CN106582818B - 带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法 - Google Patents

带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法 Download PDF

Info

Publication number
CN106582818B
CN106582818B CN201611235521.0A CN201611235521A CN106582818B CN 106582818 B CN106582818 B CN 106582818B CN 201611235521 A CN201611235521 A CN 201611235521A CN 106582818 B CN106582818 B CN 106582818B
Authority
CN
China
Prior art keywords
nitrogen
pzpbi
doped graphene
template
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611235521.0A
Other languages
English (en)
Other versions
CN106582818A (zh
Inventor
王素文
李忠芳
张廷尉
孙鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201611235521.0A priority Critical patent/CN106582818B/zh
Publication of CN106582818A publication Critical patent/CN106582818A/zh
Application granted granted Critical
Publication of CN106582818B publication Critical patent/CN106582818B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明用可溶性的带有吡嗪基团的聚苯并咪唑(PzPBI)高分子作为氮源和碳源制备高氮含量的三维氮掺杂石墨烯的方法。PzPBI溶液与模板剂纳米颗粒(纳米碳酸钙、氧化铁、氢氧化铁和氧化镁颗粒等)按照一定比例混合,PzPBI溶液会均匀涂饰在纳米颗粒表面,其高分子中的吡嗪环和苯并咪唑环形成的共轭结构,使其规则地排列模板剂表面,热解时可以得到氮掺杂石墨烯,由于分子中含有吡嗪基团,其氮掺杂石墨烯中吡啶型氮的含量增加。要求:PzPBI黏均分子量1~3万;模板剂粒径为5~50nm二者的质量比为3:1~1:3;热解温度为800~1100℃,热解2~3h,用稀酸洗涤3次,去离子水洗涤3次。制备三维氮掺杂石墨烯用于氧还原催化剂、氧析出催化剂,用于燃料电池、金属空气电池和超级电容器等电化学能源存储与转换器件。

Description

带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法
技术领域
属于纳米材料制备领域,用于清洁能源领域的燃料电池、金属空气电池的阴极催化剂,电解水催化剂,超级电容器电极材料和电化学传感器等领域。
背景技术
由于二维石墨烯很易发生π-π相互作用而层-层堆叠得到石墨使得石墨烯的优异特性丧失。人们把研究重点聚焦在三维石墨烯的研究 (Biener J, et al. Adv Mater(先进材料), 2012, 24: 5083)。三维石墨烯材料不仅具有石墨烯片层固有优异的理化性质,其三维多孔的微纳米结构还使其兼具比表面积大、电子传导性能好及强化传质等优良特性,使得三维石墨烯及其复合材料备受关注(Chen Z, et al. Nat Mater(自然材料),2011, 10: 424)。三维石墨烯可应用于催化反应、燃料电池、传感器、超级电容器等领域表现出优异的性能(Wu Z, et al. J Am Chem Soc(美国化学会志), 2013, 134(48):1953)。研究发现,氮掺杂的石墨烯由于石墨烯分子内C-N键间的极性,使石墨烯分子上的电子云密度发生变化,因此氮掺杂石墨烯催化氧还原等性能优于石墨烯。三维氮掺杂石墨烯的制备方法很多:如,氧化石墨烯化合物用含氮的材料还原或在氮气、氨气气氛下还原Xu Y, etal. ACS Nano(美国化学会-纳米杂志), 2013, 7(5): 4042);用聚苯胺热解制备 (DingW, et al. Angew Chem Int Ed(德国应用化学-国际版), 2013, 52: 1175) 等等。
人们也常用酚醛树脂、尿醛树脂、三聚氰胺树脂、聚苯胺和聚吡咯等热解制备碳材料,在热解制备多孔碳材料或石墨烯类无金属催化剂(Wu G, et al. Science(科学),2011, 332: 443)。
含有吡嗪基团的聚苯并咪唑(PzPBI)是一类含有吡嗪环和苯并咪唑环的共轭的刚性芳香环高分子化合物,分子中含有吡嗪基和聚苯并咪唑基,其分子中的氮含量非常高,除了咪唑环之外,还有吡嗪环,且其分子中的苯并咪唑环和吡嗪环可以形成共轭结构,整个高分子形成一个大π键,所以,高分子是刚性的,非常容易π-π堆积。如果用PzPBI为氮源和碳源可以用来制备高氮含量的氮掺杂的碳材料,如果加入纳米模板剂PzPBI分子会非常规则地排列模板剂表面,热解时易形成氮掺杂石墨烯结构
PzPBI的结构如下
如果用硬模板法,高分子材料与模板剂之间采用合适的质量配比,使刚性的PzPBI分子规则地排列在模板剂表面,在惰性气体保护下热解,PzPBI分子会脱氢碳化得到氮掺杂多层石墨烯结构。
该发明是利用芳香性PzPBI为提供碳和氮的原料,在惰性气体氩气保护下热解制备含氮三维石墨烯。通过改变原料与硬模板的比例、控制模板颗粒的大小来控制合成的含氮碳材料的孔径、孔隙率和石墨烯的层数等参数,最终得到理想的多层三维氮掺杂石墨烯。
与酚醛树脂、尿醛树脂、三聚氰胺树脂等高分子材料相比,PPBI的不同之处在于它含有芳香性的刚性的吡嗪环和苯并咪唑环,吡嗪基团的引入,高分子的含氮量更加丰富。通过引入合适的模板或控制PzPBI分子的芳香性环平面的排列方向,使其规则地排列在模板剂表面,经热解后分别可以得到多层氮掺杂的石墨烯结构的材料。与聚苯胺和聚吡咯等材料制备氮掺杂石墨烯不同点是:PzPBI分子可溶解,易于涂饰在模板剂表面,而聚苯胺、聚吡咯等不溶解,无法与模板剂混合。PzPBI与其它PBI分子不同的地方是PzPBI分子内含有吡嗪环可与苯并咪唑环发生共轭,整个分子形成一个大π键,其分子为刚性的可以在模板剂表面规则排列。由于这种特殊的结构不但可以使其在热解时易形成氮掺杂石墨烯结构,而且由于其吡嗪基团的引入可以使氮掺杂石墨烯的氮含量提高,且增加的主要是吡啶型氮,得到的氮掺杂石墨烯的催化性能会大大提高。
发明内容
本发明,发明了一种制备高氮含量(且为吡啶氮)三维氮掺杂石墨烯的方法。其碳源和氮源选用分子在含有吡嗪基团的聚苯并咪唑(PzPBI),用纳米颗粒作为模板剂,由于PzPBI分子中的吡嗪环和苯并咪唑产生共轭,是其分子具有刚性和芳香性,该分子可以规则地排列在模板剂纳米颗粒表面,在惰性气体保护下热解2~3h,PzPBI脱氢、交联、碳化、去除模板得到三维氮掺杂石墨烯。要求 PzPBI是可溶性的,其粘均分子量在1~3万。其孔径、孔隙率、比表面积和氮掺杂石墨烯的层数等由PzPBI 与纳米模板剂用量、模板剂的粒径等因素决定。热解过程中高分子一端的羧基脱酸产生气泡,可以使孔道之间形成通孔。这种三维孔道有利于电极的强化传质。该材料应用于燃料电池或金属空气电池阴极的氧还原催化剂,电解水氧析出催化剂及载体,超级电容器,电解、传感器材料等领域。
PzPBI与以上酚醛树脂、尿醛树脂和三聚氰胺树脂等高分子材料不同点是:PzPBI分子中苯并咪唑环和吡嗪环发生共轭,整个分子形成一个大π键,其刚性可以在模板剂表面规则排列,其芳香性保证了热解过程中生成石墨烯结构。由于这种特殊的结构不但可以使其在热解时易形成氮掺杂石墨烯结构,而且由于其吡嗪基团的引入可以使氮掺杂石墨烯的氮含量提高,且增加的主要是吡啶型氮,得到的氮掺杂石墨烯的催化性能会大大提高。PzPBI与聚苯胺、聚(邻苯二胺)、聚吡咯等高分子材料不同的是:PzPBI类高分子是可溶解在DMAc、DMSO等有机溶剂中,易与模板剂充分混合涂饰到模板剂表面,不分相。由于其可溶性,其在制备3D氮掺杂石墨烯纳米材料时具有很好的操作性。然而,聚苯胺类、聚吡咯等高分子材料不可溶,无法与模板剂共混。
PzPBI为液相法制备的粘均分子量在1万~3万之间,可溶解在DMAc,DMF,DMSO,N-甲基吡咯烷酮等溶剂中。分子量太大,PPBI的溶解性能变差;分子量太小其粘度太小,不能很好地包覆模板剂。
纳米模板剂的粒径选用5~50nm,PzPBI:模板剂=3:1~1:3之间。三维氮掺杂的石墨烯的制备的方法为:首先制备聚合度适当的PzPBI,把PzPBI溶解在溶剂中形成溶液,向溶液中加入适量的粒径为5~50nm的分散好的模板剂,搅拌使其充分混合均匀。在搅拌下,加热,慢慢地蒸出溶剂至近干,转入真空干燥箱中60~120℃下烘干。在研钵内研细,平铺在瓷舟底部,放入管式电炉内,在氩气保护下,在800~1100℃下,热解2~3h。待炉温冷却至室温,取出,用稀酸多次洗涤以去除模板,抽滤,用去离子水洗净,烘干、活化得产品。
在本发明中,模板剂是纳米级的颗粒。能否制备出三维氮掺杂石墨烯,模板剂的粒径和加入量是关键:模板剂的粒径决定了制备的碳材料的孔径;模板剂的加入量决定了制备的石墨烯的层数和性能。加入量太少,只能得到多孔碳材料;加入过多,得到的三维石墨烯层数太少,去除模板剂后容易塌陷,只能得到破碎的石墨烯碎片。模板剂的颗粒度对加入模板剂的量有一定的影响,颗粒度小,其表面积大,需要的模板剂的量就少;反之,如果颗粒度大,需要的模板剂的量就多。模板剂的粒径为:5~50nm,PzPBI与模板剂的质量比为3:1~1:3。在惰性气体保护下热解,热解温度为:800~1100℃;洗涤用稀酸,多次洗涤后,用去离子水洗涤至中性即可。热解温度很重要,热解温度范围为800~1100℃。温度太低不能热解,得到产品的导电性能差;用碳酸钙做模板剂时,碳酸钙不能分解。热解温度到达最佳温度后,再升高热解温度其性能变化不大,所以热解温度不宜过高。
三维氮掺杂的石墨烯表征方法为:孔径、孔隙率、孔容和比表面积用氮气吸附仪(BET),产品的微观形貌分析用扫描电子显微镜(SEM)和投射电子显微镜(TEM),石墨烯层数可以通过高倍投射电子显微镜(HRTEM)和拉曼光谱来表征。产品的石墨化程度、石墨烯结构和层数可以用X-射线粉末衍射(XRD)、拉曼光谱来表征。产品的元素组成,价态可以用X-射线光电子能谱(XPS)进行了表征,用旋转圆盘电极(RDE)来测试产品的催化氧还原反应(ORR)性能、水电解氧析出反应(EOR),析氢反应(EHR)和产品的电容性能测试可以用循环伏安(CV)、线性伏安(LSV)、塔菲尔曲线和充放电性能来测试。产品作为催化剂的耐久性测试可以使用CV、LSV和计时电流曲线(i-t)。产品的催化性能最终需要组装金属空气电池、氢氧燃料电池、电解水的电解池、超级电容器和传感器来测试其性能。
具体实施方式
[实施例1] PzPBI的制备:在装有电动搅拌和氮气保护的三口烧瓶中加入多聚磷酸 (PPA) (100g),氮气保护下160℃搅拌1h以除去多余的水分及空气。将DABz (4.00g,18.7 mmol) 以及2,6-吡嗪二甲酸 (3.14g, 18.7 mmol) 混合均匀,慢慢加入到三口烧瓶中。控制氮气流速,防止DABz被氧化,同时将反应温度提升到200℃并继续保温、搅拌反应5-8h。随着反应时间的增加,聚合体系逐渐变得粘稠。待粘度合适时停止反应,反应混合液慢慢转移到大量去离子水中抽丝,洗净、烘干,粉碎,去离子水多次洗涤以除去多聚磷酸和未反应的反应物,即得到PzPBI,用乌氏粘度计测定PzPBI的分子量。
[实施例2] 其它带吡嗪基团的PBI的制备方法:同实施例1的方法,只是将2,6-吡嗪二甲酸分别换成2,5-吡嗪二甲酸或2,3-吡嗪二甲酸即可,其它操作同实施例1,即可得到含有不同吡啶基团的PzPBI,产品分别记为:3,5-PzPBI或2,3-PzPBI。
[实施例3]用粒径30nm的碳酸钙为模板剂与PzPBI混合,以PzPBI与碳酸钙模板剂质量比为1:1为例:在250mL的烧杯中,加入1g的PzPBI(粘均分子量1~3万)和20mL DMAc,加热、搅拌使其溶解,在搅拌下慢慢加入1g 碳酸钙粒径为30nm的纳米颗粒使其分散均匀。得到的粘稠状液体在搅拌下加热浓缩至近干,在真空干燥箱内60~120℃下干燥,固体在研钵内研细,转移到瓷舟内,在氩气保护下,在高温电炉内900℃下热解2-3h,待炉温降至室温,取出,研细,得到黑色粉末状固体,转移到250mL锥形瓶中,加入70mL的稀盐酸,加热、搅拌24h,抽滤,这样用稀盐酸洗涤三次、水洗至中性,干燥得到黑色粉末状固体产品0.72g。BET测试表明,其孔径分布为30nm,由于碳酸钙热解形成的小孔孔径为3~5nm,三维氮掺杂石墨烯形成贯通的孔道,比表面积为1256 m2 g-1,SEM测试表明,得到的产品为多孔泡沫状碳材料,TEM和HRTEM分析表明,产品为三维石墨烯结构碳材料,孔径为30nm,小孔孔径为3~5nm,三维氮掺杂石墨烯形成贯通的孔道,石墨烯彀回表明为2~4层石墨烯。XRD和拉曼光谱测试表明,产品为2~4层的石墨烯结构;XPS分析表明,产品氮含量为7.2%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/L KOH下催化氧还原性能,氧气起始还原电位为0.98 V vs RHE,电子转移数为3.97,耐久性良好;镁空气电池性能达102mW/cm2。用于氢氧燃料电池其峰功率为517mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.57V vs RHE, 极限电流密度达到100mA/cm2。超级电容器比电容为412F g-1 ,可循环10000 次仍保持电容值的97%。
[实施例4] 按实施例3的方法,其它条件相同,只是PzPBI与碳酸钙的质量变为2:1,同样得到黑色的固体粉末。BET测试表明,其孔径分布仍为30nm,小孔孔径为3~5nm,三维氮掺杂石墨烯形成贯通的孔道,但是其比表面积则降为803 m2 g-1,其SEM和TEM测试表明,其内部为大小孔贯通的多孔结构的碳材料,表面为多层石墨烯结构,XRD和拉曼数据表明,其石墨烯的层数7~8层。XPS数据与实施例3的产品类似。其0.1mol/L KOH下催化氧还原性能,氧气起始还原电位为0.82V vs RHE,电子转移数为3.64,耐久性良好;镁空气电池性能达70mW/cm2。用于氢氧燃料电池其峰功率为235mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.68V vs RHE, 极限电流密度达到48mA/cm2。超级电容器比电容为256F g-1 ,可循环10000 次仍保持电容值的94%。
[实施例5] 按实施例3的方法,其它条件相同,只是PzPBI与碳酸钙的质量比变为1:2,同样得到黑色的固体粉末。BET测试表明,其孔径分布范围10~30nm,小孔孔径为3~5nm,三维氮掺杂石墨烯形成贯通的孔道,但是其比表面积则降为972 m2 g-1,其SEM和TEM测试表明,其内部为大小孔贯通的多孔结构的碳材料,表面为多层石墨烯结构,XRD和拉曼数据表明,其石墨烯的层数7~8层。XPS数据与实施例3的产品类似。其0.1mol/L KOH下催化氧还原性能,氧气起始还原电位为0.86V vs RHE,电子转移数为3.67,耐久性良好;镁空气电池性能达68mW/cm2。用于氢氧燃料电池其峰功率为371mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.63V vs RHE, 极限电流密度达到54mA/cm2。超级电容器比电容为347 F g-1,可循环10000 次仍保持电容值的95%。
[实施例6] 按实施例3的方法,其它条件相同,只是热解温度分别为800℃,1100℃,制备的产品与实施例3的类似,只是各方面性能比实施例3的产品稍差。1100℃热解的产品性能与实施例3的类似。
[实施例7] 按实施例3的方法,其它条件相同,只是用粒径为5nm 碳酸钙颗粒做模板剂,这时,由于模板剂的粒径变小,其表面积增大,PzPBI的用量增加,则PzPBI与模板剂的质量比改为为3:1,得到的产品与实施例3相似,只是其孔径分布在5~10nm,比表面积为1945m2 g-1,为3~5层的三维氮掺杂石墨烯材料,0.1mol/L KOH,催化氧还原起始电位为0.97V vsRHE,电子转移数为3.97,耐久性良好;镁空气电池性能达98mW/cm2。用于氢氧燃料电池其峰功率为456mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.59V vs RHE, 极限电流密度达到110 mA/cm2。超级电容器比电容为368F g-1 ,可循环10000 次仍保持电容值的97%。
[实施例8] 按实施例3的方法,其它条件相同,只是用粒径为50nm 碳酸钙颗粒做模板剂,这时由于模板剂的粒径增大,其表面积减小,PzPBI的用量减少,则PzPBI与模板剂的质量比改为为1:3,得到的产品与实施例3相似,只是其孔径分布在50nm,小孔孔径为3~5nm,三维氮掺杂石墨烯形成贯通的孔道。比表面积为779 m2 g-1,为3~5层的三维氮掺杂石墨烯材料,0.1mol/L KOH下,催化氧还原起始电位为0.96V vs RHE,电子转移数为3.95,耐久性良好;镁空气电池性能达87mW/cm2。用于氢氧燃料电池其峰功率为421mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.63V vs RHE, 极限电流密度达到100mA/cm2。超级电容器比电容为318F g-1 ,可循环10000 次仍保持电容值的95%。
[实施例9]用Fe2O3或氢氧化铁纳米颗粒为模板剂,粒径为30纳米。其它实验条件同实施例3。PzPBI与模板剂的质量比为1:1。其结果与实施例3类似。产品为三维石墨烯结构碳材料,孔径为30nm,945 m2 g-1,为2~4层石墨烯。氮含量为7.6%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.96V vs RHE,电子转移数为3.96,耐久性良好;镁空气电池性能达98mW/cm2。用于氢氧燃料电池其峰功率为461mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.63V vs RHE, 极限电流密度达到80mA/cm2。超级电容器比电容为341F g-1 ,可循环10000次仍保持电容值的97%。
氧化铁和氢氧化铁模板剂用稀盐酸除去模板即可,由于纳米颗粒表面的铁离子可以与PzPBI分子中的氮原子生成配位键,可以起到固氮的作用,使三维氮掺杂石墨烯的氮含量较高。其它粒径的模板剂作为模板的情况与以上实施例类似。
[实施例10]用MgO模板剂,粒径为30纳米。其它实验条件同实施例3。PzPBI与模板剂的质量比为1:1。其结果与实施例3类似。孔径为30nm,983 m2 g-1,为2~4层石墨烯。氮含量为7.6%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/L KOH下催化氧还原性能,氧气起始还原电位为0.98V vs RHE,电子转移数为3.97,耐久性良好;镁空气电池性能达98mW/cm2。用于氢氧燃料电池其峰功率为417mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.64V vs RHE, 极限电流密度达到90mA/cm2。超级电容器比电容为349F g-1 ,可循环10000 次仍保持电容值的97%。氧化镁模板可以用稀盐酸除去。
[实施例11]用MgO模板剂,粒径为30纳米。用2,5-PzPBI为碳源和氮源(粘均分子量在1-3万),其它实验条件同实施例3。2,5-PzPBI与模板剂的质量比为1:1。其结果与实施例3类似。孔径为30nm,1024 m2 g-1,为2~4层石墨烯。氮含量为7.4%,且氮为吡啶型氮和吡咯型氮。说明,产品是氮掺杂的三维石墨烯结构的材料。其0.1mol/LKOH下催化氧还原性能,氧气起始还原电位为0.97V vs RHE,电子转移数为3.97,耐久性良好;镁空气电池性能达96mW/cm2。用于氢氧燃料电池其峰功率为476mW/cm2,0.5mol/L的硫酸溶液中氧析出起始电位为1.64V vs RHE, 极限电流密度达到70mA/cm2。超级电容器比电容为412F g-1 ,可循环10000 次仍保持电容值的96%。
用其它PzPBI为碳源和氮源,用其它模板剂的制备的产品也与上述实施例类似。不同形状的模板剂制备的三维氮掺杂石墨烯的情况与以上实施例类似,只是从形貌上看得到的孔的形貌不同,但是,其性能与以上实施例类似。

Claims (5)

1.一种制备高氮含量的三维氮掺杂石墨烯的方法,其特征在于: 用含有吡嗪基团的聚苯并咪唑(PzPBI)作为氮源和碳源,该高分子内的吡嗪环和苯并咪唑环之间可以形成共轭结构的大π键,该类芳香性的刚性分子可以规则地排列在模板剂纳米颗粒的表面,在氩气保护下,热解,可得到高氮含量的三维氮掺杂石墨烯,且由于吡嗪环的存在可以增加氮掺杂石墨烯中吡啶氮的含量;PzPBI是可溶性的,其高分子链是由芳香性的刚性吡啶环和苯并咪唑组成,且分子中含有富含氮元素的吡嗪环、咪唑环和端氨基,在氩气保护下热解,易形成氮掺杂石墨烯结构,分子中的羧基热解时脱羧产生的二氧化碳起到造孔作用使孔隙间互通;PzPBI溶液与不同粒径模板剂采用不同质量比混合、搅拌、蒸出溶剂、真空干燥、研磨,在高温炉内,氩气保护下热解2-3h,待冷却后,取出,用稀酸洗涤以去除模板剂和活化工艺制备三维氮掺杂石墨烯;所述的得到的三维氮掺杂石墨烯,应用于催化氧还原反应的催化剂,用在金属空气电池、燃料电池;也可用于催化电解水氧析出反应的催化剂;还可用于超级电容器的电极材料。
2.根据权利要求1所述的一种制备高氮含量的三维氮掺杂石墨烯的方法,其特征在于:聚苯并咪唑为带吡嗪基团的聚苯并咪唑(PzPBI),聚合物分子中含有共轭的吡嗪环和苯并咪唑环,整个分子形成一个大π键,为全芳香性的,其粘均分子量在1~3万之间,可以溶解在二甲基乙酰胺(DMAc),二甲基甲酰胺(DMF),二甲基亚砜(DMSO),N-甲基吡咯烷酮,二甲苯中的任意一种有机溶剂中。
3.根据权利要求1所述的一种制备高氮含量的三维氮掺杂石墨烯的方法,其特征在于:纳米模板剂为:碳酸钙、氧化镁、氧化铁、氢氧化铁,粒径在5~50nm,颗粒形状是纳米球型、立方体、多棱柱体、圆柱状中的任意一种。
4.根据权利要求1所述的一种制备高氮含量的三维氮掺杂石墨烯的方法,其特征在于:PzPBI与纳米模板剂的质量比为3:1~1:3;混合方式为:PzPBI溶液与纳米颗粒混合均匀后,搅拌下加热蒸出溶剂至近干,真空干燥,研细,热解,用稀酸洗涤以去除模板剂。
5.根据权利要求1所述的一种制备高氮含量的三维氮掺杂石墨烯的方法,其特征在于:热解温度为800~1100℃。
CN201611235521.0A 2016-12-28 2016-12-28 带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法 Expired - Fee Related CN106582818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611235521.0A CN106582818B (zh) 2016-12-28 2016-12-28 带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611235521.0A CN106582818B (zh) 2016-12-28 2016-12-28 带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法

Publications (2)

Publication Number Publication Date
CN106582818A CN106582818A (zh) 2017-04-26
CN106582818B true CN106582818B (zh) 2019-04-05

Family

ID=58603011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611235521.0A Expired - Fee Related CN106582818B (zh) 2016-12-28 2016-12-28 带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法

Country Status (1)

Country Link
CN (1) CN106582818B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508726B (zh) * 2020-06-10 2021-10-08 广东石油化工学院 超级电容器用树枝状纤维形空心氮掺杂碳纳米笼的制备方法
CN115057436A (zh) * 2022-06-24 2022-09-16 中山烯利来设备科技有限公司 一种泡沫石墨烯的制造方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601181A (zh) * 2013-12-04 2014-02-26 南京大学扬州化学化工研究院 以聚多巴胺为原料制备氮掺杂石墨烯的方法
CN104108708A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂石墨烯及其制备方法
CN105836738A (zh) * 2016-05-06 2016-08-10 清华大学 一种非碳杂原子修饰的多孔石墨烯骨架及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601181A (zh) * 2013-12-04 2014-02-26 南京大学扬州化学化工研究院 以聚多巴胺为原料制备氮掺杂石墨烯的方法
CN104108708A (zh) * 2014-07-25 2014-10-22 深圳新宙邦科技股份有限公司 一种氮掺杂石墨烯及其制备方法
CN105836738A (zh) * 2016-05-06 2016-08-10 清华大学 一种非碳杂原子修饰的多孔石墨烯骨架及其制备方法

Also Published As

Publication number Publication date
CN106582818A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Dahal et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors
Wang et al. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high‐efficient energy storage
CN106732729B (zh) 带吡啶基团的聚苯并咪唑制备高氮含量的三维氮掺杂石墨烯
CN106582816B (zh) 用聚苯并咪唑制备多级孔道的三维氮掺杂石墨烯
Zhou et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties
CN106582817B (zh) 一种制备氮掺杂三维石墨烯的简便方法
Lin et al. Reaction milling for scalable synthesis of N, P-codoped covalent organic polymers for metal-free bifunctional electrocatalysts
Ding et al. Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting
Xu et al. Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass
CN106587026B (zh) 强化传质型多级孔道贯通的三维氮掺杂石墨烯的制备方法
Shruthi et al. Graphene oxide aided structural tailoring of 3-D N-doped amorphous carbon network for enhanced energy storage
Tang et al. Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries
CN106477566B (zh) 一种高氮含量的三维氮掺杂石墨烯的制备方法
CN106582766B (zh) 用限域微反应器制备过渡金属和氮共掺杂的二维石墨烯
CN106622330B (zh) 具有协同催化效应的Fe-Co-N三元共掺杂三维石墨烯的制备
CN106744850B (zh) 过渡金属和氮共掺杂的多级孔道三维石墨烯的制备
CN106744848B (zh) 多级孔道的铁钴和氮三元共掺杂的三维石墨烯的制备
CN106582818B (zh) 带吡嗪基的聚苯并咪唑制备三维氮掺杂石墨烯的方法
Wang et al. Synthesis of partially graphitic nanoflake-like carbon/Fe 3 O 4 magnetic composites from chitosan as high-performance electrode materials in supercapacitors
Wang et al. Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasi‐solid‐state Li–O2 battery
Li et al. Fibrous carbon nanosheets from Kevlar nanofibrils: compromising one and two dimensions of carbon nanomaterials for optimal capacitive performance
CN106744852B (zh) 铁和氮共掺杂的三维石墨烯的制备方法
Zhong et al. Temperature-driven, dynamic catalytic synthesis of three-dimensional hollow few-layer graphite framework
CN106582767B (zh) 钴和氮共掺杂的三维石墨烯的制备
Ouyang et al. Coordinated single-molecule micelles: a self-template approach for preparing mesoporous doped carbons

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190405

Termination date: 20191228