CN111272819B - 心肌细胞多元活性检测的叉指排布导电纳米管传感装置 - Google Patents
心肌细胞多元活性检测的叉指排布导电纳米管传感装置 Download PDFInfo
- Publication number
- CN111272819B CN111272819B CN202010108801.5A CN202010108801A CN111272819B CN 111272819 B CN111272819 B CN 111272819B CN 202010108801 A CN202010108801 A CN 202010108801A CN 111272819 B CN111272819 B CN 111272819B
- Authority
- CN
- China
- Prior art keywords
- interdigital
- interdigital electrode
- porous membrane
- electrode
- platinum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/48707—Physical analysis of biological material of liquid biological material by electrical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/4875—Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Optics & Photonics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明公开了一种心肌细胞多元活性检测的传感装置,该装置包括PCB电路板和多组叉指电极;多组叉指电极呈中心对称分布;叉指电极包括总线和叉指电极阵列,多个叉指电极对垂直分布在总线一端组成叉指电极阵列,每两根总线的叉指电极阵列相对交错排布构成叉指电极。总线另一端与PCB电路板上的焊盘连接。叉指电极表面上固定一用于培养细胞的培养腔。所述叉指电极由沉积在PET多孔膜的导电纳米空心管构成。本发明采用铂空心纳米管阵列作为三维生物界面,具有生物相容性良好,比表面积大,与细胞更好地耦合,使得制备得到的传感器可以在实现心肌细胞电生理、生长与机械搏动信号、代谢信号多元活性同步检测的同时,极大提高各类信号的检测灵敏性。
Description
技术领域
本发明涉及一种叉指排布导电纳米管传感器,尤其涉及一种能检测心肌细胞多元活性的传感装置。
背景技术
目前,用于心肌细胞活性的检测指标,包括心肌电信号、电阻抗、生化标志物,从而反映心肌细胞电生理、生长、代谢。然而,通常对于这些参数检测传感装置存在着孤立单一的问题,无法研究在内外因作用下心肌细胞各参数间的协同变化内在联系。同时,通常用于心肌细胞检测的传感装置常为微米尺度的平面电极,与细胞膜耦合效果较差,从而影响了检测心肌细胞电生理信号与生长与机械搏动信号的灵敏性,此外,常用的平面电化学电极也无法穿透细胞膜记录胞内的生化与活性,只能检测胞外微弱的代谢信号,因此,这些都成为了阻碍心肌细胞多参数同步高灵敏一体化分析的发展。
发明内容
本发明的目的在于针对现有心肌传感装置无法同步检测细胞电生理信号、生长与机械搏动信号、代谢信号的问题,同时微米尺度的平面电极与细胞耦合效果较差,并且无法穿透细胞膜的缺点,开发了基于叉指排布导电纳米管传感装置,用于心肌细胞电生理、生长与机械搏动信号、代谢信号的多元活性的同步检测。
本发明的目的是通过以下技术方案来实现的:一种心肌细胞多元活性检测的传感装置,包括PCB电路板和多组叉指电极;多组叉指电极呈中心对称分布;叉指电极包括总线和叉指电极阵列,多个叉指电极对垂直分布在总线一端组成叉指电极阵列,每两根总线的叉指电极阵列相对交错排布构成叉指电极。总线另一端与PCB电路板上的焊盘连接。叉指电极表面上固定一用于培养细胞的培养腔。总线和叉指电极阵列由沉积在PET多孔膜的导电纳米管构成;
进一步地,叉指电极阵列的宽度为80~120μm,相邻两个叉指电极阵列的间距为30μm。
进一步地,所述导电纳米空心管的直径为450nm、长度为1~2μm。
进一步地,所述总线和叉指电极阵列由沉积在绝缘PET多孔膜的空心铂纳米管构成,由以下步骤制得:
(1)光刻获得叉指图案:以孔径为450nm的PET多孔膜1作为绝缘基底,采用光刻制备具有中心对称分布的多组叉指电极排布图案,获得图案化的PET多孔膜;
(2)镀电极:在步骤(1)中获得的图案化的PET多孔膜上磁控溅射30nm金或铂,去除叉指电极排布图案外的金或铂得到导电的PET多孔膜。
(3)制备空心铂纳米管阵列:以PET膜镀金属面接触铜片为工作电极,Ag/AgCl电极为参比电极,铂丝为对电极,以含有1wt%氯铂酸、0.5M盐酸的电解液在恒电流工作模式下电沉积200s,在导电的PET多孔膜的孔壁形成空心铂纳米管状结构。再利用O2等离子体刻蚀掉PET多孔膜上未溅射金属面的部分PET多孔膜,露出直径450nm、长度1~2μm的叉指排布空心铂纳米管。
进一步地,还包括一与培养腔相匹配的培养腔盖,细胞培养腔的直径为1cm,培养腔盖采用15ml离心管盖子。
本发明的有益效果是,本发明采用铂空心纳米管阵列作为三维生物界面,具有生物相容性良好,比表面积大,与细胞更好地耦合,使得制备得到的传感器可以在实现心肌细胞电生理、生长与机械搏动信号、代谢信号多元活性同步检测的同时,极大提高各类信号的检测灵敏性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是绝缘PET多孔膜上的电极分布示意图;
图2是传感器集成单元组装示意图;
图3是PET膜上叉指电极部分放大后导电纳米管分布示意图;
图4是PET膜上的叉指电极低倍数SEM结果图;
图5是PET膜上的叉指电极局部放大的导电纳米管排布高倍数SEM表征图;
图6是心肌细胞电生理实验多通道结果图;
图7为多个通道心肌细胞生长阻抗谱信号测试多通道结果图;
图8为多个通道心肌细胞长时代谢信号测试多通道结果图;
图中,PET多孔膜1、电极外部接口2、总线3、叉指电极阵列4、PCB电路板5、焊盘6、排针7、玻璃培养腔8、培养腔盖9、导电纳米空心管10。
具体实施方式
本发明开发了基于叉指排布导电纳米管纳米传感装置,可以同步检测心肌细胞电生理、生长与机械搏动信号、代谢信号多元活性。如图2所示,该传感装置包括PCB电路板5和多组叉指电极;多组叉指电极呈中心对称分布;叉指电极包括总线3和叉指电极阵列4,多个叉指电极对垂直分布在总线3一端组成叉指电极阵列4,每两根总线3的叉指电极阵列4相对交错排布构成叉指电极,如图3、4所示。总线3另一端与PCB电路板5上的焊盘6连接。叉指电极表面上固定一用于培养细胞的培养腔8。玻璃培养腔8垂直粘结在叉指电极表面上,使底部覆盖叉指电极阵列4所在区域,形成不漏液的培养腔。所述叉指电极由沉积在PET多孔膜1的导电纳米空心管10构成,如图4、5所示;作为优选,总线3的另一端设有电极外部接口2,电极外部接口2与相匹配的焊盘6连接。另外,叉指电极的个数随尺寸大小而定,本实施例选取8个叉指电极呈中心对称分布,叉指电极朝向圆心,总线3朝外,便于培养腔8覆盖叉指电极,一个叉指电极是一个通道,如图1所示。
叉指电极阵列4的单个电极的宽度以及相邻两个电极的间距会影响测试的灵敏度和一致性。在本发明的一种优选实施方式中,选取叉指电极阵列4中的各电极的宽度为80-120μm,相邻两个电极间距为30μm,不仅能提高阻抗检测灵敏度,还能使细胞阻抗处于较低频段的变化,而低频段可以检测到精确阻抗。
在一个优选的方式中,培养腔8采用石英玻璃材料,还包括一采用15ml离心管盖子作为培养腔盖9,该腔盖9与培养腔8相匹配,使得培养腔盖9置于培养腔8上可防止测试过程中细菌污染和培养液蒸发。
如图3所示,叉指电极上有垂直排布的导电纳米空心管10,直径为450nm、长度约为1~2μm。该具有三维形貌的电极阵列可以更好地与细胞耦合,在一定的激励条件下,导电纳米管可以穿透细胞膜,检测细胞膜内外的反应变化,提高各类信号的检测灵敏性。
所述导电纳米空心管的直径为450nm、长度为1~2μm。导电纳米空心管可以为空心铂纳米管、三氧化二铝纳米空心管等。本实施方式中提供一种空心铂纳米管的制备方法,具体如下:
采用光刻与电化学沉积相结合的方法制备叉指排布的铂纳米管阵列。以孔径为450nm的聚对苯二甲酸乙二醇酯(PET)高分子膜1作为绝缘基底,首先采用光刻技术,在PET膜上旋涂一层RZJ-390PG正性光刻胶,紫外光通过具有叉指排布图案的掩膜版照射到光刻胶表面进行曝光,在显影液中浸泡后,曝光部分的光刻胶被除去。然后将显影之后的PET膜进行磁控溅射30nm Au、铂或其他金属,以使PET膜导电,溅射后的膜采用丙酮浸泡,溶解剩余的光刻胶的同时也除去光刻胶上溅射的金属,从而得到具有叉指电极4图案化的PET膜如图4所示。接着采用电化学沉积技术,将PET膜置于电化学工作站和三电极工作体系中,以PET膜镀金面接触铜片为工作电极,Ag/AgCl电极为参比电极,铂丝为对电极,以含有1wt%氯铂酸、0.5M盐酸的电解液在恒电流工作模式下电沉积200s,在PET膜的孔壁形成空心管状结构。再利用O2等离子体刻蚀掉未溅射金面的部分PET膜,露出直径450nm、长度1~2μm的叉指排布空心铂纳米管10结构如图5所示。
在叉指排布的铂纳米管制备完成后,进行器件制备。将PET膜电极外部接口2部分采用导电银浆与PCB电路板5的焊盘6依次连接,最后用在电极的上方用未固化的PDMS粘接细胞培养腔8(直径约为1厘米),在80℃的条件下放置2小时使PDMS固化,最后加培养腔盖9。空心铂纳米管10一侧朝上。另外,确保连通导电后,可在PCB电路板两侧焊接排针7,便于传感器与用于控制测试的电路连接。
整套传感器封装完成后,需要在培养腔8中加入75%(v/v)的酒精,并放在紫外下照射1h,达到灭菌效果。照射完毕后,在培养腔8中加入纤粘蛋白进行包被4h,之后再将心肌细胞种植在培养腔8中,即可进行检测心肌细胞电生理、生长与机械搏动信号、代谢信号等,具体如下:
(1)电信号测试
向每个包被好的培养腔8中加入1mL密度为15-20万/mL心肌细胞悬液,将传感器置于培养箱培养,在频率为20kHz下实时检测心肌细胞,图6为本发明传感器测试的电信号结果图,检测到细胞外电信号可以达到0.1mV,结果表明本发明的传感器测试灵敏性高。
(2)生长阻抗谱信号测试
于每个培养腔8中加入1mL细胞培养液,将其置于培养箱内静置5分钟,然后开始进行频谱扫描测试,测试频率范围为从10Hz到100kHz,每十倍频取10个频率点,正弦交流电压幅值为峰峰值20mV。单次频率扫描可在五分钟内完成。对未加入细胞的芯片进行频率扫描的结果记为Z0.然后加入1mL密度为12万/mL心肌细胞悬液,将传感器置于培养箱培养10小时后,再次进行频谱扫描。图7为心肌细胞生长阻抗谱信号测试结果,表明本发明采用导电空心纳米管制备的传感器可以协同检测细胞生长阻抗谱信号。
(3)长时代谢信号测试
于每个培养腔8中加入1mL密度为15万/mL心肌细胞悬液,将传感器置于培养箱培养2天后,加入不同的药物观察心肌细胞的反应,它们具有不同的特征,如果加入离子通道药物可以测试电信号或者加入有细胞毒性的药物可以观察细胞活性。可以综合分析出细胞代谢状况的改变。图8为心肌细胞长时代谢信号测试结果,随测试时间的延长,细胞阻抗增加,细胞活性良好且在不断生长,表明本发明采用导电空心纳米管制备的传感器可以协同检测细胞的长时代谢信号。
Claims (4)
1.一种心肌细胞多元活性检测的传感装置,其特征在于,包括PCB电路板(5)和多组叉指电极;多组叉指电极呈中心对称分布;叉指电极包括总线(3)和叉指电极阵列(4),多个叉指电极对垂直分布在总线(3)一端组成叉指电极阵列(4),每两根总线(3)的叉指电极阵列(4)相对交错排布构成叉指电极;总线(3)另一端与PCB电路板(5)上的焊盘(6)连接;叉指电极表面上固定一用于培养细胞的培养腔(8);总线(3)和叉指电极阵列(4)由沉积在PET多孔膜(1)的导电纳米空心管(10)构成;所述总线(3)和叉指电极阵列(4)由沉积在绝缘PET多孔膜(1)的空心铂纳米管构成,由以下步骤制得:
(1)光刻获得叉指图案:以孔径为450nm的PET多孔膜(1)作为绝缘基底,采用光刻制备具有中心对称分布的多组叉指电极排布图案,获得图案化的PET多孔膜(1);
(2)镀电极:在步骤(1)中获得的图案化的PET多孔膜(1)上磁控溅射30nm金或铂,去除叉指电极排布图案外的金或铂得到导电的PET多孔膜(1);
(3)制备空心铂纳米管阵列:以PET膜镀金属面接触铜片为工作电极,Ag/AgCl电极为参比电极,铂丝为对电极,以含有1wt%氯铂酸、0.5M盐酸的电解液在恒电流工作模式下电沉积200s,在导电的PET多孔膜(1)的孔壁形成空心铂纳米管状结构;再利用O2等离子体刻蚀掉PET多孔膜(1)上未溅射金属面的部分PET多孔膜,露出直径450nm、长度1~2μm的叉指排布空心铂纳米管(10)。
2.根据权利要求1所述心肌细胞多元活性检测的传感装置,其特征在于,叉指电极阵列的宽度为80~120μm,相邻两个叉指电极阵列的间距为30μm。
3.根据权利要求1所述心肌细胞多元活性检测的传感装置,其特征在于,所述导电纳米空心管(10)的直径为450nm、长度为1~2μm。
4.根据权利要求1-3任一项所述心肌细胞多元活性检测的传感装置,其特征在于,还包括一与培养腔(8)相匹配的培养腔盖(9),细胞培养腔(8)的直径为1cm,培养腔盖(9)采用15ml离心管盖子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010108801.5A CN111272819B (zh) | 2020-02-21 | 2020-02-21 | 心肌细胞多元活性检测的叉指排布导电纳米管传感装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010108801.5A CN111272819B (zh) | 2020-02-21 | 2020-02-21 | 心肌细胞多元活性检测的叉指排布导电纳米管传感装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111272819A CN111272819A (zh) | 2020-06-12 |
CN111272819B true CN111272819B (zh) | 2022-09-16 |
Family
ID=70997186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010108801.5A Active CN111272819B (zh) | 2020-02-21 | 2020-02-21 | 心肌细胞多元活性检测的叉指排布导电纳米管传感装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111272819B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114292749B (zh) * | 2022-01-19 | 2023-10-24 | 中山大学 | 电兴奋型细胞高通量胞内外电生理与机械搏动活性同步检测装置与方法 |
CN114636744A (zh) * | 2022-03-09 | 2022-06-17 | 中山大学 | 基于纳米多孔膜的微电极阵列芯片及高通量细胞内电信号连续监测系统 |
CN115791917B (zh) * | 2022-11-10 | 2024-06-28 | 中国科学院长春应用化学研究所 | 圆形等面积单元划分方法及其在叉指电极分布中的应用 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1772732A1 (en) * | 2005-10-07 | 2007-04-11 | Innogenetics N.V. | Polymer replicated interdigitated electrode arrays for (bio)sensing applications |
CN101712925B (zh) * | 2009-11-23 | 2013-01-09 | 浙江大学 | 检测单细胞和群细胞行为的多尺度集成细胞阻抗传感器 |
CN103031246B (zh) * | 2011-10-10 | 2014-11-05 | 中国科学院电子学研究所 | 用于神经细胞多参数检测的微电极阵列芯片及制备方法 |
CN103105423B (zh) * | 2013-01-25 | 2015-04-22 | 中国人民解放军国防科学技术大学 | 带有纳米点阵列的叉指电极及其制备方法和应用 |
CN203772786U (zh) * | 2014-04-14 | 2014-08-13 | 西南大学 | 芯片式叉指阵列电极阻抗传感器 |
CN104465119B (zh) * | 2014-11-28 | 2017-07-14 | 国家纳米科学中心 | 基于三维ZnO@MnO2复合纳米阵列叉指电极的超级电容器及其制备方法 |
CN106047678B (zh) * | 2016-05-20 | 2018-04-24 | 江苏大学 | 一种基于阻抗谱法的细胞活性检测方法与装置 |
CN108896642B (zh) * | 2018-05-11 | 2020-06-26 | 江苏大学 | 一种叉指电极细胞活性阻抗传感器指隙试验装置与方法 |
-
2020
- 2020-02-21 CN CN202010108801.5A patent/CN111272819B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111272819A (zh) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111272819B (zh) | 心肌细胞多元活性检测的叉指排布导电纳米管传感装置 | |
Nisch et al. | A thin film microelectrode array for monitoring extracellular neuronal activity in vitro | |
CN103031246B (zh) | 用于神经细胞多参数检测的微电极阵列芯片及制备方法 | |
CN102445477B (zh) | 离体神经信息双模检测微电极阵列芯片及制备方法 | |
CN101712925B (zh) | 检测单细胞和群细胞行为的多尺度集成细胞阻抗传感器 | |
CN1190665C (zh) | 测定生物标本的电生理特征的多电极,多电极的集成细胞支座,细胞电势测量装置以及细胞电势测量系统 | |
Kloß et al. | Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models | |
US20120091011A1 (en) | Biocompatible electrode | |
WO2002055653A1 (fr) | Dispositif de mesure du potentiel extracellulaire, procede permettant de mesurer le potentiel extracellulaire a l'aide dudit dispositif et appareil utilise pour cribler rapidement le medicament apporte par ce dernier | |
US20210008363A1 (en) | Nanopillar electrode devices and methods of recording action potentials | |
JP3570715B2 (ja) | マルチ電極を備えた信号検出用センサ | |
CN110367979A (zh) | 一种针对脑组织电信号记录与调控的基于纳米针电极柔性微流控装置及其制备方法 | |
CN105460882A (zh) | 一种石墨烯三维微电极阵列芯片、方法及其应用 | |
EP3836835A1 (en) | Probe arrays | |
CN115096945B (zh) | 用于检测心肌细胞电信号的微针阵列电极及其制备方法 | |
Jamil et al. | Design and fabrication of microelectrodes for electrical impedance tomography of cell spheroids | |
CN110514719A (zh) | 一种采用串联纳米孔结构的循环肿瘤dna辨识装置及方法 | |
EP3210014B1 (en) | A device comprising a multi electrode array (mea) | |
CN114965974A (zh) | 一种微纳米阵列电极及其制备方法和胞内电信号传感应用 | |
CN115248238B (zh) | 一种纳米陷阱微电极阵列器件及其可控制备方法与应用 | |
CN118766470A (zh) | 耦合微电穿孔的多尺寸微电极阵列检测装置及制备方法 | |
CN103663342B (zh) | 共布线微电极阵列芯片及其制备方法 | |
EP2675888A1 (en) | Neuronal network based biosensor | |
CN117405749A (zh) | 一种密度可调控的三维纳米结构细胞内外传感器件与制备方法 | |
CN115684309A (zh) | 一种纳米支化微电极阵列器件及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |