CN106607322A - 一种长效超疏水耐磨陶瓷涂层 - Google Patents

一种长效超疏水耐磨陶瓷涂层 Download PDF

Info

Publication number
CN106607322A
CN106607322A CN201611063788.6A CN201611063788A CN106607322A CN 106607322 A CN106607322 A CN 106607322A CN 201611063788 A CN201611063788 A CN 201611063788A CN 106607322 A CN106607322 A CN 106607322A
Authority
CN
China
Prior art keywords
emulsion
water
ceramic
coating
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611063788.6A
Other languages
English (en)
Other versions
CN106607322B (zh
Inventor
汪怀远
刘战剑
张曦光
王池嘉
吕重江
朱艳吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201611063788.6A priority Critical patent/CN106607322B/zh
Publication of CN106607322A publication Critical patent/CN106607322A/zh
Application granted granted Critical
Publication of CN106607322B publication Critical patent/CN106607322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/28Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种长效超疏水耐磨陶瓷涂层,解决了超疏水陶瓷涂层耐久性差等问题。具体是将陶瓷乳液、纳米纤维填料、水及表活剂制成底层乳液,低表面能高分子聚合物乳液为表层乳液,底层乳液在高温条件下进行快速层层喷涂,此时水作为造孔剂急速挥发,从而在底层构建出了均匀的孔道结构,为制备耐久超疏水涂层提供机械强度更好的结构支撑;而表层乳液经高压喷射后注入到孔道结构内部,大大提高了低表面能材料与基底材料的粘附性;且高温煅烧使低表面能高分子聚合物发生纤维化作用,在陶瓷涂层表面构建出纤维网络结构,提高了涂层的超疏水性,改善了陶瓷涂层的脆性,增强了涂层的耐磨性。

Description

一种长效超疏水耐磨陶瓷涂层
技术领域
本发明涉及一种超疏水陶瓷涂层。
背景技术
近年来,超疏水表面(对水的接触角大于150°,滚动角小于10°)因其良好的防腐、减阻、自清洁、防结冰等性能引起人们的广泛关注。通过对自然界中超疏水表面的研究发现,在具有多级粗糙结构的表面修饰低表面能物质可以实现表面的超疏水特性。
虽然很多超疏水表面已经通过很多方法制备,然而由于制备的超疏水表面存在疏水耐久性差,涂层耐磨性差的缺陷,极大地限制了超疏水表面在实际生活和生产中的应用。
研究表明,引起超疏水表面疏水耐久性差和耐磨性能差的主要原因有两点,一是在构建超疏表面必需的多级粗糙结构过程中引起表面的机械性能下降,二是低表面能物质修饰过程中与基底结构的粘附性较差。如何很好地解决以上两个问题,成为了制备具有长效超疏水性和高耐磨性涂层的关键。
近年来,陶瓷材料因其具有化学稳定性高,耐磨性强,硬度高,耐高温等特性,所以,优选陶瓷材料构建超疏水表面的多级粗糙结构。例如,中国专利201510725768.X,是在等离子喷涂制备底层陶瓷涂层的过程中利用钢网做模板,在陶瓷涂层的表面构建出粗糙结构,然后通过火焰喷涂在底层陶瓷结构的低表面能物质实现超疏水性能。火焰喷涂过程中,低表面能物质仅仅涂覆在底层陶瓷结构表面,并未进入到底层陶瓷涂层内部,因此陶瓷自身的亲水性没有得到实质的改善。使用过程中,当表层破损后,涂层的疏水性将急剧下降。从该专利报道中可以看出,在25 kPa的条件下用800目砂纸对陶瓷涂层进行摩擦测试,仅仅经过1.25米的摩擦距离,涂层的接触角下降至150°以下,即失去了超疏水性能;此外该专利制备的超疏水陶瓷涂层忽略了陶瓷材料自身的脆性,即未对陶瓷涂层的脆性进行改善,而在实际应用中不可避免的会出现设备或者器件的弯曲或者撞击,所以使该专利制备超疏水涂层的应用前景受到严重限制。因此,如何有效利用陶瓷材料的高机械强度和高耐磨性,克服其亲水性和脆性,成为制备长效超疏水耐磨涂层的一个挑战。
发明内容
本发明的目的是利用具有优异性能的陶瓷材料,制备具有长效耐磨性和超疏水耐久性的涂层,解决目前超疏水表面存在的疏水耐久性差,耐磨性差的问题,同时克服陶瓷涂层自身的亲水性和脆性缺陷。
为实现上述发明目的,本发明采用的技术方案是:一种长效超疏水耐磨陶瓷涂层,由以下重量分数比的原料制成:
固含量为60-80%的陶瓷乳液30-50份,
纳米纤维填料1-10份,
水50-150份,
固含量为30-50%的低表面能高分子聚合物乳液10-40份,
表面活性剂1-3份;
具体制备方法是:
1、底层乳液及表层乳液的制备
将纳米纤维填料和表面活性剂均匀分散在水中搅拌均匀,然后将陶瓷乳液加入到上述混合溶液中,分散得到均匀的底层乳液;另外,将低表面能高分子聚合物乳液分散到剩余水中搅拌均匀制成表层乳液;
2、陶瓷涂层的制备
将底层乳液在280℃-400℃高温条件下按照每层间隔30秒的速度层层喷涂得到多孔陶瓷底层,然后对多孔陶瓷底层进行550-700℃、30-90分钟的高温煅烧,自然降至室温后,在100℃条件下将表层乳液高压喷涂到多孔陶瓷底层表面,继续经过180℃-380℃高温煅烧30-90分钟后自然降至室温,得到长效超疏水耐磨陶瓷涂层。
所述陶瓷乳液,包括纳米氧化铝水性乳液、纳米氧化锆水性乳液、纳米氧化钇水性乳液、纳米氧化铈水性乳液中的一种或多种。
所述纳米纤维填料,包括碳纳米纤维、碳纳米管和无机纳米线,硅纳米线,钛纳米线,氧化锌纳米线,碳化硅晶须中的一种或几种。
所述的低表面能高分子聚合物乳液,包括低表面能聚偏氟乙烯(PVDF)水性乳液、聚四氟乙烯(PTFE)水性乳液、全氟乙烯丙烯共聚物(FEP)水性乳液、全氟硅氧烷树脂水性乳液中的一种或多种。
所述表面活性剂,包括多巴胺、KH550、KH560中的一种或多种。
本发明陶瓷涂层具有长效超疏水耐磨性的理论依据是:
1、利用水在陶瓷乳液中促进陶瓷颗粒发生水化反应,使陶瓷颗粒间发生一定的交联作用,同时利用表面活性剂改善纳米纤维与陶瓷颗粒间的界面作用,增强纳米纤维在陶瓷乳液中的分散性,大大改善了陶瓷涂层的脆性;
2、本发明中利用水作为造孔剂,水在高温条件下急速挥发,从而在涂层的底层成功构建出了均匀的孔道结构,高温造孔得到的均匀孔道结构能为制备耐久超疏水涂层提供机械强度更好的结构支撑,有效的提高了超疏水表面在高压水流冲击下的耐冲击性能;
3、将低表面能高分子聚合物乳液利用高压喷射的方式注入到陶瓷孔道结构内部,对陶瓷结构进行了全方位的涂覆,大大提高了低表面能材料与基底材料的粘附性;
4、在高温注入过程中部分低表面能高分子聚合物发生纤维化作用,在陶瓷涂层表面构建出纤维网络结构,增大了涂层的表面气体储量,进一步提高了涂层的超疏水性。此外,低表面能高分子聚合物纤维化作用还大大改善了陶瓷涂层的脆性,增强了涂层的耐磨性。
本发明陶瓷涂层具有以下优点:
1、本发明制备的超疏水陶瓷涂层具有高强度的表面多级结构,同时低表面能材料与基板的粘附性大大增强,添加纳米纤维后,陶瓷涂层的脆性明显改善,耐弯曲性能大大提升,弯曲强度由435 MPa提升至了最终的490 MPa;
2、水滴在本发明制备的超疏水陶瓷涂层表面上的接触角可达到158-163°,因而本发明提供的超疏水陶瓷涂层具有很好的超疏水效果;
3、本发明制备的超疏水陶瓷涂层具有极好的耐磨性能,在750 kPa压强条件下利用1000目砂纸进行打磨50000转(摩擦距离为8750米)后仍能保持较高的疏水性;
4、本发明制备的超疏水涂层在经过200 kPa的高压水流冲击30分钟后仍能保持超疏水性能,表明制备的超疏水涂层的疏水稳定性得到了极大的提升。
附图说明
图1a与1b是实施例1中利用水在陶瓷乳液中促进陶瓷颗粒水化反应前后对比图。水化前(图1a)陶瓷颗粒间没有连接作用,单个独立,水化反应后(图1b),陶瓷颗粒变为片状,颗粒间发生了连接作用。
图2高温喷涂过程中水挥发后在陶瓷涂层内部造孔形成的高强度多孔粗糙结构表面的电镜图。
图3为多孔陶瓷涂层表面经过高压喷涂低表面能聚合物后在高温处理过程中低表面能聚合物发生纤维化形成的纤维网络结构的电镜图。
图4为高压喷涂将低表面能物质注入到陶瓷孔道内部,经过高温处理后在陶瓷涂层孔道内部低表面能聚合物纤维化形成的纤维网络结构,将陶瓷结构全方位涂覆后的电镜图。
具体实施方式
下面结合附图及具体的实施例对本发明做进一步的说明:
实施例1:
一、陶瓷涂层制备
(1)金属基板表面预处理:
采用喷砂技术对钢板表面进行除锈处理后放入80%乙醇溶液中进行超声清洗,除其表面油脂、灰尘等杂质,取出并自然晾干,留作备用;
(2)底层及表层乳液制备:
将2份多巴胺和5份碳纳米管均匀分散在100份水中磁力搅拌60分钟,将40份氧化铝陶瓷乳液在超声条件下加入到上述混合溶液中,经过60分钟超声分散后得到均匀的底层乳液。对该底层乳液中陶瓷颗粒水化作用前后进行电镜对比分析,结果见附图1a及附图1b。将聚四氟乙烯(PTFE)乳液30份加入到40份水中进行磁力搅拌,操作温度为室温25℃左右,搅拌时间3小时,搅拌均匀后得表层乳液;
(3)陶瓷涂层的制备:
将底层乳液在400℃条件下进行5层喷涂,每层喷涂间隔30秒,然后将喷涂的陶瓷底层在550℃条件下煅烧30 min,自然降温冷却至室温,即制得具有多孔结构的陶瓷底层;对该底层进行电镜分析,结果见图2。将表层乳液在100℃条件下高压喷涂到多孔陶瓷底层表面,喷涂压强为0.8Mpa,将获得的表层及底层在370℃条件下煅烧30 min,对表层进行电镜分析,结果见图3、图4。自然降温冷却至室温。
二、涂层性能测定:
①超疏水性能:
用5 μL注射器滴一滴去离子水在实施例1所制得的超疏水陶瓷涂层表面,采用JC2000A型静态疏水角测量仪进行测量得到该涂层对水的接触角可达164°,滚动角为3°。
②耐磨性能:
用Taber磨耗试验机粘附1000目砂纸对实施例1的陶瓷涂层进行摩擦实验,在测试压力750kPa的条件下进行,经过10000转(摩擦距离为1750米)摩擦实验后,实施例1的陶瓷涂层表面疏水角仍可保持在151°;经过50000转(摩擦距离为8750米)的摩擦实验后,实施例1的陶瓷涂层表面没有磨破的迹象,经过磨损后的表面疏水角仍可保持在129°;
而专利201510725768.X报道的超疏水陶瓷涂层在25 kPa的条件下用800目砂纸进行摩擦测试,仅仅经过1.25米的摩擦距离涂层的接触角即下降至150°以下,与该专利报道的超疏水陶瓷涂层相比,实施例1的陶瓷涂层具有极好的耐磨性;
此外,实施例1的陶瓷涂层经过摩擦后的厚度由83μm下降至74μm,相同条件下厚度相同的纯陶瓷涂层经过50000转的摩擦实验后,涂层表面即出现了轻微破损的迹象,涂层的厚度由83μm下降至58μm,而且磨损后的表面疏水角仅有70.5°,表明实施例1的陶瓷涂层具有优异的耐磨性能。
③耐弯曲性能:
弯曲测试结果显示,纯陶瓷涂层在弯曲4毫米测试后涂层发生了严重的剥离脱落现象,实施例1的陶瓷涂层表面完好无损,纯钢板的弯曲强度为430 MPa,涂覆纯陶瓷涂层后弯曲强度为435 MPa,涂覆实施例1的陶瓷涂层后上升至了最终的490 MPa,弯曲强度有了明显的提高。表明实施例1的陶瓷涂层具有良好的耐弯曲性能。
④耐高压水冲击性能:
将实施例1的陶瓷涂层倾斜45°角固定,用200kPa的高压水柱对涂层表面进行连续冲击,经过60 min的冲击后,涂层表面形貌没有发生明显变化,疏水角仍保持在151°,表明实施例1的陶瓷涂层具有很好的耐高压水冲击性能。
实施例2:
一、陶瓷涂层制备
(1)金属基板表面预处理:
采用喷砂技术和化学刻蚀对钢板表面进行除锈处理后放入80%乙醇溶液中进行超声清洗,除其表面油脂、灰尘等杂质,取出并自然晾干,留作备用;
(2)底层及表层乳液制备:
将3份KH570、5份钛纳米线和5份氧化锌纳米线均匀分散在80份水溶剂内进行磁力搅拌60分钟,将20份氧化铝陶瓷乳液和10份纳米氧化钇在超声条件下加入到上述混合溶液中,经过60分钟超声分散后得到均匀的底层乳液。将聚偏氟乙烯(PVDF)乳液40份加入到60份水中进行磁力搅拌,操作温度为室温25℃左右,搅拌时间3小时,搅拌均匀后得表层乳液;
(3)陶瓷涂层的制备:
将配制的陶瓷底层乳液在280℃条件下进行10层喷涂,每层喷涂间隔30秒,然后将喷涂的陶瓷底层在600℃条件下煅烧30 min,自然降温冷却至室温,即制得具有多孔结构的陶瓷底层;将配制的表层乳液在100℃条件下高压喷涂至多孔陶瓷底层表面,喷涂压强为0.7Mpa,将获得的表层及底层在260℃条件下煅烧30 min,自然降温冷却至室温。
二、涂层性能测定:
①超疏水性能:
用5 μL注射器滴一滴去离子水在实施例2陶瓷涂层表面,采用JC2000A型静态疏水角测量仪进行测量得到该涂层对水的接触角可达156°,滚动角为9°。
②耐磨性能:
用Taber磨耗试验机粘附1000目砂纸对实施例2陶瓷涂层进行摩擦实验,在测试压力750kPa的条件下进行,经过9000转(摩擦距离为1575米)摩擦实验后,实施例2陶瓷涂层表面疏水角仍可保持在150°。经过50000转的摩擦实验后,实施例2陶瓷涂层表面没有磨破的迹象,经过磨损后的表面疏水角仍可保持在126°。此外,实施例2陶瓷涂层经过摩擦后的厚度由84μm下降至72μm。
③耐弯曲性能:
弯曲测试结果显示,实施例2陶瓷涂层在弯曲4毫米测试后表面完好无损,纯钢板涂覆实施例2陶瓷涂层后弯曲强度上升至了475 MPa,弯曲强度有了明显的提高。
④耐高压水冲击性能:
将实施例2陶瓷涂层倾斜45°角固定,用250kPa的高压水柱对实施例2陶瓷涂层表面进行连续冲击,经过20 min的冲击后,实施例2陶瓷涂层表面形貌没有发生明显变化,疏水角仍保持在146°。
实施例3:
一、陶瓷涂层制备
(1)金属基板表面预处理:
采用240目砂纸钢板表面进行除锈处理后放入80%乙醇溶液中进行超声清洗,除其表面油脂、灰尘等杂质,取出并自然晾干,留作备用;
(2)底层及表层乳液制备:
将3份KH560和9份碳纳米纤维均匀分散在50份水溶剂内进行磁力搅拌60分钟,将20份氧化铝陶瓷乳液和20份纳米氧化锆分散液在超声条件下加入到上述混合溶液中,经过60分钟超声分散后得到均匀的底层乳液。将全氟乙烯丙烯共聚物(FEP)乳液20份加入到水中进行磁力搅拌,操作温度为室温25℃左右,搅拌时间3小时,搅拌均匀后得表层乳液;
(3)陶瓷涂层的制备:
将配制的陶瓷底层乳液在350℃条件下进行7层喷涂,每层喷涂间隔30秒,然后将喷涂的陶瓷底层在700℃,氮气保护条件下煅烧30 min,自然降温冷却至室温,即制得具有多孔结构的陶瓷底层;将配制的表层乳液在100℃条件下高压喷涂至多孔陶瓷底层表面,喷涂压强为0.6 Mpa,将获得的表层及底层在350℃条件下煅烧60 min,自然降温冷却至室温。
二、涂层性能测定:
①超疏水性能:
用5 μL注射器滴一滴去离子水在实施例3陶瓷涂层表面,采用JC2000A型静态疏水角测量仪进行测量得到该涂层对水的接触角可达161°,滚动角为7°。
②耐磨性能:
用Taber磨耗试验机粘附1000目砂纸对实施例3陶瓷涂层进行摩擦实验,在测试压力750kPa的条件下进行,经过9000转(摩擦距离为1575米)摩擦实验后,实施例3陶瓷涂层表面疏水角仍可保持在151°。经过50000转的摩擦实验后,实施例3陶瓷涂层表面没有磨破的迹象,经过磨损后的表面疏水角仍可保持在124°。此外,实施例3陶瓷涂层经过摩擦后的厚度由87μm下降至79μm。
③耐弯曲性能:
弯曲测试结果显示,实施例3陶瓷涂层在弯曲4毫米测试后表面完好无损,纯钢板涂覆实施例3陶瓷涂层后弯曲强度上升至505 MPa。
④耐高压水冲击性能:
将实施例3陶瓷涂层表面倾斜45°角固定,用250kPa的高压水柱对实施例3陶瓷涂层表面进行连续冲击,经过40 min的冲击后,实施例3陶瓷涂层表面形貌没有发生明显变化,疏水角仍保持在147°。

Claims (5)

1.一种长效超疏水耐磨陶瓷涂层,由以下重量分数比的原料制成:
固含量为60-80%的陶瓷乳液30-50份,
纳米纤维填料1-10份,
水50-150份,
固含量为30-50%的低表面能高分子聚合物乳液10-40份,
表面活性剂1-3份;
具体制备方法是:
(1)、底层乳液及表层乳液的制备
将纳米纤维填料和表面活性剂均匀分散在水中搅拌均匀,然后将陶瓷乳液加入到上述混合溶液中,分散得到均匀的底层乳液;另外,将低表面能高分子聚合物乳液分散到剩余水中搅拌均匀制成表层乳液;
(2)、陶瓷涂层的制备
将底层乳液在280℃-400℃高温条件下按照每层间隔30秒的速度层层喷涂得到多孔陶瓷底层,然后对多孔陶瓷底层进行550-700℃、30-90分钟的高温煅烧,自然降至室温后,在100℃条件下将表层乳液高压喷涂到多孔陶瓷底层表面,继续经过180℃-380℃高温煅烧30-90分钟后自然降至室温,得到长效超疏水耐磨陶瓷涂层。
2.根据权利要求1所述的长效超疏水耐磨陶瓷涂层,其特征在于:所述陶瓷乳液,包括纳米氧化铝水性乳液、纳米氧化锆水性乳液、纳米氧化钇水性乳液、纳米氧化铈水性乳液中的一种或多种。
3.根据权利要求1所述的长效超疏水耐磨陶瓷涂层,其特征在于:所述纳米纤维填料,包括碳纳米纤维、碳纳米管和无机纳米线,硅纳米线,钛纳米线,氧化锌纳米线,碳化硅晶须中的一种或几种。
4.根据权利要求1所述的长效超疏水耐磨陶瓷涂层,其特征在于:所述的低表面能高分子聚合物乳液,包括低表面能聚偏氟乙烯水性乳液、聚四氟乙烯水性乳液、全氟乙烯丙烯共聚物水性乳液、全氟硅氧烷树脂水性乳液中的一种或多种。
5.根据权利要求1所述的长效超疏水耐磨陶瓷涂层,其特征在于:所述表面活性剂,包括多巴胺、KH550、KH560中的一种或多种。
CN201611063788.6A 2016-11-28 2016-11-28 一种长效超疏水耐磨陶瓷涂层 Active CN106607322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611063788.6A CN106607322B (zh) 2016-11-28 2016-11-28 一种长效超疏水耐磨陶瓷涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611063788.6A CN106607322B (zh) 2016-11-28 2016-11-28 一种长效超疏水耐磨陶瓷涂层

Publications (2)

Publication Number Publication Date
CN106607322A true CN106607322A (zh) 2017-05-03
CN106607322B CN106607322B (zh) 2019-10-29

Family

ID=58636428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611063788.6A Active CN106607322B (zh) 2016-11-28 2016-11-28 一种长效超疏水耐磨陶瓷涂层

Country Status (1)

Country Link
CN (1) CN106607322B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312446A (zh) * 2017-06-28 2017-11-03 南昌航空大学 一种聚多巴胺纳米氧化锌超疏水涂层的制备方法
CN108706933A (zh) * 2018-07-10 2018-10-26 北京新时代寰宇科技发展有限公司 一种复合泡沫混凝土及其制备方法与应用
CN108947540A (zh) * 2018-10-12 2018-12-07 福建省泉州市契合工贸有限公司 一种疏水性多孔陶瓷制品及其制备工艺
CN109337573A (zh) * 2018-09-10 2019-02-15 东北石油大学 一种无氟型聚苯硫醚超疏水涂层及其制备方法
CN110028850A (zh) * 2019-04-04 2019-07-19 东南大学 一种水性高耐磨超双疏纳米涂层及其制备方法
CN110105824A (zh) * 2019-04-04 2019-08-09 东南大学 一种高耐磨超双疏纳米涂层及其制备方法
CN110252588A (zh) * 2019-06-17 2019-09-20 西北大学 一种高熔点管道耐磨疏水涂层的磨涂设备及工艺
TWI687508B (zh) * 2017-12-04 2020-03-11 美商應用材料股份有限公司 抗濕塗層
CN112169910A (zh) * 2019-07-03 2021-01-05 上海谷励智能设备有限公司 一种快速散热的陶瓷磨盘装置
CN112662997A (zh) * 2020-12-18 2021-04-16 中国科学院宁波材料技术与工程研究所 一种超疏水耐磨涂层及其制备方法与应用
CN113195112A (zh) * 2018-12-12 2021-07-30 尼蓝宝股份有限公司 陶瓷表面改性材料及其使用方法
CN114855512A (zh) * 2022-03-31 2022-08-05 北京林业大学 一种双氟硅型抗指纹乳液的制备方法及其在三聚氰胺浸渍纸中的应用
CN115259904A (zh) * 2022-09-28 2022-11-01 广东简一(集团)陶瓷有限公司 一种耐久超疏水层、超疏水陶瓷砖及其制备方法
CN115432957A (zh) * 2022-08-30 2022-12-06 重庆大学 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827237A (zh) * 2005-02-28 2006-09-06 财团法人工业技术研究院 基材表面的疏水结构及其制法
CN103964883A (zh) * 2014-04-25 2014-08-06 西北工业大学 一维纳米纤维增强增韧碳陶复合材料薄壁或楔形构件的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827237A (zh) * 2005-02-28 2006-09-06 财团法人工业技术研究院 基材表面的疏水结构及其制法
CN103964883A (zh) * 2014-04-25 2014-08-06 西北工业大学 一维纳米纤维增强增韧碳陶复合材料薄壁或楔形构件的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙德彬等: "《家具表面装饰工艺技术》", 30 April 2009, 中国轻工业出版社 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312446B (zh) * 2017-06-28 2019-08-09 南昌航空大学 一种聚多巴胺纳米氧化锌超疏水涂层的制备方法
CN107312446A (zh) * 2017-06-28 2017-11-03 南昌航空大学 一种聚多巴胺纳米氧化锌超疏水涂层的制备方法
TWI687508B (zh) * 2017-12-04 2020-03-11 美商應用材料股份有限公司 抗濕塗層
CN108706933A (zh) * 2018-07-10 2018-10-26 北京新时代寰宇科技发展有限公司 一种复合泡沫混凝土及其制备方法与应用
CN109337573A (zh) * 2018-09-10 2019-02-15 东北石油大学 一种无氟型聚苯硫醚超疏水涂层及其制备方法
CN108947540B (zh) * 2018-10-12 2021-04-13 福建省泉州市契合工贸有限公司 一种疏水性多孔陶瓷制品及其制备工艺
CN108947540A (zh) * 2018-10-12 2018-12-07 福建省泉州市契合工贸有限公司 一种疏水性多孔陶瓷制品及其制备工艺
CN113195112A (zh) * 2018-12-12 2021-07-30 尼蓝宝股份有限公司 陶瓷表面改性材料及其使用方法
CN110028850A (zh) * 2019-04-04 2019-07-19 东南大学 一种水性高耐磨超双疏纳米涂层及其制备方法
CN110105824A (zh) * 2019-04-04 2019-08-09 东南大学 一种高耐磨超双疏纳米涂层及其制备方法
CN110252588A (zh) * 2019-06-17 2019-09-20 西北大学 一种高熔点管道耐磨疏水涂层的磨涂设备及工艺
CN110252588B (zh) * 2019-06-17 2021-11-02 西北大学 一种高熔点管道耐磨疏水涂层的磨涂设备及工艺
CN112169910A (zh) * 2019-07-03 2021-01-05 上海谷励智能设备有限公司 一种快速散热的陶瓷磨盘装置
CN112662997A (zh) * 2020-12-18 2021-04-16 中国科学院宁波材料技术与工程研究所 一种超疏水耐磨涂层及其制备方法与应用
CN112662997B (zh) * 2020-12-18 2023-03-10 中国科学院宁波材料技术与工程研究所 一种超疏水耐磨涂层及其制备方法与应用
CN114855512A (zh) * 2022-03-31 2022-08-05 北京林业大学 一种双氟硅型抗指纹乳液的制备方法及其在三聚氰胺浸渍纸中的应用
CN115432957A (zh) * 2022-08-30 2022-12-06 重庆大学 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法
CN115432957B (zh) * 2022-08-30 2023-09-08 重庆大学 一种冷烧结制备ZnO-PTFE超疏水复合陶瓷的方法
CN115259904A (zh) * 2022-09-28 2022-11-01 广东简一(集团)陶瓷有限公司 一种耐久超疏水层、超疏水陶瓷砖及其制备方法
CN115259904B (zh) * 2022-09-28 2022-12-30 广东简一(集团)陶瓷有限公司 一种耐久超疏水层、超疏水陶瓷砖及其制备方法

Also Published As

Publication number Publication date
CN106607322B (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
CN106607322A (zh) 一种长效超疏水耐磨陶瓷涂层
Wu et al. Inverse infusion processed hierarchical structure towards superhydrophobic coatings with ultrahigh mechanical robustness
Si et al. A robust epoxy resins@ stearic acid-Mg (OH) 2 micronanosheet superhydrophobic omnipotent protective coating for real-life applications
CN105386032B (zh) 一种利用冷喷涂技术制备耐磨超疏水涂层的方法及其产品
CN105316619B (zh) 一种利用热喷涂技术制备耐磨超疏水陶瓷涂层的方法及其产品
Wang et al. Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings
CN103408705B (zh) 一种水性环氧树脂及超双疏涂层及其制备方法与应用
CN109825179B (zh) 一种水性超亲水超疏油涂料及其制备方法和应用
Gou et al. Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance
US20140113144A1 (en) Superhydrophobic nanocomposite coatings
Qu et al. Fabrication of durable superamphiphobic materials on various substrates with wear-resistance and self-cleaning performance from kaolin
CN101628706B (zh) 一种纳米结构表面及其原位制备方法
CN106423789B (zh) 一种耐久性抗冰超疏水涂层及其制备方法
CN109337573A (zh) 一种无氟型聚苯硫醚超疏水涂层及其制备方法
Wang et al. Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water
Dunér et al. Nanomechanical mapping of a high curvature polymer brush grafted from a rigid nanoparticle
Deng et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces
CN104294205A (zh) 一种ZrO2-HfO2涂层及其制备方法
Wang et al. Fabrication of superhydrophobic fiber fabric/epoxy composites coating on aluminum substrate with long-lived wear resistance
CN108329739A (zh) 一种富锌超疏水复合防腐涂层及其制备方法
Si et al. Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review
CN107150020A (zh) 一种高附着力耐磨耐温超双疏自清洁表面涂层及其制备方法
CN114940855A (zh) 一种耐磨超疏水环氧树脂涂层的制备方法
CN110724269A (zh) 一种以类嵌段有机硅/环氧杂化树脂为基体的高强度超疏水复合材料制备方法及其应用
Li et al. Novel coating system on poly (ethylene terephthalate) fabrics with mechanically durable liquid-repellence: Application as flexible materials with striking loading capacity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant