CN106645346A - 多位点检测区、微电极阵列及其制备方法 - Google Patents

多位点检测区、微电极阵列及其制备方法 Download PDF

Info

Publication number
CN106645346A
CN106645346A CN201611024906.2A CN201611024906A CN106645346A CN 106645346 A CN106645346 A CN 106645346A CN 201611024906 A CN201611024906 A CN 201611024906A CN 106645346 A CN106645346 A CN 106645346A
Authority
CN
China
Prior art keywords
microelectrode
substrate
many
site detection
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611024906.2A
Other languages
English (en)
Other versions
CN106645346B (zh
Inventor
王力
蔡新霞
罗金平
宋轶琳
徐辉任
王杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN201611024906.2A priority Critical patent/CN106645346B/zh
Publication of CN106645346A publication Critical patent/CN106645346A/zh
Application granted granted Critical
Publication of CN106645346B publication Critical patent/CN106645346B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Abstract

一种多位点检测区、微电极阵列及其制备方法,用于多活性位点神经递质的检测,该多位点检测区包括:检测电极本体;以及纳米复合薄膜层,设置在所述检测电极本体上,采用该多位点检测区的平面微电极阵列提高了递质电催化能力,降低了电极阻抗、热噪声等。

Description

多位点检测区、微电极阵列及其制备方法
技术领域
本发明涉及生物传感器领域,尤其是涉及一种多位点检查区、微电极阵列及其制备方法,用于多活性位点神经递质检测。
背景技术
大脑是由1400多亿个神经元细胞组成的神经网络,起着感知外部世界及协调机体器官活动的作用,神经元的树突及轴突只有与匹配的受体才能进行神经行为的信息传送。神经递质是神经元间联系的重要纽带,在中枢神经系统、外周植物神经系统和激素介导的内分泌及外分泌活动中起着极其重要的作用。其与多种功能性疾病和病变息息相关,例如谷氨酸是与中风有关的神经递质,大脑缺血缺氧后,谷氨酸过度释放,对神经元造成毒性损害作用;多巴胺与帕金森症、抑郁症有关,其浓度受精神因素影响,传递亢奋和欢愉的信息。神经递质也参与维系脑部血液的循环。近年来国内外对神经递质的研究还表明在病理情况下神经递质与脑血管病、颅脑外伤密切相关,甚至影响脑的继发性病变。
在神经递质电化学信号的测试中,由于检测在胞外进行,受到检测器件结构和客观环境白噪声的限制所测得的信号(幅度为皮安级)易被干扰淹没,神经递质的释放量(纳摩到微摩级)不能精确测得。现有的微电极阵列存在因电极尺寸小造成的阻抗、热噪声增大等问题。
发明内容
鉴于现有方案存在的问题,为了克服上述现有技术方案的不足,本发明提出了一种多活性位点神经递质检测用平面微电极阵列及其制备方法。
根据本发明的一个方面,提供了一种多位点检测区,用于多活性位点神经递质检测,包括:检测电极本体;以及纳米复合薄膜层,设置在所述检测电极本体上。
根据本发明的另一个方面,提供了一种平面微电极阵列,包括基底,多个多位点检测区设置在基底上的中心位置;以及多个触点,设置在所述基底表面的周边区域;所述每一触点与一圆形微电极或弧形微电极相对应,由导线进行电连接。
根据本发明的又一个方面,提供了一种平面微电极阵列的制备方法,包括:在基底表面上形成导电图案,所述导电图案包括位于基底表面中心位置的多个多位点微检测区的检测电极本体;以及在所述检测电极本体上形成纳米复合薄膜层。
从上述技术方案可以看出,本发明具有以下有益效果:
(1)平面微电极阵列多位点微检测区的电极上设置纳米复合薄膜层,提高了递质电催化能力,降低了电极阻抗、热噪声等。
(2)多位点微检测区圆形微电机被三个弧形微电极围绕,可以对神经细胞的四个活性位点的探测。
(3)平面微电极阵列基底材料选用石英玻璃、聚氯乙烯或聚碳酸酯,具有较好的生物相容性。
附图说明
图1为本发明实施例多活性位点神经递质检测用平面微电极阵列的示意图;
图2图1中多位点微检测区的结构示意图;
图3为制作图1平面微电极阵列个流程示意图。
【主要元件】
10-平面微电极阵列; 1-基底; 2-触点;
3-导线; 4-多位点微检测区; 41-圆形微电极;
42-弧形微电极; 5-绝缘层; 6-纳米复合薄膜层。
具体实施方式
本发明某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本发明的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本发明满足适用的法律要求。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明通过对平面微电极阵列表面进行纳米复合材料修饰,获得适用于多活性位点神经递质检测的平面电极阵列芯片,克服了以往神经微电极单点检测细胞分泌以及神经细胞与电极不易贴附的缺点,具有高灵敏度、低阻抗、生物相容性好的优点。
本发明提供了适用于一种多活性位点神经递质检测的微电极阵列极及其制备方法。
本发明实施例提供一种多活性位点神经递质检测用平面微电极阵列10,如图1所示,该平面微电极阵列10包括基底1,基底1可以为正方形、长方形、圆形等,优选为正方形,厚度为0.5mm~1mm,基底1优选为边长45mm的正方形。其采用石英玻璃、聚氯乙烯或聚碳酸酯等生物相容性好的材料制成。
基底1上设置多个触点2、多条导线3及多个多位点微检测区4,其中,
多个多位点微检测区4设置基底1表面的中心位置,多位点微检测区4的数量可以根据实际检测需要设定,本实施例中多位点微检测区4为14个,呈三排,左右对称分布,在对称的左侧或右侧中的每一排中,每相邻的两个检测区,距离约为500μm。
每个多位点微检测区4如图2所示,包括1个圆形微电极41、3个弧形微电极42,采用可塑性好的铂或铱,厚度介于200到280nm之间。该圆形微电极41直径为8μm~15μm,优选为10μm,其被3个弧形微电极42围绕,3个弧形微电极42与圆形微电极41之间的距离为单个神经细胞的平均半径,约为5μm,弧形微电极42的内径为10μm~19μm,优选为14μm,外径为15μm~25μm,优选为18μm。圆形微电极41和弧形微电极42均连接有导线3,优选为导电薄膜引线,本实施例中,连接形微电极41和弧形微电极42的四条导线呈“十”字布置。该多位点微检测区4可实现神经细胞的四个活性位点的探测。
本领域技术人员可以理解,每个神经细胞有多个钙离子释放活性位点,实际检测中,活性位点越多越好,但考虑实际微电极工艺制备限制条件,以及,微电极设计的分布式电容影响,所以本发明以四个活性位点为例进行说明。
触点2设置在基底1表面的周边区域,其数量与微电极的数量一致,本实施例为56个,多位点微检测区4中的每个微电极均通过导线3连接至一个触点2,如图1所示,本实施例中56个触点2排列为方形。本实施例中触点2和导线3均采用与微电极相同的材料与微电极一起形成,触点2的机械强度能够承受标准电子元器件中弹性金属探针所造成的压力。
该平面微电极阵列10还包括绝缘层5,覆盖基底1表面,仅暴露微电极及触点2,该绝缘层选用生物相容性好的有机或无机绝缘材料形成,优选二氧化硅、氮化硅或聚酰亚胺,厚度为500μm~1000μm,优选为800μm。
多位点微检测区4的圆形微电极41、弧形微电极42均未被绝缘层5覆盖,其上设置纳米复合薄膜层6,优选铂黑石墨烯或纳米金石墨烯,厚度0.05μm~0.2μm,优选为0.1μm。该纳米复合薄膜层能够增大比表面积,提高递质电催化能力,检测到更低的递质氧化电流。
进行多活性位点神经递质检测时,将离体动物的神经组织或培养的神经细胞,与多位点微检测区4紧密接触,再结合配套的检测系统,即可开展动物离体神经信息或培养细胞的双模检测。
本发明实施例还提供一种制作上述多活性位点神经递质检测用平面微电极阵列的制备方法。包括以下步骡:
S101清洗基底1;
以玻璃基底为例,将基底1在饱和重铬酸钾浓硫酸混合液浸泡24小时,依次通过丙酮、乙醇、去离子水超声清洗,获得干净的基底1,如图3中(a)所示。
S102在基底1表面上设置导电图案;
具体的在基底1上旋涂一层正性光刻胶AZ1500,厚度为0.5μm~2μm,优选为1μm,如图3中(b)所示;
通过掩模板曝光、显影后形成多位点微检测区中的弧形微电极42、圆形微电极41和触点2、导线3的图案,如图3中(c)所示;
随后在带有光刻胶图案的基底1表面依次溅射厚度50nm的Ti种子层,和厚度为250nm的PT薄膜层,Ti种子层增加Pt导电薄膜层与基底1的粘附性,如图3中(d)、(e)所示;但Ti种子层并不是必须的,在本发明的其他方案中,Ti种子层可以省略;
采用剥离工艺去除基底1上的光刻胶图案及其上Ti/Pt薄膜层,留下所需多位点微检测区4、引线3及触点2,如图3中(f)所示。
S103设置暴露微电极和触点的绝缘层5;
在制备好Pt薄膜层的基底表面,采用PECVD蒸镀氮化硅(Si3N4)绝缘层,厚度0.6μm~1μm,优选为800μm,如图3中(g)所示;
通过光刻和SF6等离子刻蚀的方法,仅暴露出弧形微电极42、圆形微电极41和触点2,保留导线3表面覆盖的氮化硅绝缘层,如图3中(h)所示;
S104在微电极上设置纳米复合薄膜层6。
采用电镀的方法在弧形微电极42、圆形微电极41表面修饰一层纳米复合材料如图3中(i)所示,厚度0.05μm~0.2μm,优选为0.1μm,纳米复合薄膜层6,优选为铂黑石墨烯或纳米金石墨烯。
应注意,附图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。
实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:
(1)形成导电图案的方式可以采用涂覆金属层后采用光刻工艺构图刻蚀代替。
(2)除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

1.一种多位点检测区(4),用于多活性位点神经递质检测,其特征在于,包括:
检测电极本体;以及
纳米复合薄膜层(6),设置在所述检测电极本体上。
2.根据权利要求1所述的多位点检测区(4),其特征在于,所述纳米复合薄膜层(6)为铂黑石墨烯或纳米金石墨烯材料制成,厚度0.05μm~0.2μm。
3.根据权利要求1所述的多位点检测区(4),其特征在于,所述检测电极本体包括:
一圆形微电极(41);
多个弧形微电极(42),围绕所述圆形微电极(41)排列;
所述纳米复合薄膜层(6)设置在所述圆形微电极(41)和所述多个弧形微电极(42)上。
4.根据权利要求3所述的多位点检测区(4),其特征在于,所述弧形微电极(42)与圆形微电极(41)之间的距离为单个神经细胞的平均半径。
5.根据权利要求3所述的多位点检测区(4),其特征在于,所述弧形微电极(42)数量为3个,所述圆形微电极(41)与三个所述弧形微电极(42)分别与一条导线(3)电连接用于传递电信号,四条导线呈“十”字布置。
6.根据权利要求3所述的多位点检测区(4),其特征在于,所述圆形微电极(41)或弧形微电极(42)材料为铂或铱。
7.一种平面微电极阵列,包括权利要求1-5任一所述的多位点检测区(4),所述平面微电极阵列还包括:
基底(1),所述多个多位点检测区(4)设置在基底(1)上的中心位置;以及
多个触点(2),设置在所述基底(1)表面的周边区域;
所述每一触点(2)与一圆形微电极(41)或弧形微电极(42)相对应,由导线(3)进行电连接。
8.根据权利要求7所述的平面微电极阵列,其特征在于,还包括:
绝缘层(5),覆盖所述基底(1)表面,仅暴露所述检测电极本体及所述触点(2)。
9.根据权利要求8所述的平面微电极阵列,其特征在于,述绝缘层(5)材料为二氧化硅、氮化硅或聚酰亚胺,厚度为500nm~1000nm。
10.根据权利要求7所述的平面微电极阵列,其特征在于:所述多位点微检测区(4)为14个,呈三排,左右对称分布,在对称的左侧或右侧中的每一排中,每相邻的两个检测区,距离约为500μm。
11.一种平面微电极阵列的制备方法,其特征在于,包括:
在基底(1)表面上形成导电图案,所述导电图案包括位于基底(1)表面中心位置的多个多位点微检测区(4)的检测电极本体;以及
在所述检测电极本体上形成纳米复合薄膜层(6)。
12.根据权利要求11所述的制备方法,其特征在于,所述导电图案的制备步骤包括:
在基底(1)上旋涂一层光刻胶,通过曝光显影形成光刻胶图案;
在带有光刻胶图案的基底(1)表面依次溅射Ti种子层和PT薄膜层;以及
剥离光刻胶图案及其上的Ti种子层和PT薄膜层,形成所述导电图案。
13.根据权利要求11所述的制备方法,其特征在于,在形成纳米复合薄膜层(6)步骤前,还包括:
在基底(1)上形成仅暴露所述检测电极本体的绝缘层(5)。
CN201611024906.2A 2016-11-14 2016-11-14 多位点检测区、微电极阵列及其制备方法 Active CN106645346B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611024906.2A CN106645346B (zh) 2016-11-14 2016-11-14 多位点检测区、微电极阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611024906.2A CN106645346B (zh) 2016-11-14 2016-11-14 多位点检测区、微电极阵列及其制备方法

Publications (2)

Publication Number Publication Date
CN106645346A true CN106645346A (zh) 2017-05-10
CN106645346B CN106645346B (zh) 2019-12-03

Family

ID=58808499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611024906.2A Active CN106645346B (zh) 2016-11-14 2016-11-14 多位点检测区、微电极阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN106645346B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107049587A (zh) * 2017-05-14 2017-08-18 郭宝煊 智能月经杯
CN107462511A (zh) * 2017-07-13 2017-12-12 中山大学 通过纳米电极阵列记录细胞内电信号的装置
CN108254414A (zh) * 2018-03-09 2018-07-06 国家纳米科学中心 一种柔性离体微沟道微电极阵列集成芯片及其制备方法和用途
CN109085224A (zh) * 2018-08-27 2018-12-25 浙江大学 用于细胞表面区域atp检测的敏感微电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286084A2 (en) * 1987-04-07 1988-10-12 RAMOT UNIVERSITY, AUTHORITY FOR APPLIED RESEARCH & INDUSTRIAL DEVELOPMENT LTD. A device for the rapid qualitative or quantitative assay of entities having a biological activity
US20020106496A1 (en) * 2000-10-19 2002-08-08 Moxon Karen Anne Ceramic based multi-site electrode arrays and methods for their production
CN101614729A (zh) * 2008-06-27 2009-12-30 博奥生物有限公司 用于细胞操作及电生理信号检测的微电极阵列器件及专用装置
CN101652657A (zh) * 2007-07-04 2010-02-17 博奥生物有限公司 一种自动定位与传感的微电极阵列
CN103630571A (zh) * 2013-09-12 2014-03-12 中国科学院电子学研究所 一种微纳阵列传感器及其制备方法
CN103630583A (zh) * 2013-04-27 2014-03-12 中国科学院电子学研究所 多分区多功能式神经双模检测微电极阵列芯片及制备方法
CN104760922A (zh) * 2014-01-03 2015-07-08 中国科学院电子学研究所 一种超微平面电极阵列传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286084A2 (en) * 1987-04-07 1988-10-12 RAMOT UNIVERSITY, AUTHORITY FOR APPLIED RESEARCH & INDUSTRIAL DEVELOPMENT LTD. A device for the rapid qualitative or quantitative assay of entities having a biological activity
US20020106496A1 (en) * 2000-10-19 2002-08-08 Moxon Karen Anne Ceramic based multi-site electrode arrays and methods for their production
CN101652657A (zh) * 2007-07-04 2010-02-17 博奥生物有限公司 一种自动定位与传感的微电极阵列
CN101614729A (zh) * 2008-06-27 2009-12-30 博奥生物有限公司 用于细胞操作及电生理信号检测的微电极阵列器件及专用装置
CN103630583A (zh) * 2013-04-27 2014-03-12 中国科学院电子学研究所 多分区多功能式神经双模检测微电极阵列芯片及制备方法
CN103630571A (zh) * 2013-09-12 2014-03-12 中国科学院电子学研究所 一种微纳阵列传感器及其制备方法
CN104760922A (zh) * 2014-01-03 2015-07-08 中国科学院电子学研究所 一种超微平面电极阵列传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋保江: "《石墨烯基复合材料的制备与性能研究》", 31 May 2014 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107049587A (zh) * 2017-05-14 2017-08-18 郭宝煊 智能月经杯
CN107462511A (zh) * 2017-07-13 2017-12-12 中山大学 通过纳米电极阵列记录细胞内电信号的装置
CN108254414A (zh) * 2018-03-09 2018-07-06 国家纳米科学中心 一种柔性离体微沟道微电极阵列集成芯片及其制备方法和用途
CN108254414B (zh) * 2018-03-09 2024-02-02 国家纳米科学中心 一种柔性离体微沟道微电极阵列集成芯片及其制备方法和用途
CN109085224A (zh) * 2018-08-27 2018-12-25 浙江大学 用于细胞表面区域atp检测的敏感微电极
CN109085224B (zh) * 2018-08-27 2023-11-03 浙江大学 用于细胞表面区域atp检测的敏感微电极

Also Published As

Publication number Publication date
CN106645346B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN102783942B (zh) 植入式神经信息双模检测微电极阵列芯片及制备方法
CN106645346B (zh) 多位点检测区、微电极阵列及其制备方法
CN102445477B (zh) 离体神经信息双模检测微电极阵列芯片及制备方法
CN101614729B (zh) 用于细胞操作及电生理信号检测的微电极阵列器件及专用装置
CN103031246B (zh) 用于神经细胞多参数检测的微电极阵列芯片及制备方法
US20100248284A1 (en) Biosensor
US20120091011A1 (en) Biocompatible electrode
EP2343550B1 (en) Improved microneedle
CN110840431A (zh) 柔性微纳电极阵列植入式芯片及其制备方法
WO2017127551A1 (en) Addressable vertical nanowire probe arrays and fabrication methods
US20190380635A1 (en) Dual-Sided Biomorphic Polymer-based Microelectrode Array and Fabrication Thereof
WO2009104056A1 (en) Biochip for electrophysiological measurements
CN111272819B (zh) 心肌细胞多元活性检测的叉指排布导电纳米管传感装置
US20200055041A1 (en) Device, system and methods for electrophysiological interrogation of cells and tissues
US9097654B2 (en) Electrode assembly
US20170254795A1 (en) Cardiac platform for electrical recording of electrophysiology and contractility of cardiac tissues
CN112716497B (zh) 单细胞水平脑功能定位的微纳电极阵列芯片及其制备方法
JP2003287513A (ja) 生体試料用アレイ電極及びその作製方法
CN110935495A (zh) Gaba和电生理微纳同步传感检测芯片及其制备方法
Ryynänen et al. Microelectrode array designing for dummies: Contribution of the tracks to the impedance behavior and the noise level
WO2019015302A1 (zh) 医用检测基板及其制造方法、医用检测芯片及医用检测系统
JP5158696B2 (ja) 多点電極
US20240011940A1 (en) Nanostructure platform for cellular interfacing and corresponding manufacturing method
Mathieson et al. Detection of retinal signals using position sensitive microelectrode arrays
CN115290869A (zh) 基于成像芯片表面的微电极阵列及制作工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant