,步骤S04中,当第四电压值小于第二电压值时,继续扫描至第二电压值。
CN201610971021.7A 2016-11-01 2016-11-01 一种快速收集阈值电压分布的方法 Active CN106653095B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610971021.7A CN106653095B (zh) 2016-11-01 2016-11-01 一种快速收集阈值电压分布的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610971021.7A CN106653095B (zh) 2016-11-01 2016-11-01 一种快速收集阈值电压分布的方法

Publications (2)

Publication Number Publication Date
CN106653095A CN106653095A (zh) 2017-05-10
CN106653095B true CN106653095B (zh) 2020-05-15

Family

ID=58821949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610971021.7A Active CN106653095B (zh) 2016-11-01 2016-11-01 一种快速收集阈值电压分布的方法

Country Status (1)

Country Link
CN (1) CN106653095B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107886994A (zh) * 2017-11-09 2018-04-06 上海华力微电子有限公司 一种快速收集闪存阈值电压分布的方法
CN109270425A (zh) * 2018-11-02 2019-01-25 上海华力微电子有限公司 一种扫描测试方法
CN110763972B (zh) * 2019-10-31 2021-10-15 上海华力集成电路制造有限公司 Mosfet的阈值电压的测量方法
CN115565587B (zh) * 2022-10-14 2023-05-09 北京得瑞领新科技有限公司 快速搜索阈值电压的方法、装置、存储介质及ssd设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105570A (zh) * 2013-01-23 2013-05-15 无锡华润上华科技有限公司 一种开启电压的测试方法及系统
CN104007332A (zh) * 2013-02-22 2014-08-27 无锡华润上华科技有限公司 开关管的衬底漏电测试方法
CN104272393A (zh) * 2012-04-13 2015-01-07 桑迪士克科技股份有限公司 为存储器的块调整编程步长的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104272393A (zh) * 2012-04-13 2015-01-07 桑迪士克科技股份有限公司 为存储器的块调整编程步长的系统和方法
CN103105570A (zh) * 2013-01-23 2013-05-15 无锡华润上华科技有限公司 一种开启电压的测试方法及系统
CN104007332A (zh) * 2013-02-22 2014-08-27 无锡华润上华科技有限公司 开关管的衬底漏电测试方法

Also Published As

Publication number Publication date
CN106653095A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106653095B (zh) 一种快速收集阈值电压分布的方法
KR100954976B1 (ko) 에러 분류 수단을 구비한 반도체 메모리 시험 장치 및 관련시험 방법
CN108387837B (zh) 芯片的测试方法
CN111899784B (zh) 一种nand闪存中阈值电压分布的测量方法、装置、存储介质
CN105807556A (zh) 版图的修正方法
EP2487689A1 (en) Digital method to obtain the I-V curves of NVM bitcells
CN104425302A (zh) 半导体器件的缺陷检测方法和装置
CN106546911B (zh) 一种ate数字驱动器的voh/vol校准方法
CN113075527A (zh) 基于Shmoo测试的集成电路芯片测试方法、系统及介质
CN103578561A (zh) 一种快闪存储器及其擦除校验方法和装置
CN104751875B (zh) 应用于nvm芯片的失效位图分析方法
KR101755921B1 (ko) 차량의 고전압배터리 열화 판정 방법
CN109541427B (zh) 晶体管电性测试结构及测试方法
CN114210605B (zh) 碳化硅功率半导体器件测试方法
CN112698174B (zh) 一种肖特基芯片iv不良曲线的测试筛选方法
US9548138B2 (en) Test method for memory
JP2013120875A (ja) 半導体ウエハのテスト方法
CN104183511B (zh) 一种确定晶圆测试数据规范的界限的方法及晶粒标记方法
US7865325B2 (en) Test system and failure parsing method thereof
CN112148536A (zh) 检测深度学习芯片的方法、装置、电子设备和计算机存储介质
CN107886994A (zh) 一种快速收集闪存阈值电压分布的方法
US20120109561A1 (en) Wafer test apparatus, wafer test method, and program
CN106571167B (zh) 嵌入式eeprom的“读”测试基准建立方法
TWI527047B (zh) 記憶體測試方法
CN116540059B (zh) 半导体芯片测试方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant