CN106582713B - 一种Pt3Ni@PtNi2核壳结构纳米线的制备方法 - Google Patents

一种Pt3Ni@PtNi2核壳结构纳米线的制备方法 Download PDF

Info

Publication number
CN106582713B
CN106582713B CN201611174149.7A CN201611174149A CN106582713B CN 106582713 B CN106582713 B CN 106582713B CN 201611174149 A CN201611174149 A CN 201611174149A CN 106582713 B CN106582713 B CN 106582713B
Authority
CN
China
Prior art keywords
shell structure
preparation
nuclear shell
nano line
structure nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611174149.7A
Other languages
English (en)
Other versions
CN106582713A (zh
Inventor
吴显政
武楠
吴航
吕鹏飞
沈小双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201611174149.7A priority Critical patent/CN106582713B/zh
Publication of CN106582713A publication Critical patent/CN106582713A/zh
Application granted granted Critical
Publication of CN106582713B publication Critical patent/CN106582713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种Pt3Ni@PtNi2核壳结构纳米线的制备方法。本发明将乙酰丙酮铂,乙酰丙酮镍,葡萄糖,十六烷基三甲基氯化铵加入5ml油氨溶解,溶液在超声机内超声使其均匀混合,混合溶液于200℃‑220℃的油浴中反应,将油浴反应产物清洗得到所述核壳结构纳米线。本发明克服了传统的亚胺制备方法步骤繁琐,反应条件比较苛刻,大规模生产成本比较高等缺陷。本发明核壳结构纳米线的催化剂生成方法简单,催化效果好,选择性高。催化反应在常温下即可进行,一步完成,稳定性好,克服了传统蒸馏,回流等方法制备的繁琐步骤以及昂贵成本,所合成的催化剂既可以将硝基苯通过氢气加成生成氨基苯,同时也不利于亚胺加氢生成胺,体现了该催化剂剂对于氢加成极好的选择性。

Description

一种Pt3Ni@PtNi2核壳结构纳米线的制备方法
技术领域
本发明涉及属于选择性催化领域,特别涉及一种Pt3Ni@PtNi2核壳结构纳米线的制备方法。
背景技术
贵金属铂在工业催化中展现出了极好的性能,尤其是燃料电池以及加氢反应中的催化剂。此外,铂还有许多不同的形貌以及各种组分的铂合金,在各方面都展现出了极好的性能。由于铂对于很多的有机加氢反应都有很好的催化能力,但这也限制了其在选择性催化方面的应用。现有的方法是将很小的铂颗粒包裹在MOF材料中,利用MOF的空隙来做选择性催化。但这极大的限制了铂催化的性能及应用的范围,因为只有很小的有机分子才能被催化,MOF的空隙一般都比较小。而较大分子的有机材料很难被催化,无法在大分子材料中加以应用。除此之外,合成MOF的原料一般都比较贵,这极大的增加了成本,而且MOF很不稳定,不能存在与酸碱溶液中。一旦遇到酸碱,催化剂就会被破坏。
亚胺是一种重要的化学中间产物,在很多重要的反应中如聚合缩合反应、还原反应、加成反应等,具有很强的亲电性。制备亚胺的典型方法是通过伯胺和醛发生缩合反应(与酮缩合相比较少见)。该反应机理是胺的孤对电子先进攻羰基发生亲核加成,得到半缩醛胺(-C(OH)(NHR)-)中间体,而后继续消除一分子水得到亚胺。由于反应平衡更倾向于羰基化合物与胺一侧,因此反应过程需要共沸蒸馏、回流分水或使用脱水试剂如:分子筛,以使平衡向形成亚胺化合物的方向移动。
在本发明作出之前,传统的亚胺制备方法步骤繁琐,反应条件比较苛刻,大规模生产成本比较高。由于亚胺极其不稳定,在催化剂的作用下极有可能会被氢加成生成胺。所以普通的催化剂在将硝基苯催化生成苯氨的同时也会将亚胺加成生成胺。
发明内容
本发明的目的就是克服上述缺陷,提供一种Pt3Ni@PtNi2核壳结构纳米线的制备方法。
实现本发明目的的技术方案是:
一种Pt3Ni@PtNi2核壳结构纳米线的制备方法,其主要技术特征在于包括如下步骤:
(1)将乙酰丙酮铂,乙酰丙酮镍,葡萄糖,十六烷基三甲基氯化铵加入5ml油胺溶解;
(2)将步骤(1)制得的溶液在超声机内超声使其均匀混合;
(3)将步骤(2)的混合溶液于200℃-220℃的油浴中反应;
(4)将油浴反应产物清洗得到所述核壳结构纳米线。
所述步骤(1)中乙酰丙酮铂,乙酰丙酮镍,葡萄糖和十六烷基三甲基氯化铵的物质的量之比为5∶(2-1)∶30∶15。
所述步骤(2)中,所述的超声时间为0.5-2小时。
所述步骤(3)中,水热反应时间为0.5h-2h。
所述步骤(4)中,清洗溶剂为酒精和正己烷的混合溶剂。
本发明的优点在于:核壳结构纳米线的催化剂生成方法简单,催化效果好,选择性高。催化反应在常温下即可进行,一步完成,稳定性好,克服了传统蒸馏,回流等方法制备的繁琐步骤以及昂贵成本。可推广并应用于工业领域。
本发明所合成的催化剂既可以将硝基苯通过氢气加成生成氨基苯,同时也不利于亚胺加氢生成胺,体现了该催化剂剂对于氢加成极好的选择性。
附图说明
图1——本发明实施实例1纳米线的X-射线衍射示意图。
图2——本发明实施实例1纳米线的暗场扫描电镜照片图。
图3——本发明实施实例1纳米线的高倍透射电镜示意图。
图4——本发明实施实例1纳米线的催化性能示意图。
图5——本发明实施实例1纳米线的循环性能示意图。
具体实施方式
本发明的技术方案在下面的附图和实例中将进一步进行阐述。
总的实施方案为:
选取9mg乙酰丙酮铂,2mg乙酰丙酮镍,30-60mg葡萄糖,15-30mg十六烷基三甲基氯化铵加入5mL的油胺溶解;将上述溶液在超声机内超声1-2小时直至完全溶解,再将上述溶液置于200℃下油浴反应1-5小时;将反应产物用乙醇和正己烷的混合溶剂清洗、干燥得到所述纳米线。
实施例1:
选取9mg乙酰丙酮铂,2mg乙酰丙酮镍,60mg葡萄糖,30mg十六烷基三甲基氯化铵加入5mL的油胺溶解;将上述溶液在超声机内超声1小时直至完全溶解,再将上述溶液置于200℃下油浴反应1小时;将反应产物用乙醇和正己烷的混合溶剂清洗、干燥得到所述纳米线。
实施例2:
选取9mg乙酰丙酮铂,2mg乙酰丙酮镍,60mg葡萄糖,30mg十六烷基三甲基氯化铵加入5mL的油胺溶解;将上述溶液在超声机内超声1小时直至完全溶解,再将上述溶液置于200℃下油浴反应5小时;将反应产物用乙醇和正己烷的混合溶剂清洗、干燥得到所述纳米线。
实施例3:
选取9mg乙酰丙酮铂,2mg乙酰丙酮镍,30mg葡萄糖,30mg十六烷基三甲基氯化铵加入5mL的油胺溶解;将上述溶液在超声机内超声1小时直至完全溶解,再将上述溶液置于200℃下油浴反应1小时;将反应产物用乙醇和正己烷的混合溶剂清洗、干燥得到所述纳米线。
如图1,图2,图3所示,采用D8 ADVANCE型XRD(Cu kα radiation,德国Bruker-AXS公司)测定所制备样品的晶相结构。采用S4800 II型FESEM(FESEM, s-4800II,Hitachi)对所制备样品的形貌进行观察。采用荷兰philips-FEI公司的 Tecnai F30场发射透射电镜(HRTEM,Tecnai F30,FEI)对样品的结构进行直观的探测和表征。
试验结果表明:
图1为本发明实例1所制备的Pt3Ni@PtNi2核壳结构纳米线的X-射线衍射图。图1 中所示的所有的衍射峰从左到右分别对应于PtNi合金的(111),(200),(220),从XRD 图中我们可以看出我们所得到的PtNi合金是纤锌矿结构。除此之外,每一个峰都包含了两个相,其中一个相来自于Pt3Ni,而另一个相则来自于PtNi2。所以我们所制备的 PtNi合金纳米线中既含有Pt3Ni的相,也含PtNi2有的相。
图2为本发明实例1所制备的具有高选择性加氢催化效率的Pt3Ni@PtNi2核壳结构纳米线的暗场扫描电镜照片图。从图2中可知,实例所制备的PtNi合金是一种核壳结构,结合XRD可知,该核壳结构的核是Pt3Ni,壳是PtNi2
图3为本发明实例1所制备的具有高选择性加氢催化效率的Pt3Ni@PtNi2核壳结构纳米线的高倍透射电镜图。从图3中我们可以清晰的看出实例所制备的PtNi合金纳米线的结构,该纳米线的直径在15nm左右,长度很长,可达数十微米。具有很高的比表面积,以及催化活性位点。
图4为本发明实例1所制备的具有高选择性加氢催化效率的Pt3Ni@PtNi2核壳结构纳米线的催化性能曲线图。从图4中可以看出,该催化剂合成的亚胺的产率高达百分之96.4%,而胺仅有百分之3.6%。
图5为本发明实例1所制备的具有高选择性加氢催化效率的Pt3Ni@PtNi2核壳结构纳米线的催化循环性能图。从图5中可以看出,5次循环之后,该催化剂依然能保持良好的性能,可以重复使用,达到绿色化学的标准。
根据上述研究结果可知:本发明制备的具有高选择性加氢催化效率的Pt3Ni@PtNi2核壳结构纳米线材料制备程序简单,可重复使用,合成量大,且在贵金属材料中具有较好的选择性催化性能,因此可推广并应用于工业领域。

Claims (4)

1.一种Pt3Ni@PtNi2核壳结构纳米线的制备方法,其特征在于包括如下步骤:
(1)将乙酰丙酮铂,乙酰丙酮镍,葡萄糖,十六烷基三甲基氯化铵加入5ml的油胺溶解,其中,乙酰丙酮铂,乙酰丙酮镍,葡萄糖和十六烷基三甲基氯化铵的物质的量之比为5∶(2-1)∶30∶15;
(2)将步骤(1)制得的溶液在超声机内超声使其均匀混合;
(3)将步骤(2)的混合溶液于200℃-220℃的油浴中反应;
(4)将油浴反应产物清洗得到所述核壳结构纳米线。
2.根据权利要求1所述的一种Pt3Ni@PtNi2核壳结构纳米线的制备方法,其特征在于所述步骤(2)中,所述的超声时间为0.5-2小时。
3.根据权利要求1所述的一种Pt3Ni@PtNi2核壳结构纳米线的制备方法,其特征在于所述步骤(3)中,油浴反应时间为0.5h-2h。
4.根据权利要求1所述的一种Pt3Ni@PtNi2核壳结构纳米线的制备方法,其特征在于所述步骤(4)中,清洗溶剂为酒精和正己烷的混合溶剂。
CN201611174149.7A 2016-12-13 2016-12-13 一种Pt3Ni@PtNi2核壳结构纳米线的制备方法 Active CN106582713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611174149.7A CN106582713B (zh) 2016-12-13 2016-12-13 一种Pt3Ni@PtNi2核壳结构纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611174149.7A CN106582713B (zh) 2016-12-13 2016-12-13 一种Pt3Ni@PtNi2核壳结构纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN106582713A CN106582713A (zh) 2017-04-26
CN106582713B true CN106582713B (zh) 2019-07-16

Family

ID=58601371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611174149.7A Active CN106582713B (zh) 2016-12-13 2016-12-13 一种Pt3Ni@PtNi2核壳结构纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN106582713B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273523B (zh) * 2018-04-02 2020-09-22 暨南大学附属第一医院 一种抗凝血药物中间体的生产方法
CN115094474B (zh) * 2022-06-23 2023-04-28 中山大学 一种BiVO4/PtNi纳米线的合成方法及其电解海水产氢应用
CN116273181A (zh) * 2022-12-05 2023-06-23 天津理工大学 固体高熵催化剂及其制备和应用于制备呋喃丙烯醛的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728384A (zh) * 2011-04-12 2012-10-17 通用汽车环球科技运作有限责任公司 铂-合金纳米粒子的合成和包含其的负载型催化剂
CN103891021A (zh) * 2011-08-01 2014-06-25 原子能与替代能源委员会 用于具有高活性、中等h2o2产量的pemfc电池的纳米结构ptxmy催化剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871738B2 (en) * 2007-12-20 2011-01-18 Uchicago Argonne, Llc Nanosegregated surfaces as catalysts for fuel cells
US8741801B2 (en) * 2009-11-23 2014-06-03 The Research Foundation For The State University Of New York Catalytic platinum and its 3d-transition-metal alloy nanoparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728384A (zh) * 2011-04-12 2012-10-17 通用汽车环球科技运作有限责任公司 铂-合金纳米粒子的合成和包含其的负载型催化剂
CN103891021A (zh) * 2011-08-01 2014-06-25 原子能与替代能源委员会 用于具有高活性、中等h2o2产量的pemfc电池的纳米结构ptxmy催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction;Guoxiu Wang et al.;《Journal of Alloys and Compounds》;20100506;第503卷;第L1-L4页 *

Also Published As

Publication number Publication date
CN106582713A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106582713B (zh) 一种Pt3Ni@PtNi2核壳结构纳米线的制备方法
Bott-Neto et al. Electrocatalytic oxidation of methanol, ethanol, and glycerol on Ni (OH) 2 nanoparticles encapsulated with poly [Ni (salen)] film
Liu et al. Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles
Cui et al. Au/Ag–Mo nano-rods catalyzed reductive coupling of nitrobenzenes and alcohols using glycerol as the hydrogen source
Kolb et al. Investigation of tetraalkylammonium bromide stabilized palladium/platinum bimetallic clusters using extended X-ray absorption fine structure spectroscopy
CN105080567B (zh) 催化剂以及芳香氨基化合物的制备方法
CN107930672A (zh) 一种金属呈原子级分散的金属‑氮碳材料、其制备方法和用途
CN105688867B (zh) 一种六棱柱型石墨烯‑金属有机框架复合材料及其制备方法
CN108579815A (zh) 一种双金属有机框架结构催化剂及其制备方法和应用
DE102009050120A1 (de) Verfahren zum Erzeugen eines Mantels aus Edelmetall auf einem Kern aus Nichtedelmetall und daraus hergestellte Katalysatoren
CN105366638B (zh) 氢或重氢的制造方法
US20180055083A1 (en) Process for forming a solution containing gold nanoclusters binding with ligands
CN108212217A (zh) 一种降解氯酚类污染物的催化剂、制备方法和应用
Pauric et al. Fe–N∕ C Oxygen Reduction Catalysis Prepared by Covalent Attachment of 1, 10-Phenanthroline to a Carbon Surface
WO2018133196A1 (zh) 一种磷掺杂碳材料加氢催化剂、其制备方法及其用途
Virca et al. Photocatalytic water reduction using a polymer coated carbon quantum dot sensitizer and a nickel nanoparticle catalyst
CN109908895A (zh) 一种纳米多孔Cu@Cu2O催化剂催化还原芳硝基化合物制备芳胺类化合物的方法
Gerber et al. Surfactant-stabilized nano-metal hexacyanoferrates with electrocatalytic and heterogeneous catalytic applications
CN105197999A (zh) 一种海胆树枝状γ-MnO2的制备方法及其电催化应用
CN103880088A (zh) 一种空心双锥体β-MnO2的制备方法以及催化应用
CN106140166A (zh) 一种负载型催化剂、制备方法及其应用
CN105798325A (zh) 一种亚2nm的钌(Ru)纳米线网络及其制备方法
CN108658787A (zh) 乙胺的制备方法
Dou et al. Pulsed electro-catalysis enables effective conversion of low-concentration nitrate to ammonia over Cu2O@ Pd tandem catalyst
CN115155615A (zh) 一种多孔碳材料负载钌催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant