CN106647264A - 一种基于控制约束的扩展鲁棒h∞的无人机控制方法 - Google Patents

一种基于控制约束的扩展鲁棒h∞的无人机控制方法 Download PDF

Info

Publication number
CN106647264A
CN106647264A CN201611100078.6A CN201611100078A CN106647264A CN 106647264 A CN106647264 A CN 106647264A CN 201611100078 A CN201611100078 A CN 201611100078A CN 106647264 A CN106647264 A CN 106647264A
Authority
CN
China
Prior art keywords
overbar
control
constraint
unmanned plane
lmi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611100078.6A
Other languages
English (en)
Other versions
CN106647264B (zh
Inventor
黄奔
朱欣华
王宇
苏岩
郭民环
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201611100078.6A priority Critical patent/CN106647264B/zh
Publication of CN106647264A publication Critical patent/CN106647264A/zh
Application granted granted Critical
Publication of CN106647264B publication Critical patent/CN106647264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明公开了一种用于固定翼无人机的控制约束的扩展鲁棒控制方法。该方法设计的控制器在对状态变量进行扩展后,不仅满足鲁棒控制理论要求的线性矩阵不等式下,还满足推导出的对控制量进行约束的矩阵不等式。原有的控制理论设计如果考虑控制量的约束,控制器的性能会受到很大影响,甚至会不稳定。本发明的方法得出在控制量存在约束时,控制器需满足的矩阵不等式。此外本方法还能够在确定最大干扰的情况下,对控制量进行具体的约束,为了在满足约束的条件下提高控制器的性能,还扩展了状态变量。仿真实例证明了本发明的对控制量具有约束,性能方面具有超调小,过渡平稳等优点。在无人机、工业机器人的控制方面具有广阔的应用前景。

Description

一种基于控制约束的扩展鲁棒*的无人机控制方法
技术领域
本发明属于一种控制方法,特别是一种基于控制约束的扩展鲁棒的无人机控制方法。
背景技术
在无人机的控制方法领域,有很多的控制,在实际中用到的控制方法大多是基于PID的,PID控制的优点是不依靠模型,而且对于搭载的硬件运算能力要求不高,所以在实际中多采用PID进行控制。同时PID控制器结构上的简单性决定了它在控制品质上的局限性,并且这种简单性使得PID控制器对存在时滞和模型不确定性等被控对象的控制性能不是很好;此外,PID控制器无法同时满足指令跟踪和抑制扰动的性能要求。
起源于19世纪80年代的控制理论能够克服PID控制的缺点,能够在系统具有模型不确定性的同时满足指令追踪和扰动抑制的问题,而且具有很好的动态特性,也成功在无人直升机上成功使用。在实际使用过程中,因为控制理论是将扰动到控制输出的闭环传递函数的范数最小化,这个时候就会有控制量超出限制的问题,控制量超过限制后,就会导致控制效果不理想甚至不稳定。
发明内容
本发明所解决的技术问题在于提供一种能够对控制量进行约束的鲁棒控制,在原有的保持鲁棒稳定性的基础之上,能够满足对控制量的约束,通过将误差积分加入状态变量来扩展状态方程,使控制器性能在存在控制约束的条件下能够保持。
实现本发明目的的技术解决方案为:一种具有控制约束的控制方法,包括下面几个步骤:
步骤1、构建固定翼无人机非线性模型,该非线性模型包括12个状态量,分别是速度V、攻角α、侧滑角β、滚转角φ、俯仰角θ、偏航角ψ,滚转角速率p、俯仰角速率q,偏航角速率r,以及决定无人机位置的三个状态量[xg,yg,h]分别是前向位移,侧向位移和高度;
步骤2、将步骤1的无人机非线性模型进行线性化处理,得到线性化后的模型,写成系统的意义下的状态空间方程;
步骤3、确定电机转速舵机偏转角度的极限值umax,然后构建控制量约束矩阵X;推导出控制量约束线性矩阵不等式;
步骤4、对步骤2中构建的线性化后的模型进行扩展,对需要进行指令追踪的状态变量进行误差处理,并且将误差积分项加入到线性化后的模型中进行扩展;
步骤5、选取性能指标γ1,γ2,Δ,将推导出的控制量约束线性矩阵不等式,与原控制方法要求的线性矩阵不等式联立得到新的线性矩阵不等式组,然后利用迭代的方法,不断用次优控制器去逼近最优控制器,最后得到满足控制量约束要求且使系统闭环稳定的鲁棒控制器。
本发明与现有技术相比,其显著优点为:在保留了控制理论在系统具有模型不确定性的抗扰动的特性基础之上能够对控制量进行约束,避免了执行机构饱和等问题对闭环系统产生的不利影响,在明确了最大干扰之后,还能够对最大控制量进行具体的约束。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是本发明控制约束系统的控制流程图。
图2是本发明的寻优策略。
图3是本发明的的扩展方法。
图4是本发明在Matlab/Simulink中的建模。
图5是本发明与无约束控制方法的性能结果对比。
图6是本发明与无约束控制方法的控制量对比。
具体实施方式
结合附图,本发明的一种用于固定翼无人机的控制约束的扩展鲁棒控制方法,包括以下步骤:
步骤1、构建固定翼无人机非线性模型,该非线性模型包括12个状态量,分别是速度V、攻角α、侧滑角β、滚转角φ、俯仰角θ、偏航角ψ,滚转角速率p、俯仰角速率q,偏航角速率r,以及决定无人机位置的三个状态量[xg,yg,h]分别是前向位移,侧向位移和高度;
其中状态变量为[V α β φ θ ψ p q r x y h]T,其具体的非线性模型为:
式中,m代表固定翼无人机的质量,V代表固定翼无人机的空速,Ft代表固定翼无人机发动机的推力,Xw,Yw,Zw分别是固定翼无人机受到的合气动力在Oxw,Oyw,Ozw轴上的分量,分别是固定翼无人机的重力在Oxw,Oyw,Ozw上的分量,pw,qw,rw分别是固定翼无人机角速度在Oxw,Oyw,Ozw轴上的分量,p,q,r分别是固定翼无人机的角速度在Ox,Oy,Oz轴上的分量,Ixx,Iyy,Izz是固定翼无人机对Ox,Oy,Oz轴的转动惯量,Ixz是固定翼无人机对面Oxy的惯性积,
步骤2、将步骤1的无人机非线性模型进行线性化处理,得到线性化后的模型,写成系统的意义下的状态空间方程;
式中,x=[V α β φ θ ψ p q r x y h]T是状态变量矢量,A是状态系数矩阵,w是扰动矢量,B1是扰动系数矩阵,u=[n δe δa δr]T是控制矢量,其中n,δe,δa,δr分别代表电机转速,升降舵偏转角度,副翼偏转角度和方向舵偏转角度,B2是控制系数矩阵,C1,C2是状态加权矩阵,D11,D21是扰动加权矩阵,D12,D22是控制加权矩阵。
步骤3、构建控制量约束矩阵X,其对角线元素满足其中,已知控制量电机转速和舵机偏转角度ui(t)的范围|ui(t)|≤ui,max
则对控制量约束的控制的控制器需要满足的线性矩阵不等式组为:
式中α=γ2wmax,wmax是扰动的最大值,P是一个正定且对称的变量矩阵,Y是一个普通矩阵;
步骤4、对步骤2中构建的线性化后的模型进行扩展,对需要进行指令追踪的状态变量进行误差处理,并且将误差积分项加入到线性化后的模型中进行扩展;
步骤4-1、将误差信号的积分作为状态变量加入到状态空间方程中,具体的方法可用下列公式表达:
式中e(t)代表需要追踪指令信号的状态变量的误差,∫e(t)dt就是该误差的积分,r(t)代表需要追踪的指令信号,此时的扰动信号有真实扰动信号w(t)和指令信号r(t)构成,因此,误差积分信号加入后的状态空间更新方程表示为:
其中需要追踪指令信号的变量可以是[V α β φ θ ψ p q r x y h]T
步骤4-2、将包含指令信号r与真实扰动信号w的扩展扰动加入系统是通过变换状态空间方程得到的,即将需要的状态空间表达式中的状体迁移项进行如下转换,此时指令信号便会出现在控制输入端:
步骤5、选取性能指标γ1,γ2,Δ,将推导出的控制量约束线性矩阵不等式,与原控制方法要求的线性矩阵不等式联立得到新的线性矩阵不等式组,然后利用迭代减小性能指标的方法,不断用次优控制器去逼近最优控制器。
步骤5-1、选取性能指标γ1,γ2,Δ,其中指标γ1使线性矩阵不等式无解,则求取的是次优控制器中的一个极限;γ2能够使线性矩阵不等式有解,Δ是性能需要的精度;
步骤5-2、取新的γ′=(γ12)/2,将γ′带入需要满足的线性矩阵不等式组:
步骤5-3、对矩阵不等式组(7)解的情况进行判断,如果γ′使线性矩阵不等式组有解,那么γ2=γ′,如果无解则γ1=γ′,判断是否满足|γ12|<Δ,如果不满足返回步骤5-2,如果满足,则取γ=γ2,求出满足线性矩阵不等式组的P与Y,最后得到接近最优的控制器K=YP-1
变量α=γ2wmax是在假设扰动最大的时候取的值,所以对于控制量的约束只在扰动最大时能够根除定量的约束,但是当扰动小于wmax时,控制量一定会被约束在极限以下。
本发明在保留了控制理论在系统具有模型不确定性的抗扰动的特性基础之上能够对控制量进行约束,避免了执行机构饱和等问题对闭环系统产生的不利影响,在明确了最大干扰之后,还能够对最大控制量进行具体的约束。
下面结合实施例对本发明做进一步详细的说明:
实施例
对飞机纵向运动中的速度V和俯仰角θ进行转速存在约束的控制器设计,无人机的状态变量x=[V α θ q]T,此时的状态参数x=[30 0.0923 0.0923 0]T,状态空间参数如下所示:
根据公式(4)对系统进行扩展,在纵向通道加入速度误差和俯仰角误差∫Verrdt,∫θerrdt。扩展后的状态参数为那么为了追踪速度和俯仰角指令信号,扩展后的干扰信号为那么根据扩展后的状态和干扰信号,可以获得扩展后的系统的状态参数,如下:
以上确定了扩展系统的模型结构,再结合控制要求,可以确定扩展后的控制输出信号z=[∫V(t)errdt ∫θ(t)errdt]T,那么控制性能的优劣主要取决于控制输出信号z中的加权矩阵C1、D11、D12。对于俯仰角控制来说,在保证俯仰角追踪指令信号的同时能够保持速度不变,所以以加权矩阵的选择如下:
利用Matlab自带的LMI工具箱可以求出满足线性矩阵不等式组(7)中的第一个线性矩阵不等式的Y1 *和P1 *,则控制器K1=Y1 *(P1 *)-1
同样的,利用LMI工具箱求出满足矩阵不等式(6)和(7)的Y2 *和P2 *,则添加控制约束后的控制器K2=Y2 *(P2 *)-1
给定θcmd=0.0923rad保持不变,Vcmd信号如下图所示,这是考虑在纵向控制内速度的控制主要是通过电子转速n来控制的,所以能够更直观的比较约束前后的控制量变化大小,所以选定速度V追踪指令,俯仰角θ保持不变。
从图5控制效果对比图中可以的发现,有约束的控制的上升时间和调整时间相比于无约束的控制要大,但是超调要小,而且稳态误差两者相差不多,在快速性上无约束的控制要好的多,但是过渡不稳定。
从图6控制量的对比图中可以发现无约束的控制量要比有约束的大的多。在能量消耗中要比转速有约束的大,续航时间会比有约束的小,添加约束后的控制能够更平稳的过渡和节约能量。

Claims (6)

1.一种基于控制约束的扩展鲁棒的无人机控制方法,其特征在于,包括以下步骤:
步骤1、构建固定翼无人机非线性模型,该非线性模型包括12个状态量,分别是速度V、攻角α、侧滑角β、滚转角φ、俯仰角θ、偏航角ψ,滚转角速率p、俯仰角速率q,偏航角速率r,以及决定无人机位置的三个状态量[xg,yg,h],分别是前向位移,侧向位移和高度;
步骤2、将步骤1的无人机非线性模型进行线性化处理,得到线性化后的模型,写成带有扰动w与控制输出z的意义下的状态空间方程;
步骤3、确定电机转速舵机偏转角度的极限值uimax,根据极限值构建控制量约束矩阵X,推导出控制量约束线性矩阵不等式;
步骤4、对步骤2中构建的线性化后的模型进行扩展,对需要进行指令追踪的状态量进行误差处理,如速度V、侧滑角β,并且将误差积分项加入到线性化后的模型中完成模型的扩展;
步骤5、选取性能指标γ1,γ2,Δ,将推导出的控制量约束线性矩阵不等式,与原控制方法要求的线性矩阵不等式联立得到新的线性矩阵不等式组,然后利用迭代减小性能指标的方法,不断用次优控制器去逼近最优控制器,最后得到满足控制量约束要求且使系统闭环稳定的鲁棒控制器。
2.根据权利要求1所述的基于控制约束的扩展鲁棒的无人机控制方法,其特征在于,步骤1中的状态变量为[V α β φ θ ψ p q r x y h]T,包含这些状态量的非线性模型为:
式中,m代表固定翼无人机的质量,V代表固定翼无人机的空速,Ft代表固定翼无人机发动机的推力,Xw,Yw,Zw分别是固定翼无人机受到的合气动力在Oxw,Oyw,Ozw轴上的分量,分别是固定翼无人机的重力在Oxw,Oyw,Ozw上的分量,pw,qw,rw分别是固定翼无人机角速度在Oxw,Oyw,Ozw轴上的分量,p,q,r分别是固定翼无人机的角速度在Ox,Oy,Oz轴上的分量,Ixx,Iyy,Izz是固定翼无人机对Ox,Oy,Oz轴的转动惯量,Ixz是固定翼无人机对面Oxy的惯性积,
3.根据权利要求1所述的基于控制约束的扩展鲁棒的无人机控制方法,其特征在于,步骤2中系统的意义下的状态空间方程为:
x · = A x + B 1 w + B 2 u z = C 1 x + D 11 w + D 12 u y = C 2 x + D 21 w + D 22 u
式中,x=[V α β φ θ ψ p q r x y h]T是状态变量矢量,A是状态系数矩阵,w是扰动矢量,B1是扰动系数矩阵,u=[n δe δa δr]T是控制矢量,其中n,δe,δa,δr分别代表电机转速,升降舵偏转角度,副翼偏转角度和方向舵偏转角度,B2是控制系数矩阵,C1,C2是状态加权矩阵,D11,D21是扰动加权矩阵,D12,D22是控制加权矩阵。
4.根据权利要求1所述的基于控制约束的扩展鲁棒的无人机控制方法,其特征在于,步骤3构建控制量约束矩阵X,其主对角线元素满足其中,已知控制量电机转速和舵机偏转角度ui(t)的范围|ui(t)|<uimax,i=1,2,3,4;
则对控制量约束的控制的控制器需要满足的线性矩阵不等式组为:
A P + B 2 Y + ( A P + B 2 Y ) T B 1 ( C 1 P + D 12 Y ) T B 1 T - &gamma; I D 11 T C 1 P + D 12 Y D 11 - &gamma; I < 0 1 &alpha; X Y Y T Q &GreaterEqual; 0
式中α=γ2wmax,wmax是扰动的最大值,P是一个正定且对称的变量矩阵,Y是一个普通矩阵。
5.根据权利要求1所述的基于控制约束的扩展鲁棒的无人机控制方法,其特征在于,步骤4对步骤2中构建的线性化后的模型进行扩展,增加误差积分项,具体为:
步骤4-1、将误差信号的积分作为状态变量加入到状态空间方程中,具体的方法可用下列公式表示:
e ( t ) x &CenterDot; ( t ) = 0 - I 0 A &Integral; e ( t ) d t x ( t ) + 0 B 2 u ( t ) + I 0 0 B 1 r ( t ) w ( t )
式中e(t)代表需要追踪指令信号的状态变量的误差,∫e(t)dt就是该误差的积分,r(t)代表需要追踪的指令信号,此时的扰动信号由真实扰动信号w(t)和指令信号r(t)构成,因此,误差积分信号加入后的状态空间更新方程表示为:
x &OverBar; &CenterDot; = A &OverBar; x &OverBar; + B &OverBar; 1 w &OverBar; + B &OverBar; 2 u ;
其中需要追踪指令信号的变量为[V α β φ θ ψ p q r x y h]T
步骤4-2、将包含指令信号r与真实扰动信号w的扩展扰动加入系统是通过变换状态空间方程得到的,即将需要的状态空间表达式中的状体迁移项进行如下转换,此时指令信号便会出现在控制输入端:
x &OverBar; &CenterDot; = A &OverBar; x &OverBar; + B &OverBar; 1 w &OverBar; + B &OverBar; 2 u &DoubleRightArrow; x &OverBar; &CenterDot; = A &OverBar; x &OverBar; + B &OverBar; 1 B &OverBar; 2 w &OverBar; u .
6.根据权利要求1所述的基于控制约束的扩展鲁棒的无人机控制方法,其特征在于,步骤5中迭代的方法具体为:
用二分法不断的减小性能指标γ的取值,不断用次优控制器||Gzw(s)||<γ逼近最优控制器最后求得满足性能要求,且对控制量具有约束的控制器,具体为:
步骤5-1、选取性能指标γ1,γ2,Δ,其中指标γ1使线性矩阵不等式无解,则求取的是次优控制器中的一个极限;γ2能够使线性矩阵不等式有解,Δ是性能需要的精度;
步骤5-2、取新的γ′=(γ12)/2,将γ′带入需要满足的线性矩阵不等式组:
A &OverBar; P + B &OverBar; 2 Y + ( A &OverBar; P + B &OverBar; 2 Y ) T B &OverBar; 1 ( C 1 P + D 12 Y ) T B &OverBar; 1 T - &gamma; I D 11 T C 1 P + D 12 Y D 11 - &gamma; I < 0 1 &alpha; X Y Y T Q &GreaterEqual; 0
步骤5-3、对矩阵不等式解的情况进行判断,如果γ′使线性矩阵不等式组有解,那么γ2=γ′,如果无解则γ1=γ′,判断是否满足|γ12|<Δ,如果不满足返回步骤5-2,如果满足,则取γ=γ2,求出满足线性矩阵不等式组的P与Y,最后得到接近最优的控制器K=YP-1
CN201611100078.6A 2016-12-02 2016-12-02 一种基于控制约束的扩展鲁棒h∞的无人机控制方法 Active CN106647264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611100078.6A CN106647264B (zh) 2016-12-02 2016-12-02 一种基于控制约束的扩展鲁棒h∞的无人机控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611100078.6A CN106647264B (zh) 2016-12-02 2016-12-02 一种基于控制约束的扩展鲁棒h∞的无人机控制方法

Publications (2)

Publication Number Publication Date
CN106647264A true CN106647264A (zh) 2017-05-10
CN106647264B CN106647264B (zh) 2019-09-13

Family

ID=58818387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611100078.6A Active CN106647264B (zh) 2016-12-02 2016-12-02 一种基于控制约束的扩展鲁棒h∞的无人机控制方法

Country Status (1)

Country Link
CN (1) CN106647264B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505833A (zh) * 2017-08-01 2017-12-22 南京理工大学 一种基于嵌入式操作系统的飞行控制系统及方法
CN108196561A (zh) * 2018-01-18 2018-06-22 北京航空航天大学 一种无人飞行器的鲁棒抗风扰位置控制方法和装置
CN108873923A (zh) * 2018-07-11 2018-11-23 中国人民解放军陆军工程大学 应急指挥控制固定翼无人机舰面紧急起飞控制方法
CN110023849A (zh) * 2017-06-30 2019-07-16 富士电机株式会社 控制装置及控制装置的设计方法
CN110377043A (zh) * 2019-07-13 2019-10-25 西北工业大学 一种基于h∞回路成形算法的小型固定翼无人机姿态控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114603A1 (en) * 2006-11-15 2008-05-15 Adacel, Inc. Confirmation system for command or speech recognition using activation means
CN104020671A (zh) * 2014-05-30 2014-09-03 哈尔滨工程大学 一种量测干扰下用于飞行器姿态估计的鲁棒递推滤波方法
CN105204341A (zh) * 2015-09-25 2015-12-30 西安石油大学 一种基于切换控制理论的网络控制系统鲁棒跟踪控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080114603A1 (en) * 2006-11-15 2008-05-15 Adacel, Inc. Confirmation system for command or speech recognition using activation means
CN104020671A (zh) * 2014-05-30 2014-09-03 哈尔滨工程大学 一种量测干扰下用于飞行器姿态估计的鲁棒递推滤波方法
CN105204341A (zh) * 2015-09-25 2015-12-30 西安石油大学 一种基于切换控制理论的网络控制系统鲁棒跟踪控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
段镇,等: "无人机侧向运动H∞控制器设计及仿真", 《计算机测量与控制》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023849A (zh) * 2017-06-30 2019-07-16 富士电机株式会社 控制装置及控制装置的设计方法
CN110023849B (zh) * 2017-06-30 2022-05-03 富士电机株式会社 控制装置及控制装置的设计方法
CN107505833A (zh) * 2017-08-01 2017-12-22 南京理工大学 一种基于嵌入式操作系统的飞行控制系统及方法
CN108196561A (zh) * 2018-01-18 2018-06-22 北京航空航天大学 一种无人飞行器的鲁棒抗风扰位置控制方法和装置
CN108873923A (zh) * 2018-07-11 2018-11-23 中国人民解放军陆军工程大学 应急指挥控制固定翼无人机舰面紧急起飞控制方法
CN108873923B (zh) * 2018-07-11 2021-06-08 中国人民解放军陆军工程大学 应急指挥控制固定翼无人机舰面紧急起飞控制方法
CN110377043A (zh) * 2019-07-13 2019-10-25 西北工业大学 一种基于h∞回路成形算法的小型固定翼无人机姿态控制方法

Also Published As

Publication number Publication date
CN106647264B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
Yu et al. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect
CN106647264A (zh) 一种基于控制约束的扩展鲁棒h∞的无人机控制方法
CN109062042B (zh) 一种旋翼飞行器的有限时间航迹跟踪控制方法
CN103558857A (zh) 一种btt飞行器的分布式复合抗干扰姿态控制方法
CN107357166B (zh) 小型无人直升机的无模型自适应鲁棒控制方法
CN104298109B (zh) 基于多控制器融合的无尾飞行器协调转弯控制方法
CN107807663A (zh) 基于自适应控制的无人机编队保持控制方法
Luo et al. On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation
Su et al. Probe motion compound control for autonomous aerial refueling docking
CN108803648A (zh) 无人飞行器鲁棒姿态控制方法、装置及电子设备
CN109507890A (zh) 一种基于eso的无人机动态逆广义预测控制器
CN106681345A (zh) 基于人群搜索算法的无人机自抗扰控制方法
CN104597911A (zh) 空中加油受油机自适应最优对接轨迹跟踪飞行控制方法
CN109703769B (zh) 一种基于预瞄策略的空中加油对接控制方法
CN110316400B (zh) 一种鸭翼布局固定翼无人机直接升力控制方法
CN106527462A (zh) 无人机控制装置
Razzaghian et al. Adaptive fuzzy sliding mode control for a model-scaled unmanned helicopter
Wang et al. Disturbance observer-based backstepping formation control of multiple quadrotors with asymmetric output error constraints
Qin et al. Fast fixed-time nonsingular terminal sliding-mode formation control for autonomous underwater vehicles based on a disturbance observer
CN114089780B (zh) 一种面向城市空间的多旋翼无人机路径规划方法
Jinrui et al. Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method
Li et al. L1 adaptive structure-based nonlinear dynamic inversion control for aircraft with center of gravity variations
CN114637203A (zh) 一种针对中高速、大机动无人机的飞行控制系统
CN113093804A (zh) 基于反演滑模控制的无人艇编队控制方法和控制系统
CN116736716A (zh) 倾转旋翼无人机过渡段的综合抗干扰光滑切换控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant