CN106596057B - A kind of face shape method of inspection of large caliber reflecting mirror component - Google Patents

A kind of face shape method of inspection of large caliber reflecting mirror component Download PDF

Info

Publication number
CN106596057B
CN106596057B CN201611029649.1A CN201611029649A CN106596057B CN 106596057 B CN106596057 B CN 106596057B CN 201611029649 A CN201611029649 A CN 201611029649A CN 106596057 B CN106596057 B CN 106596057B
Authority
CN
China
Prior art keywords
mirror
face
graphic data
assembly
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611029649.1A
Other languages
Chinese (zh)
Other versions
CN106596057A (en
Inventor
周于鸣
焦文春
王向东
刘志远
王春雨
黄阳
阴刚华
卢浩
宋俊儒
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Space Research Mechanical and Electricity
Original Assignee
Beijing Institute of Space Research Mechanical and Electricity
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Space Research Mechanical and Electricity filed Critical Beijing Institute of Space Research Mechanical and Electricity
Priority to CN201611029649.1A priority Critical patent/CN106596057B/en
Publication of CN106596057A publication Critical patent/CN106596057A/en
Application granted granted Critical
Publication of CN106596057B publication Critical patent/CN106596057B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Abstract

The present invention relates to a kind of face shape methods of inspection of large caliber reflecting mirror component, belong to technical field of optical precision measurement.Mirror in mirror assembly is face-up, with the face graphic data W of reflecting mirror in interferometer measurement mirror assembly0(m×n), the mirror in mirror assembly is face-down, with the face graphic data W of reflecting mirror in interferometer measurement mirror assembly180(i×j);By W0(m×n)With step W180(i×j)The processing of carry out face graphic data matrix normalization, obtains F0(a×b)=Wa×b+G0(a×b)+Ka×bAnd F180(a×b)=Wa×b+G180(a×b)+Ka×b, by the face graphic data F after normalized0(a×b)And F180(a×b)Image superposition is carried out, gravity deformation is eliminated, obtains surface shape of reflector in zero gravity state data F=(F0(a×b)+F180(a×b))/2=Wa×b+Ka×bIf F and Wa×bDifference Ka×bRoot-mean-square value be not more than 0.003 λ (λ=632.8nm), it is believed that the assembly of mirror assembly meets the requirements, if F and Wa×bDifference Ka×bRoot-mean-square value be greater than 0.003 λ, it is believed that the assembly of mirror assembly is undesirable, need to re-start assembly to mirror assembly again.

Description

A kind of face shape method of inspection of large caliber reflecting mirror component
Technical field
The present invention relates to a kind of face shape methods of inspection of large caliber reflecting mirror component, belong to optical precision measurement technology neck Whether domain, the assembly that this method is used to detect mirror assembly meet the requirements, and the heavy caliber refers to that aperture of a mirror is Ф800mm-Ф1200mm。
Background technique
The discrete support construction of large-diameter optical part bipod has many advantages, such as that assembly is simple, and mechanic boundary condition is simple, But disadvantage is exactly that optical module deforms larger, and the wavefront surface shape testing result of final optical module under gravity environment, it is past It is that the multifactor interference such as the original face shape of optical element, gravity deformation, erection stress deformation are merged as a result, and due to weight toward containing Power distortion inaccuracy is larger, and erection stress distortion inaccuracy can be submerged in gravity error, leads to not accurate judgement assembly precision.
Since optical sensor majority is to test and miss caused by gravity in ground adjustment, in-orbit use, ground adjustment Difference can disappear automatically after in-orbit.Therefore, when the adjustment of optical sensor ground, it is important to which erection stress error and gravity are missed Difference distinguishes, and strict control erection stress error, by the control of its influence degree within the scope of technical requirements.
Aiming at the problem that large caliber reflecting mirror gravity error is removed and tested, domestic scholars propose heavy caliber spacing reflection mirror The method of the unloading in naked mirror stage carries out its gravity by special support construction to unload sanction, and strict control support force introduces anti- Mirror deformation is penetrated, the requirement of reflecting mirror high-precision surface shape detection is met, specifically refers to the " big of 06 phase in 2011 " Application Optics " The Research on Supporting Techniques of bore spacing reflection mirror high-precision surface shape detection " a literary or " China's Space science association sky in 2003 Between detect the 16th academic meeting paper collection of Professional Committee " in " light-duty high resolution camera Unloading Technology research " one Text.It can be seen that these methods by its test method and be disadvantageous in that measuring accuracy is limited by unloading structure, gravity becomes Shape cannot completely eliminate, and be not suitable for the zero-g face shape test of mirror assembly assembling stage.
Summary of the invention
Technology of the invention solves the problems, such as: having overcome the deficiencies of the prior art and provide a kind of large caliber reflecting mirror component The face shape method of inspection, for the discrete support reflecting mirror adjustment test phase of heavy caliber the test of zero-g face shape provide it is reasonable Engineering construction method, and test method does not include simulation analysis simply and calculates error, improves zero-g face shape measuring accuracy.
The technical solution of the invention is as follows:
A kind of face shape method of inspection of large caliber reflecting mirror component, it is characterised in that: mirror assembly includes reflecting mirror, six A supporting leg and support plate, reflecting mirror to be tested are fixed together with six supporting legs by gluing, and six supporting legs and branch Fagging is fixed together;
The device that the test method uses includes test tower, fold mirror, compensator and interferometer;The spherical surface issued from interferometer It is reached in fold mirror after non-spherical wavefront light beam after the compensation that wavefront light beam or plane wave front light beam pass through compensator, light beam passes through folding It is reached on reflecting mirror after the refraction of mirror, light beam is by forming interference fringe in backtracking to interferometer after reflecting mirror;
The test tower includes top braces platform and side plate, and reflecting mirror and six can be made by having on top braces platform The through-hole that a supporting leg passes through and support plate cannot be made to pass through;Through-hole is had on one of side plate, is issued for interferometer Light beam passes through;
When the mirror surface of reflecting mirror upward when, top braces platform is used to support fold mirror, compensator and interferometer, top braces The cavity that platform, side plate and ground surround is for holding mirror assembly;Interferometer, compensator, fold mirror are placed on from right to left It tests on the top braces platform of tower, mirror assembly is placed on the inside of test tower;
When the mirror surface of reflecting mirror downward when, reflecting mirror and six supporting legs in mirror assembly pass through top braces platform On through-hole and limited on top braces platform by support plate;Fold mirror and compensator are placed on from left to right by top In the cavity that support platform, side plate and ground surround, interferometer is placed on outside test tower, and the light beam that interferometer issues can It is transferred on compensator by the through-hole on side plate;
The step of this method includes:
(1) mirror in mirror assembly is face-up, with the face shape of reflecting mirror in interferometer measurement mirror assembly Data W0(m×n), and W0(m×n)=Wm×n+G0(m×n)+Km×n;Wherein, Wm×nOriginal face graphic data when for reflecting mirror part status, Wm×nFor given value, G0(m×n)For gravity face graphic data, G0(m×n)For unknown-value, Km×nFor rigging error face graphic data, Km×nFor not Know value;
(2) mirror in mirror assembly is face-down, with the face shape of reflecting mirror in interferometer measurement mirror assembly Data W180(i×j), and W180(i×j)=Wi×j+G180(i×j)+Ki×j;Wherein, Wi×jOriginal face figurate number when for reflecting mirror part status According to Wi×jFor given value, G180(i×j)For gravity face graphic data, G180(i×j)For unknown-value, Ki×jFor rigging error face graphic data, Ki×jFor unknown-value;
(3) the face graphic data W for obtaining step (1)0(m×n)The face graphic data W obtained with step (2)180(i×j)Carry out face shape Data matrix normalized, obtain obtaining after normalized mirror in mirror assembly it is face-up when face figurate number According to F0(a×b)=Wa×b+G0(a×b)+Ka×bWith the face graphic data F of mirror in mirror assembly when face-down180(a×b)=Wa×b +G180(a×b)+Ka×b, Wa×bOriginal face graphic data when for reflecting mirror part status, Wa×bFor given value;G0(a×b)To reflect microscope group Gravity face graphic data when mirror in part is face-up, after normalized;G180(a×b)For the reflection in mirror assembly Mirror mirror surface downward when, the gravity face graphic data after normalized;
(4) the face graphic data F after the normalized for obtaining step (3)0(a×b)And F180(a×b)Image superposition is carried out, is disappeared Except gravity deformation, surface shape of reflector in zero gravity state data F=(F is obtained0(a×b)+F180(a×b))/2=Wa×b+Ka×bIf F and Wa×b Difference Ka×bRoot-mean-square value be not more than 0.003 λ (λ=632.8nm), it is believed that the assembly of mirror assembly meets the requirements, such as Fruit F and Wa×bDifference Ka×bRoot-mean-square value be greater than 0.003 λ, it is believed that the assembly of mirror assembly is undesirable, need again Mirror assembly is assembled.
The advantages of the present invention over the prior art are that:
(1) the zero-g face shape test for the discrete support mirror assembly of heavy caliber provides more simple engineering construction Method;
(2) support of Mechanics Simulation data is not needed, additional simulation calculation error will not be introduced.
(3) test result does not include gravity deformation error, provides objective technique base for erection stress error is accurately positioned Plinth.
Detailed description of the invention
Fig. 1 is the flow diagram of the method for the present invention;
The structural schematic diagram of device when Fig. 2 faces upward for mirror;
Fig. 3 be mirror downwards when device structural schematic diagram;
Fig. 4 is emulation datagram.
Specific embodiment
A kind of face shape method of inspection of large caliber reflecting mirror component, mainly in large caliber reflecting mirror and bipod structure Between carry out the test that injecting glue positioning is assembled into zero-g face shape after discrete support component, i.e., reflecting mirror to be tested and six branch Leg is fixed together by gluing, and six supporting legs are fixed together with support plate, reflecting mirror, six supporting legs and Support plate forms mirror assembly 5;The device that the test method uses includes test tower 4, fold mirror 3, compensator 2 and interferometer 1; After non-spherical wavefront light beam after the compensation that spheric wave front light beam or plane wave front light beam that interferometer 1 issues pass through compensator 2 It reaches in fold mirror 3, is reached on reflecting mirror after the refraction that light beam passes through fold mirror 3, light beam passes through backtracking after reflecting mirror to interference Interference fringe is formed on instrument 1;
The test tower 4 includes top braces platform and side plate, have on top braces platform can make reflecting mirror and The through-hole that six supporting legs pass through and support plate cannot be made to pass through;Through-hole is had on one of side plate, is issued for interferometer 1 Light beam pass through;
When the mirror surface of reflecting mirror upward when, top braces platform is used to support fold mirror 3, compensator 2 and interferometer 1, top The cavity that support platform, side plate and ground surround is for holding mirror assembly 5;Interferometer 1, compensator 2, fold mirror 3 are from dextrad A left side is placed on the top braces platform of test tower 4, and mirror assembly 5 is placed on the inside of test tower 4;
When the mirror surface of reflecting mirror downward when, the reflecting mirror and six supporting legs in mirror assembly 5 are flat across top braces Through-hole on platform is simultaneously limited on top braces platform by support plate;Fold mirror 3 and compensator 2 are placed on from left to right In the cavity surrounded by top braces platform, side plate and ground, interferometer 1 is placed on 4 outside of test tower, and interferometer 1 issues Light beam can be transferred on compensator 2 by the through-hole on side plate;
The step of this method includes:
(1) mirror in mirror assembly 5 is face-up, measures reflecting mirror in mirror assembly 5 with interferometer 1 Face graphic data W0(m×n), and W0(m×n)=Wm×n+G0(m×n)+Km×n;Wherein, Wm×nOriginal face figurate number when for reflecting mirror part status According to Wm×nFor given value, G0(m×n)For gravity face graphic data, G0(m×n)For unknown-value, Km×nFor rigging error face graphic data, Km×n For unknown-value;
(2) mirror in mirror assembly 5 is face-down, measures reflecting mirror in mirror assembly 5 with interferometer 1 Face graphic data W180(i×j), and W180(i×j)=Wi×j+G180(i×j)+Ki×j;Wherein, Wi×jOriginal face when for reflecting mirror part status Graphic data, Wi×jFor given value, G180(i×j)For gravity face graphic data, G180(i×j)For unknown-value, Ki×jFor rigging error face figurate number According to Ki×jFor unknown-value;
(3) the face graphic data W for obtaining step (1)0(m×n)The face graphic data W obtained with step (2)180(i×j)Carry out face shape Data matrix normalized, obtain obtaining after normalized mirror in mirror assembly 5 it is face-up when face shape Data F0(a×b)=Wa×b+G0(a×b)+Ka×bWith the face graphic data F of mirror in mirror assembly 5 when face-down180(a×b)= Wa×b+G180(a×b)+Ka×b, Wa×bOriginal face graphic data when for reflecting mirror part status, Wa×bFor given value;G0(a×b)For reflection Gravity face graphic data when mirror in mirror assembly 5 is face-up, after normalized;G180(a×b)For in mirror assembly 5 Mirror it is face-down when, the gravity face graphic data after normalized;
(4) the face graphic data F after the normalized for obtaining step (3)0(a×b)And F180(a×b)Image superposition is carried out, is disappeared Except gravity deformation, surface shape of reflector in zero gravity state data F=(F is obtained0(a×b)+F180(a×b))/2=Wa×b+Ka×bIf F and Wa×b Difference Ka×bRoot-mean-square value be not more than 0.003 λ (λ=632.8nm), it is believed that the assembly of mirror assembly 5 meets the requirements, such as Fruit F and Wa×bDifference Ka×bRoot-mean-square value be greater than 0.003 λ, it is believed that the assembly of mirror assembly 5 is undesirable, need again Mirror assembly 5 is assembled.
One kind can be realized heavy caliber discrete support mirror assembly gravity error removal test method, using heavy caliber from Dissipating support mirror assembly mirror deformation under gravity field action is elastic deformation, and the deformation is straight up and perpendicular in mirror surface The characteristics of numerical value is identical when straight test downwards, opposite in phase, passes through and surveys to the acquisition face shape of mirror surface straight up and straight down Attempt picture, graph data matrix normalization then is carried out to the face graphic data of different matrix dimensions and center, and then be superimposed The average image finally obtains the face shape under the discrete support reflecting mirror spare part gravity of heavy caliber.Such as Fig. 4 FEM Numerical Simulation institute Show, Fig. 4 (a) is the emulation Deformation of surface figure figure that obtains straight up of mirror mirror, Fig. 4 (b) be mirror mirror straight down Obtained emulation Deformation of surface figure figure, the case where not considering other external force and in the case where naked mirror surface-shaped, Fig. 4 (a) and Fig. 4 (b) Emulate that Deformation of surface figure figure numerical value is identical, opposite in phase, it is superimposed to obtain Fig. 4 (c) zero-gravity simulation Deformation of surface figure figure.This method from It is all accurate from the point of view of theoretical and emulation.
The process of the method for the present invention is as shown in Figure 1, test schematic is as shown in Figure 2 and Figure 3.The present invention keeps heavy caliber anti- It is unchanged to penetrate the discrete support component state inside of mirror, and the deformation that reflecting mirror occurs, all within the scope of elastic deformation, having can be extensive Renaturation and repeatability.180 ° of Turnover testing mirror assemblies, optical element wavefront difference caused by gravity is theoretically equal, On the contrary, being superimposed by image unification in phase in place, so that it may effectively remove gravity influence, obtain surface shape of reflector in zero gravity state. Specific method flow is as follows:
(1) mirror in mirror assembly 5 is face-up, measures reflecting mirror in mirror assembly 5 with interferometer 1 Face graphic data W0(m×n), and W0(m×n)=Wm×n+G0(m×n)+Km×n;Wherein, Wm×nOriginal face figurate number when for reflecting mirror part status According to Wm×nFor given value, G0(m×n)For gravity face graphic data, G0(m×n)For unknown-value, Km×nFor rigging error face graphic data, Km×n For unknown-value;
(2) mirror in mirror assembly 5 is face-down, measures reflecting mirror in mirror assembly 5 with interferometer 1 Face graphic data W180(i×j), and W180(i×j)=Wi×j+G180(i×j)+Ki×j;Wherein, Wi×jOriginal face when for reflecting mirror part status Graphic data, Wi×jFor given value, G180(i×j)For gravity face graphic data, G180(i×j)For unknown-value, Ki×jFor rigging error face figurate number According to Ki×jFor unknown-value;
(3) the face graphic data W for obtaining step (1)0(m×n)The face graphic data W obtained with step (2)180(i×j)Carry out face shape Data matrix normalized, obtain obtaining after normalized mirror in mirror assembly 5 it is face-up when face shape Data F0(a×b)=Wa×b+G0(a×b)+Ka×bWith the face graphic data F of mirror in mirror assembly 5 when face-down180(a×b)= Wa×b+G180(a×b)+Ka×b, Wa×bOriginal face graphic data when for reflecting mirror part status, Wa×bFor given value;G0(a×b)For reflection Gravity face graphic data when mirror in mirror assembly 5 is face-up, after normalized;G180(a×b)For in mirror assembly 5 Mirror it is face-down when, the gravity face graphic data after normalized;
(4) the face graphic data F after the normalized for obtaining step (3)0(a×b)And F180(a×b)Image superposition is carried out, is disappeared Except gravity deformation, surface shape of reflector in zero gravity state data F=(F is obtained0(a×b)+F180(a×b))/2=Wa×b+Ka×bIf F and Wa×b Difference Ka×bRoot-mean-square value be not more than 0.003 λ (λ=632.8nm), it is believed that the assembly of mirror assembly 5 meets the requirements, such as Fruit F and Wa×bDifference Ka×bRoot-mean-square value be greater than 0.003 λ, it is believed that the assembly of mirror assembly 5 is undesirable, need again Mirror assembly 5 is assembled.
One kind can be realized the discrete support mirror assembly gravity error removal test method of heavy caliber, it is characterized in that: Using the discrete support mirror assembly of heavy caliber, mirror deformation is elastic deformation under gravity field action, and the deformation is in mirror surface Straight up with the characteristics of numerical value is identical, opposite in phase when testing straight down, by mirror surface straight up and straight down Acquisition face shape test image, graph data matrix normalizing then is carried out to the face graphic datas of different matrix dimensions and center Change, and then superposed average image, finally obtains the face shape under the discrete support reflecting mirror spare part gravity of heavy caliber.The method of the present invention Test philosophy is simple, engineering construction is strong, does not include simulation analysis and calculates error, measuring accuracy is higher;It is surveyed using objective Principle and data processing method are tried, the requirement of space application reliability is met;It can be applied to large caliber reflecting mirror component adjustment rank Section zero-g face shape test.
Present invention will be further explained below with reference to the attached drawings and examples.
Embodiment 1
A kind of face shape method of inspection of large caliber reflecting mirror component, mainly in large caliber reflecting mirror and bipod structure Between carry out the test that injecting glue positioning is assembled into zero-g face shape after discrete support component, i.e., reflecting mirror to be tested and six branch Leg is fixed together by gluing, and six supporting legs are fixed together with support plate, reflecting mirror, six supporting legs and Support plate forms mirror assembly 5;The device that the test method uses includes test tower 4, fold mirror 3, compensator 2 and interferometer 1; After non-spherical wavefront light beam after the compensation that spheric wave front light beam or plane wave front light beam that interferometer 1 issues pass through compensator 2 It reaches in fold mirror 3, is reached on reflecting mirror after the refraction that light beam passes through fold mirror 3, light beam passes through backtracking after reflecting mirror to interference Interference fringe is formed on instrument 1;
The test tower 4 includes top braces platform and side plate, have on top braces platform can make reflecting mirror and The through-hole that six supporting legs pass through and support plate cannot be made to pass through;Through-hole is had on one of side plate, is issued for interferometer 1 Light beam pass through;
As shown in Fig. 2, when the mirror surface of reflecting mirror upward when, top braces platform is used to support fold mirror 3, compensator 2 and dry Interferometer 1, the cavity that top braces platform, side plate and ground surround is for holding mirror assembly 5;Interferometer 1, compensator 2, Fold mirror 3 is placed on from right to left on the top braces platform of test tower 4, and mirror assembly 5 is placed on the inside of test tower 4;
As shown in figure 3, when the mirror surface of reflecting mirror downward when, reflecting mirror and six supporting legs in mirror assembly 5 pass through Through-hole on top braces platform is simultaneously limited on top braces platform by support plate;Fold mirror 3 and compensator 2 from a left side to The right side is placed in the cavity surrounded by top braces platform, side plate and ground, and interferometer 1 is placed on 4 outside of test tower, and interferes The light beam that instrument 1 issues can be transferred on compensator 2 by the through-hole on side plate;
As shown in Figure 1, the step of this method, includes:
(1) mirror in mirror assembly 5 is face-up, measures reflecting mirror in mirror assembly 5 with interferometer 1 Face graphic data W0(m×n)(λ=632.8nm, the data are root mean square statistical value RMS to=0.118 λ, and all specific data are equal below For RMS), and W0(m×n)=Wm×n+G0(m×n)+Km×n;Wherein, Wm×nOriginal face graphic data when for reflecting mirror part status, Wm×n =0.023 λ, G0(m×n)For gravity face graphic data, G0(m×n)For unknown-value, Km×nFor rigging error face graphic data, Km×nIt is unknown Value;
(2) mirror in mirror assembly 5 is face-down, measures reflecting mirror in mirror assembly 5 with interferometer 1 Face graphic data W180(i×j)=0.120 λ, and W180(i×j)=Wi×j+G180(i×j)+Ki×j;Wherein, Wi×jWhen for reflecting mirror part status Original face graphic data, Wi×j=0.023 λ, G180(i×j)For gravity face graphic data, G180(i×j)For unknown-value, Ki×jIt is missed for assembly Poor face graphic data, Ki×jFor unknown-value;
(3) the face graphic data W for obtaining step (1)0(m×n)The face graphic data W obtained with step (2)180(i×j)Carry out face shape Data matrix normalized, obtain obtaining after normalized mirror in mirror assembly 5 it is face-up when face shape Data F0(a×b)=Wa×b+G0(a×b)+Ka×b=W0(m×n)When mirror in=0.118 λ and mirror assembly 5 is face-down Face graphic data F180(a×b)=Wa×b+G180(a×b)+Ka×b=W180(i×j)=0.120 λ, wherein Wa×bWhen for reflecting mirror part status Original face graphic data, Wa×b=Wm×n=Wi×j=0.023 λ;G0(a×b)When face-up for the mirror in mirror assembly 5, return One changes treated gravity face graphic data;G180(a×b)When face-down for the mirror in mirror assembly 5, normalized Gravity face graphic data afterwards;
(4) the face graphic data F after the normalized for obtaining step (3)0(a×b)And F180(a×b)Image superposition is carried out, is disappeared Except gravity deformation, surface shape of reflector in zero gravity state data F=(F is obtained0(a×b)+F180(a×b))/2=Wa×b+Ka×b=0.119 λ, most K known to eventuallya×b=0.096 λ, judges F and W accordinglya×bDifference Ka×b0.003 λ of root-mean-square value > (λ=632.8nm), instead The erection stress control errors for penetrating mirror assembly 5 are not in place, undesirable, need to ressemble to mirror assembly 5.

Claims (1)

1. a kind of face shape method of inspection of large caliber reflecting mirror component, it is characterised in that: mirror assembly (5) include reflecting mirror, Six supporting legs and support plate, reflecting mirror to be tested are fixed together with six supporting legs by gluing, and six supporting legs with Support plate is fixed together;
The device that the face shape method of inspection uses includes test tower (4), fold mirror (3), compensator (2) and interferometer (1);From interference It is reached on fold mirror (3) after the compensation that the spheric wave front light beam or plane wave front light beam that instrument (1) issues pass through compensator (2), light beam By reaching on reflecting mirror after the refraction of fold mirror (3), light beam is by forming interference in backtracking to interferometer (1) after reflecting mirror Striped;
The test tower (4) includes top braces platform and side plate, and reflecting mirror and six can be made by having on top braces platform The through-hole that a supporting leg passes through and support plate cannot be made to pass through;Through-hole is had on one of side plate, is issued for interferometer (1) Light beam pass through;
When the mirror surface of reflecting mirror upward when, top braces platform is used to support fold mirror (3), compensator (2) and interferometer (1), top The cavity that portion's support platform, side plate and ground surround is for holding mirror assembly (5);Interferometer (1), compensator (2), fold mirror (3) it is placed on from right to left on the top braces platform of test tower (4), mirror assembly (5) is placed on the interior of test tower (4) Portion;
When the mirror surface of reflecting mirror downward when, reflecting mirror and six supporting legs in mirror assembly (5) pass through top braces platform On through-hole and limited on top braces platform by support plate;Fold mirror (3) and compensator (2) are placed on from left to right In the cavity surrounded by top braces platform, side plate and ground, interferometer (1) is placed on outside test tower (4), and interferometer (1) light beam issued can be transferred on compensator (2) by the through-hole on side plate;
The step of this method includes:
(1) mirror in mirror assembly (5) is face-up, with reflecting mirror in interferometer (1) measurement mirror assembly (5) Face graphic data W0(m×n), and W0(m×n)=Wm×n+G0(m×n)+Km×n;Wherein, Wm×nOriginal face figurate number when for reflecting mirror part status According to Wm×nFor given value, G0(m×n)For gravity face graphic data, G0(m×n)For unknown-value, Km×nFor rigging error face graphic data, Km×n For unknown-value;
(2) mirror in mirror assembly (5) is face-down, with reflecting mirror in interferometer (1) measurement mirror assembly (5) Face graphic data W180(i×j), and W180(i×j)=Wi×j+G180(i×j)+Ki×j;Wherein, Wi×jOriginal face when for reflecting mirror part status Graphic data, Wi×jFor given value, G180(i×j)For gravity face graphic data, G180(i×j)For unknown-value, Ki×jFor rigging error face figurate number According to Ki×jFor unknown-value;
(3) the face graphic data W for obtaining step (1)0(m×n)The face graphic data W obtained with step (2)180(i×j)Carry out face graphic data Matrix normalization processing, obtain after normalized mirror in mirror assembly (5) it is face-up when face graphic data F0(a×b)=Wa×b+G0(a×b)+Ka×bWith the face graphic data F of mirror in mirror assembly (5) when face-down180(a×b)= Wa×b+G180(a×b)+Ka×b, Wa×bOriginal face graphic data when for reflecting mirror part status, Wa×bFor given value;G0(a×b)For reflection Gravity face graphic data when mirror in mirror assembly (5) is face-up, after normalized;G180(a×b)For mirror assembly (5) the gravity face graphic data when mirror in is face-down, after normalized;
(4) the face graphic data F after the normalized for obtaining step (3)0(a×b)And F180(a×b)Image superposition is carried out, weight is eliminated Power deformation, obtains surface shape of reflector in zero gravity state data F=(F0(a×b)+F180(a×b))/2=Wa×b+Ka×bIf F and Wa×bDifference Value Ka×bRoot-mean-square value be not more than 0.003 λ, λ=632.8nm, it is believed that the assembly of mirror assembly (5) meets the requirements, if F With Wa×bDifference Ka×bRoot-mean-square value be greater than 0.003 λ, it is believed that the assembly of mirror assembly (5) is undesirable, need again Mirror assembly (5) is assembled.
CN201611029649.1A 2016-11-14 2016-11-14 A kind of face shape method of inspection of large caliber reflecting mirror component Active CN106596057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611029649.1A CN106596057B (en) 2016-11-14 2016-11-14 A kind of face shape method of inspection of large caliber reflecting mirror component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611029649.1A CN106596057B (en) 2016-11-14 2016-11-14 A kind of face shape method of inspection of large caliber reflecting mirror component

Publications (2)

Publication Number Publication Date
CN106596057A CN106596057A (en) 2017-04-26
CN106596057B true CN106596057B (en) 2019-06-18

Family

ID=58592663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611029649.1A Active CN106596057B (en) 2016-11-14 2016-11-14 A kind of face shape method of inspection of large caliber reflecting mirror component

Country Status (1)

Country Link
CN (1) CN106596057B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534669B (en) * 2018-02-09 2019-09-10 中国科学院长春光学精密机械与物理研究所 A method of optical element is detected using supported at three point
CN110686615B (en) * 2019-08-29 2022-01-04 西安空间无线电技术研究所 High-precision umbrella-shaped antenna profile evaluation method
CN115185060A (en) * 2022-06-22 2022-10-14 北京空间机电研究所 Large-diameter reflector assembly overturning structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504722A (en) * 2002-12-03 2004-06-16 中国科学院长春光学精密机械与物理研 Vertical heavy caliber aspherical mirror tester
CN102305596A (en) * 2011-04-27 2012-01-04 浙江大学 Device and method for controlling rotation error in interference detection of surface shape of spherical surface
CN103344209A (en) * 2013-06-27 2013-10-09 北京空间机电研究所 Method for testing surface shape of reflector in zero gravity state
CN103575233A (en) * 2013-11-20 2014-02-12 西安工业大学 Method for detecting large-caliber large-relative-aperture parabolic reflector surface shape error
CN104296689A (en) * 2014-11-06 2015-01-21 中国科学院光电技术研究所 Detection method for weightlessness surface shape of space reflector with supporting structure
CN104655496A (en) * 2015-02-12 2015-05-27 中国科学院长春光学精密机械与物理研究所 Method for testing influence of self weight to surface shape of off-axis reflection mirror
CN104697465A (en) * 2015-03-31 2015-06-10 中国人民解放军国防科学技术大学 Aberration-free absolute inspection method of ellipsoidal surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242347A (en) * 2010-05-21 2011-12-01 Nikon Corp Wavefront shape measurement method and wavefront shape measurement device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504722A (en) * 2002-12-03 2004-06-16 中国科学院长春光学精密机械与物理研 Vertical heavy caliber aspherical mirror tester
CN102305596A (en) * 2011-04-27 2012-01-04 浙江大学 Device and method for controlling rotation error in interference detection of surface shape of spherical surface
CN103344209A (en) * 2013-06-27 2013-10-09 北京空间机电研究所 Method for testing surface shape of reflector in zero gravity state
CN103575233A (en) * 2013-11-20 2014-02-12 西安工业大学 Method for detecting large-caliber large-relative-aperture parabolic reflector surface shape error
CN104296689A (en) * 2014-11-06 2015-01-21 中国科学院光电技术研究所 Detection method for weightlessness surface shape of space reflector with supporting structure
CN104655496A (en) * 2015-02-12 2015-05-27 中国科学院长春光学精密机械与物理研究所 Method for testing influence of self weight to surface shape of off-axis reflection mirror
CN104697465A (en) * 2015-03-31 2015-06-10 中国人民解放军国防科学技术大学 Aberration-free absolute inspection method of ellipsoidal surface

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"大口径反射镜组件面形检测系统及方法研究";陈海平 等;《光学学报》;20160229;第36卷(第2期);0212002-1至0212002-7
"大口径长条形反射镜组件自重变形的仿真与试验";董得义 等;《光学精密工程》;20160630;第24卷(第6期);1424-1431
"空间遥感器大口径反射镜的复合支撑结构";王克军 等;《光学精密工程》;20160731;第24卷(第7期);1719-1730

Also Published As

Publication number Publication date
CN106596057A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106596057B (en) A kind of face shape method of inspection of large caliber reflecting mirror component
CN202471018U (en) Large-caliber plane mirror surface shape detecting device
CN105352707A (en) Device and method of testing ratio chromatism of optical system of star sensor
Heaton et al. An update to the NASA reference solar sail thrust model
CN103344209B (en) A kind of surface shape of reflector in zero gravity state testing method
Shaklan et al. Solar glint from uncoated starshade optical edges
CN110018550A (en) Assembly method, system and the device of back supported at three point space-based large caliber reflecting mirror
CN110514132B (en) Large-size truss type supporting structure stability testing device and testing method
CN111397634B (en) High-resolution interference detection device and method for thermal deformation of fixed end surface of star sensor
CN205192728U (en) Star sensor optical system multiplying power colour difference test equipment
CN115879331B (en) Spring-damping vibration reduction structure parameter optimization analysis method based on Kelvin model
CN104677271B (en) A kind of null pick-up adjusting means and method
CN103471834B (en) The device of curved rigidity is accurately measured under high and low temperature environment
CN110082073A (en) One kind adjusting the inclined device and method of plane mirror in sub-aperture stitching detection optical system transmission wavefront
Wells et al. Primary mirror segment assembly integration and alignment for the James Webb Space Telescope
CN105547183A (en) Adjustment method for resetting spatial position of detected aspheric surface
CN113008518A (en) Splicing detection method and system based on shack Hartmann wavefront sensor
Jun et al. Optimization of design and measurement principle of six-components force/thrust measurement stand
CN106871926B (en) The measuring device and measuring method of heavy caliber electro-optic theodolite angle measurement accuracy
Hui et al. Precise positioning of the test surface and screen in a coaxial software configurable optical test system
CN110375669B (en) Method and device for testing curvature of telephoto lens
Bardet et al. Validation data and model development for fuel assembly response to seismic loads
Aliverti et al. Mechanical alignment of optical systems: practical limits and accuracy estimation
Saha et al. Hartmann testing of x-ray telescopes
CN106441154A (en) Surface form detection apparatus and detection method for aspheric-surface element

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant