CN106575102B - 用于工业涡轮机的自适应pid控制系统 - Google Patents

用于工业涡轮机的自适应pid控制系统 Download PDF

Info

Publication number
CN106575102B
CN106575102B CN201580045411.5A CN201580045411A CN106575102B CN 106575102 B CN106575102 B CN 106575102B CN 201580045411 A CN201580045411 A CN 201580045411A CN 106575102 B CN106575102 B CN 106575102B
Authority
CN
China
Prior art keywords
parameter
turbine
value
controller
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580045411.5A
Other languages
English (en)
Other versions
CN106575102A (zh
Inventor
T.K.布里特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woodward Ltd
Original Assignee
Woodward Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woodward Ltd filed Critical Woodward Ltd
Publication of CN106575102A publication Critical patent/CN106575102A/zh
Application granted granted Critical
Publication of CN106575102B publication Critical patent/CN106575102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2619Wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

该说明书的主题除了别的以外能够体现为一种方法,该方法包括:提供过程控制器,其配置成基于至少一个第一控制参数执行控制算法;提供配置成执行参数调整算法的参数控制器;提供具有输出传感器的涡轮机;向过程控制器提供至少一个第一控制参数和第一输入值;基于至少一个第一控制参数和第一输入值控制涡轮机;接收由涡轮机输出传感器提供的涡轮机响应值;基于涡轮机响应值和参数调整算法确定至少一个第二控制参数;从参数控制器向过程控制器提供至少一个第二控制参数;及基于至少一个第二控制参数和第二输入值控制涡轮机。

Description

用于工业涡轮机的自适应PID控制系统
要求优先权
本申请要求2014年6月24日提交的美国专利申请号14/313,604的优先权,该申请的全部内容通过引用并入在本文中。
技术领域
该说明书涉及控制工业涡轮机。
背景技术
涡轮机是一种旋转机械设备,其将能量从流体流动转换成功,诸如通过提供推力或旋转机械功率。涡轮机是一种涡轮机器,其带有称为转子组件的至少一个运动部分,转子组件是叶片附接到其上的轴或滚筒。运动的流体作用在叶片上,使得叶片运动且将旋转能量传递给转子。
比例-积分-微分(PID)控制器是一种在工业控制系统中广泛地使用的控制回路反馈系统。PID控制器确定在所测量的过程变量和期望的设定点之间的差异,且计算误差值。PID控制器调整过程控制输出以减少误差值。
PID控制器的整定(tuning)可能是困难的任务,尤其是在诸如涡轮机控制的应用中,在这些应用中,期望多个可能相冲突的性能目标,诸如涡轮机输出的快速瞬态响应和高稳定性。在涡轮机未加载时,PID控制器的整定也可能是困难的,因为未加载涡轮机是带有很小阻尼和高加速度(这些在过程控制工业内是异常的状况)的系统。在实践中,这样的应用能够超出涡轮机操作人员的技能或训练,且PID整定配置通常通过反复试验重复调整,直到系统提供可接受的但不总是最佳的性能水平为止。
发明内容
总体上,该文献描述控制工业涡轮机。
在第一方面,一种用于操作涡轮机的方法包括:提供过程控制器,其配置成基于至少一个第一控制参数执行控制算法,至少一个第一控制参数表示从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择的第一值;提供配置成执行参数调整算法的参数控制器;提供涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器与过程控制器和参数控制器通信;向过程控制器提供至少一个第一控制参数和第一输入值;基于至少一个第一控制参数和第一输入值由过程控制器控制涡轮机;由参数控制器接收由涡轮机输出传感器提供的涡轮机响应值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值;从参数控制器向过程控制器提供至少一个第二控制参数;及基于至少一个第二控制参数和第二输入值由过程控制器控制涡轮机。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。控制算法能够由等式:给出。方法还能包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。第一输入值和第二输入值中的至少一个能够是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。P值能够是相对系统增益、相对系统死区时间(deadtime)和响应速度输入参数的函数。I值和D值中的至少一个能够是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第二方面中,一种用于操作涡轮机的方法包括:在参数控制器处接收涡轮机响应值,所述涡轮机响应值基于输入值和至少一个第一控制参数且输入值表示从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择的第一值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值,及由参数控制器提供至少一个第二控制参数。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。方法能够包括提供配置成执行参数调整算法的参数控制器。方法能够包括提供具有组装到其的涡轮机输出传感器的涡轮机,所述涡轮机输出传感器配置成提供涡轮机响应值。方法还能包括提供PID控制器,其配置成基于至少一个第一控制参数执行控制算法。至少一个第一控制参数、至少一个第二控制参数和输入值能够是PID控制器值。过程控制器能够配置成执行由等式:给出的控制算法。涡轮机响应值能够包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。涡轮机响应值能够基于涡轮机在配置成利用至少一个第一控制参数和输入值的过程控制器的控制下的输出响应。方法还能包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。输入值能够是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。P值能够是相对系统增益、相对系统死区时间和响应速度输入参数的函数。I值和D值中的至少一个能够是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第三方面中,涡轮机参数控制器包括输入、输出、储存可执行的指令的存储器、及用以执行指令以实施操作的一个或多个处理设备,所述操作包括:在输入处接收涡轮机响应值,涡轮机响应值基于输入值和表示从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择的第一值的至少一个第一控制参数;基于涡轮机响应值和参数调整算法确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值,及在输出处提供至少一个第二控制参数。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。至少一个第一控制参数、至少一个第二控制参数和输入值能够是PID控制器值。至少一个第二控制参数能够提供到PID控制器,所述PID控制器配置成执行由等式:给出的控制算法。涡轮机响应值能够包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。涡轮机响应值能够基于涡轮机在配置成利用至少一个第一控制参数和输入值的过程控制器的控制下的输出响应。控制器还能包括识别由涡轮机输出传感器提供的涡轮机响应值。输入值能够是从包括涡轮机速度、负载、温度、流动、电流、电压、压力和振动的组中选择的值。P值能够是相对系统增益、相对系统死区时间和响应速度输入参数的函数。I值和D值中的至少一个能够是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第四方面中,一种涡轮机系统包括:过程控制器,其配置成基于至少一个第一控制参数执行控制算法,至少一个第一控制参数表示从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择的第一值;配置成执行参数调整算法的参数控制器;涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器与过程控制器和参数控制器通信,其中,参数调整算法配置成执行操作,所述操作包括:向过程控制器提供至少一个第一控制参数和第一输入值;基于至少一个第一控制参数和第一输入值由过程控制器控制涡轮机;由参数控制器接收由涡轮机输出传感器提供的涡轮机响应值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值;从参数控制器向过程控制器提供至少一个第二控制参数;及基于至少一个第二控制参数和第二输入值由过程控制器控制涡轮机。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。控制算法能够由等式:给出。操作能够包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。第一输入值和第二输入值中的至少一个能够是从包括涡轮机速度、负载、温度、流动、电流、电压、压力和振动的组中选择的值。P值能够是相对系统增益、相对系统死区时间和响应速度输入参数的函数。I值和D值中的至少一个能够是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第五方面中,一种储存指令的计算机可读介质,所述指令在由一个或多个处理器执行时,使得一个或多个处理器执行操作,所述操作包括:在参数控制器处接收涡轮机响应值,所述涡轮机响应值基于输入值和至少一个第一控制参数,所述至少一个第一控制参数表示从包括比例增益(P)、积分增益(I)值和微分增益(D)值的组中选择的第一值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值,及由参数控制器提供至少一个第二控制参数。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。能够提供参数控制器并将其配置成执行参数调整算法。能够提供涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器配置成提供涡轮机响应值。能够提供过程控制器并将其配置成基于至少一个第一控制参数执行控制算法。至少一个第一控制参数、至少一个第二控制参数和输入值能够是PID控制器值。过程控制器能够配置成执行由等式:给出的控制算法。涡轮机响应值能够包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。涡轮机响应值能够基于涡轮机在配置成利用至少一个第一控制参数和输入值的过程控制器的控制下的输出响应。操作还能包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。输入值能够是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。P值能够是相对系统增益、相对系统死区时间和响应速度输入参数的函数。I值和D值中的至少一个能够是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第六方面中,一种用于操作涡轮机的方法包括:提供过程控制器,其配置成基于至少一个第一控制参数执行控制算法,至少一个第一控制参数表示从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择的第一值;提供配置成执行参数调整算法的参数控制器;提供涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器与过程控制器和参数控制器通信;向过程控制器提供至少一个第一控制参数和第一输入值;基于至少一个第一控制参数和第一输入值由过程控制器控制涡轮机;由参数控制器接收由涡轮机输出传感器提供的涡轮机响应值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,所述第二控制参数表示从所述组中选择的第二值;从参数控制器向过程控制器提供至少一个第二控制参数;及基于至少一个第二控制参数和第二输入值由过程控制器控制涡轮机。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。在第七方面中,第六方面的控制算法由等式给出。在第八方面中,第六或第七方面包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。在第九方面中,方面六到八中的任一项的第一输入值和第二输入值中的至少一个是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。第十方面包括方面六到九中的任一项,其中,P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。第十一方面是方面六到十中的任一项的方法,其中,I值和D值中的至少一个是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第十二方面中,一种用于操作涡轮机的方法包括:在参数控制器处接收涡轮机响应值,所述涡轮机响应值基于输入值和至少一个第一控制参数,其表示从包括比例增益(P)、积分增益(I)值和微分增益(D)值的组中选择的第一值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值,及由参数控制器提供至少一个第二控制参数。
不同的实施方式能够包括如下特征中的一些、全部,或者不包括如下特征。在第十三方面中,第十二方面的方法包括提供配置成执行参数调整算法的参数控制器。在第十四方面中,方面十二到十三中的任一项的方法包括提供涡轮机,所述涡轮机具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器配置成提供涡轮机响应值。在第十五方面中,方面十二到十四中的任一项的方法包括提供过程控制器,其配置成基于至少一个第一控制参数执行控制算法。第十六方面包括方面十二到十五中的任一项的方法,其中,至少一个第一控制参数、至少一个第二控制参数和输入值是PID过程控制器值。第十七方面包括方面十五或十六中的任一项的方法,其中,过程控制器配置成执行由等式给出的控制算法。在第十八方面中,方面十二到十八中的任一项的方法的涡轮机响应值包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。第十九方面包括方面十二到十八中的任一项的方法,其中,涡轮机响应值基于涡轮机在配置成利用至少一个第一控制参数和输入值的过程控制器的控制下的输出响应。第二十方面包括方面十二到十九中的任一项的方法,还包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。第二十一方面包括方面十二到二十中的任一项的方法,其中,输入值是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。第二十二方面包括方面十二到二十一中的任一项的方法,其中,P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。第二十三方面包括方面十二到二十二中的任一项的方法,其中,I值和D值中的至少一个是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第二十四方面中,涡轮机参数控制器包括输入、输出、储存可执行的指令的存储器和用以执行指令以实施操作的一个或多个处理设备,所述操作包括:在输入处接收涡轮机响应值,涡轮机响应值基于输入值和表示第一值的至少一个第一控制参数,所述第一值从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择;基于涡轮机响应值和参数调整算法确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值,及在输出处提供至少一个第二控制参数。
不同的实施方式包括如下特征中的一些、全部,或者不包括如下特征。在第二十五方面中,至少一个第一控制参数、至少一个第二控制参数和方面二十四的控制器的输入值是PID过程控制器值。第二十六方面包括方面二十四或二十五中的任一项的控制器,其中,至少一个第二控制参数被提供到过程控制器,其配置成执行由等式给出的控制算法。第二十七方面包括方面二十四到二十六中的任一项的控制器,其中,涡轮机响应值包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。第二十八方面包括方面二十四到二十七中的任一项的控制器,其中,涡轮机响应值基于涡轮机在配置成利用至少一个第一控制参数和输入值的过程控制器的控制下的输出响应。在第二十九方面中,方面二十四到二十八中的任一项的控制器包括识别由涡轮机输出传感器提供的涡轮机响应值。第三十方面包括方面二十四到二十九中的任一项的控制器,其中,输入值是从包括涡轮机速度、负载、温度、流动、电流、电压、压力和振动的组中选择的值。第三十一方面包括方面二十四到三十中的任一项的控制器,其中,P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。第三十二方面包括方面二十四到三十一中的任一项的控制器,其中,I值和D值中的至少一个是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第三十三方面中,一种涡轮机系统包括:过程控制器,其配置成基于至少一个第一控制参数执行控制算法,至少一个第一控制参数表示从包括比例增益(P)值、积分增益(I)值和微分增益(D)值的组中选择的第一值;配置成执行参数调整算法的参数控制器;涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器与过程控制器和参数控制器通信,其中,参数调整算法配置成执行操作,所述操作包括:向过程控制器提供至少一个第一控制参数和第一输入值;基于至少一个第一控制参数和第一输入值由过程控制器控制涡轮机;由参数控制器接收由涡轮机输出传感器提供的涡轮机响应值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值;从参数控制器向过程控制器提供至少一个第二控制参数;及基于至少一个第二控制参数和第二输入值由过程控制器控制涡轮机。
不同的实施例能够包括如下特征中的一些、全部,或者不包括如下特征。在第三十四方面中,方面三十三的系统的控制算法由等式给出。在第三十五方面中,方面三十三或三十四中的任一项的系统还能包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。在第三十六方面中,方面三十三到三十五中的任一项的系统,其中,第一输入值和第二输入值中的至少一个是从包括涡轮机速度、负载、温度、流动、电流、电压、压力和振动的组中选择的值。第三十七方面包括方面三十三到三十六中的任一项的系统,其中,P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。第三十八方面包括方面三十三到三十七中的任一项的系统,其中,I值和D值中的至少一个是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在第三十九方面中,一种计算机可读介质储存指令,所述指令在由一个或多个处理器执行时,使得一个或多个处理器执行操作,所述操作包括:在参数控制器处接收涡轮机响应值,所述涡轮机响应值基于输入值和至少一个第一控制参数,所述至少一个第一控制参数表示从包括比例增益(P)、积分增益(I)值和微分增益(D)值的组中选择的第一值;基于涡轮机响应值和参数调整算法由参数控制器确定至少一个第二控制参数,第二控制参数表示从所述组中选择的第二值;及由参数控制器提供至少一个第二控制参数。
不同的实施例能够包括如下特征中的一些、全部,或者不包括如下特征。在第四十方面中,方面三十九的计算机可读介质包括提供配置成执行参数调整算法的参数控制器。在第四十一方面中,方面三十九或四十中的任一项的计算机可读介质包括提供涡轮机,所述涡轮机具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器配置成提供涡轮机响应值。在第四十二方面中,方面三十九到四十一中的任一项的计算机可读介质包括提供过程控制器,其配置成基于至少一个第一控制参数执行控制算法。第四十三方面包括方面三十九到四十二中的任一项的计算机可读介质,其中,至少一个第一控制参数、至少一个第二控制参数和输入值是PID过程控制器值。第四十四方面包括方面四十二或四十三中的任一项的计算机可读介质,其中,过程控制器配置成执行由等式给出的控制算法。第四十五方面包括方面三十九到四十四中的任一项的计算机可读介质,其中,涡轮机响应值包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。第四十六方面包括方面三十九到四十五中的任一项的计算机可读介质,其中,涡轮机响应值基于涡轮机在配置成利用至少一个第一控制参数和输入值的过程控制器的控制下的输出响应。第四十七方面包括方面三十九到四十六中的任一项的计算机可读介质,包括由参数控制器识别由涡轮机输出传感器提供的涡轮机响应值。第四十八方面包括方面三十九到四十七中的任一项的计算机可读介质,其中,输入值是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。第四十九方面包括方面三十九到四十八中的任一项的计算机可读介质,其中,P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。第五十方面包括方面三十九到四十九中的任一项的计算机可读介质,其中,I值和D值中的至少一个是所测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
在此描述的系统和技术可提供以下优势中的一个或多个。首先,系统能够提供过程控制器的比例、积分和微分增益参数的自动化调整,以实现涡轮机的预定操作。第二,系统能够提供燃气涡轮机的离线速度控制。第三,系统能够利用速度下垂(droop)提供燃气涡轮机或蒸汽涡轮机的负载控制。第四,系统能够利用负载下垂提供燃气涡轮机或蒸汽涡轮机的负载控制。第五,系统能够为抽真空的蒸汽涡轮机提供离线速度控制。第六,系统能够提供蒸汽涡轮机的抽汽控制。
一个或多个实施方式的细节在下文的附图和描述中陈述。其他特征和优势将从描述和附图中以及从权利要求中显而易见。
附图说明
图1是示出工业涡轮机控制系统的示例的示意图。
图2是示出参数控制器的示例的框图。
图3是示出用于确定PID控制参数的过程的示例的流程图。
图4是示出用于控制工业涡轮机的过程的示例的流程图。
图5是示出用于确定PID控制参数的过程的另一示例的流程图。
图6是示出用于确定PID控制参数的过程的另一示例的流程图。
图7是示出整定具有初始欠阻尼响应的工业涡轮机控制器的示例结果的图表。
图8是示出整定具有初始过阻尼响应的工业涡轮机控制器的示例结果的图表。
图9是通用计算机系统的示例的示意图。
具体实施方式
该文献描述了用于控制工业涡轮机的系统和技术。工业涡轮机能够使用比例(P)、比例-积分(PI)和比例-积分-微分(PID)控制器控制。然而,整定P、PI和PID控制器可能是个挑战。例如,因为工业涡轮机能够呈现出苛刻的控制挑战,和/或因为工业涡轮机的动态行为可能对于一些涡轮机操作员不是明显或直观的主题。
图1是示出工业涡轮机控制系统100的示例的图解视图。涡轮机组件110包括涡轮机112和一个或多个可控输入114的集合,其用于控制到涡轮机112的一个或多个流体或蒸汽供应116的集合的流动。通过可控地调整可控输入114来控制到涡轮机112的蒸汽/流体供应116的流动,涡轮机112的旋转速度、负载、加速度、减速度和其他性能参数能够被可控地调整。
在一些实施例中,涡轮机112能够是燃气涡轮机或其他形式的燃烧驱动涡轮机。在这样的实施例中,可控输入114能够包括泵、阀、喷射器及这些与用于控制诸如气体(例如,天然气、氢气、氧气、丙烷、甲烷、空气)和/或液体(例如,燃料、水)的流体供应116到涡轮机112的流动的其他设备的组合。在一些实施例中,涡轮机112能够是蒸汽涡轮机。在这样的实施例中,可控输入114能够包括泵、阀、喷射器及这些与用于控制具有蒸汽形式的流体供应116到涡轮机112的流动的其他设备的组合。
在图1中示出的示例系统中,通过比例-积分-微分(PID)控制器120调整可控输入114。PID控制器120基于输入参数122(例如,期望的涡轮机速度)、由配置成感测涡轮机112的输出118的传感器130提供的反馈信号132、及在闭环反馈控制系统中的控制参数124的集合调整可控输入114。在一些实施例中,传感器130能够是速度传感器,其配置成感测涡轮机112的旋转速度,且将速度信号作为反馈信号132提供到PID控制器120。在一些实施例中,传感器130能够是温度、压力、振动或任何其他适当的传感器,其能够用于感测涡轮机组件110的参数,且响应于所感测的参数提供反馈信号132。在一些实施例中,PID控制器120能够是P控制器或PI控制器,或者PID控制器120能够配置为PI或P控制器(例如,通过将D和/或I增益设定为零)。
涡轮机组件110的性能以下述之间的比较被评估:反馈信号132迅速和/或准确地跟踪输入参数122的程度。例如,输入参数122能够是期望的速度设定,且控制参数124能够影响涡轮机112的速度紧密地匹配期望的稳态速度的程度,和/或控制参数124能够影响涡轮机112的速度能够紧密地改变以在预定时间量(例如,过阻尼响应)内和在预定量的速度过冲(例如,欠阻尼响应)内满足新确定的期望速度的程度。过阻尼和欠阻尼响应的示例结合图7和图8的描述进一步讨论。
在图1中示出的示例系统中,输入参数122和反馈信号132还被提供到参数控制器140。参数控制器140比较输入参数122与反馈信号132,以确定一组控制参数142。参数控制器140还能生成扰动参数,且将其作为输入参数122提供到PID控制器120,或者直接地控制PID的输出,且通过反馈信号132分析涡轮机112的响应。例如,参数控制器140能够将期望速度从第一期望速度改变到第二期望速度作为阶跃函数,且能够监视速度传感器的输出以分析涡轮机组件110准确且迅速地响应的程度。参数控制器140还能直接调整致动器并分析系统。
通过比较输入参数122和反馈信号132,参数控制器140能够执行参数调整算法144以确定一组控制参数142。参数控制器140提供控制参数142到PID控制器120以用作控制参数124,用于控制涡轮机组件110。
在一些实施例中,系统100能够利用速度下垂提供燃气涡轮机或蒸汽涡轮机的负载控制。在一些实施例中,系统100能够利用负载下垂提供燃气涡轮机或蒸汽涡轮机的负载控制。例如,下垂控制能够允许各个发电机与其最大额定输出成比例地共享系统负载改变。例如,在发电中,下垂速度控制能够是主要瞬时系统,其使用净频率偏移以在多个涡轮机驱动发电机上稳定地分布负载改变。
图2是示出图1的参数控制器140的示例的框图。参数控制器140包括控制参数142和参数调整算法144。包括在控制参数142中的是比例(P)增益参数210、积分(I)增益参数220和微分增益参数(D)。出于用户输入目的,而不是微分,提供用于速度微商比率(SDR)增益参数230的输入。SDR参数由参数控制器140和/或PID控制器120转换成微分参数。由PID控制器120使用的并行PID控制器传递函数的通用形式由如下等式给出:
PID控制器120使用上文中示出的形式,而不是让用户知悉微分项(D),PID控制器120允许用户调整速度微商比率或SDR。在一些实施方式中,SDR参数能够简化涡轮机配置的任务,同时使基本PID结构大致无改变,且允许PID算法使用P、I和D增益参数的值。
SDR参数230是I和D的组合。在一些实施方式中,SDR参数230的使用对于涡轮机操作员或其他用户而言能够更容易地整定PID控制器120。用户选择SDR值以指示输入或反馈主导的行为是否是期望的。对于其中SDR参数230的值大于1,但是小于100的示例,系统被认为是“反馈主导”,且表示PID控制器120的输出的等式是:
,且D=SDR/I。
在前述等式中,“error”表示在设定点和过程输入之间的误差,且“Out”表示PID函数的输出,其通常是对致动器的需求。
在反馈主导模式中,I项在积分器反馈中实施,且控制将对输入噪声更不敏感。在一些实施方式中,该模式对于主要受到燃料需求影响的参数能够是有用的,因为PID控制器120能够限制其他控制模式的燃料需求,即使并没有超过PID控制器120的设定点。在一些实施方式中,温度控制能够使用该模式,因为甚至在输入中提供额外的微分增益时,温度反馈通常也未快到足以防止超温状态。
对于其中SDR参数230的值等于或小于1,但是大于0.01的示例,系统被认为是“输入主导”,且表示PID控制器120的输出的等式是:
,且D=1/(SDR∙I)。
输入主导系统在积分器之前实施I项,因此误差项将使大的微商添加到输入。该配置导致PID控制器120在到达设定点之前采取校正动作。在一些实施方式中,在所控制的参数受外部扰动影响时,能够使用该模式。“输入主导”模式对外部扰动响应良好,但是对与受控参数一起进来的噪声具有增加的敏感性。再次,在本示例中,“误差”表示设定点反馈误差,且“Out”表示PID函数的输出。
对于其中SDR参数230的值等于100的示例,入口过滤器对于该情况基本上没有影响。对于其中SDR等于0.01(例如,最小值)的示例,D=1/I等于T项,且入口过滤器基本上没有影响。在这两种情况下,PID控制器120作为PI控制器操作。参数控制器140使用参数调整算法144以确定P和I、或P、I和SDR值,且将它们提供到PID控制器120以作为控制参数124。
虽然用于输入主导模式和反馈主导模式的传递函数基本上相同时,但是在受控系统从脱离控制状况进入控制时,在两个模式之间的差异将显现出来。“输入主导”和“反馈主导”模式的选择是由用户选择的,且对于单个PID控制基本上没有影响,对其中一个PID受控的多个PID控制基本上没有影响,且对于参数控制器功能基本上没有影响。出于此处讨论的示例的目的,系统是否是输入或反馈主导无关紧要。在上文段落[0039]和[0043]中的两个等式是相同的,除了在PID控制器120进入控制控制或脱离控制时。因此,下面的等式能够用于进一步的讨论,而不损失精度。
出于以下讨论的目的,控制是PI控制器还是PID控制器是有关系的,因为增益的计算不同。在一些实施方式中,用于P、I和D的标称值可随着系统不同而不同。例如,P可随着输入变量缩放比例和范围相反地变化,且I和D可随着受控的系统的响应变化。如先前讨论的,D是SDR的函数。P、I和SDR随着用户所期望的响应变化。例如,一些控制回路可要求非常快速的响应,而其他控制回路可能不能容许过冲,且应当配置成提供更多的裕度。
图3是示出用于确定PID控制参数的过程300的示例的流程图。在一些实施方式中,过程300能够由在图1中示出的示例系统100的参数控制器140执行。
在310处,接收涡轮机响应值。涡轮机响应值基于至少一个第一控制参数和输入值。例如,在参数控制器140处接收反馈信号132。反馈信号132提供关于涡轮机组件110的输出的信息,诸如涡轮机速度、涡轮机负载、出口温度、流动、电流、电压、入口压力、出口压力、抽汽压力或由涡轮机112生成的振动,涡轮机112由PID控制器120基于输入参数122和控制参数124控制。
在320处,基于涡轮机响应值和参数调整算法确定至少一个第二控制参数。例如,参数控制器140能够执行参数调整算法144,以确定P增益参数210、I增益参数220、和/或SDR参数230。
参数调整算法可具有用户能够调整的五个输入或句柄。通过配置“FAST_SLOW”输入参数,用户能够调整响应的期望速度。通过配置“P_PI_PID输入”参数,用户能够选择P、PI或PID控制。通过配置“ACT_MV_LMT”输入参数,用户能够选择期望的可允许的致动器运动限制。通过配置“PRC_MV_LMT”输入参数,用户还能选择期望的可允许的过程运动,及通过配置“DRP_MV_LMT”输入参数,用户还能选择可允许的下垂过程运动。
参数调整算法与PID控制器120基本上同步地,以与PID控制器120基本上相同的递归速率,且利用基本上同步到PID控制器120的输入和输出操作。在启用时,参数调整算法初始直接地控制致动器,且观察涡轮机响应。致动器基于过程响应在ACT_MV_LMT和PRC_MV_LMT参数内上下运动。在过程向上运动时,致动器向下运动,且反之亦然。根据过程响应,观察系统增益、系统响应频率和相对系统死区时间。
系统增益是过程运动改变的量与致动器运动改变的量的比率。系统增益能够通过测量致动器运动的幅度、测量过程运动的幅度并使它们相除计算。通过定义闭合环路,P值应当是系统增益的倒数的一部分。如果P值乘以系统增益大于1,则环路将不稳定,因为环路增益将大于1。过程运动的量和过程运动的频率在测试期间变化,且对每一个变化计算系统增益。该相对系统增益是用于高频/低幅度改变的系统增益与用于低频/高幅度改变的系统增益的比率。
系统响应频率是系统响应于致动器改变时的频率。系统频率能够通过测量涡轮机响应的周期和对其求倒数计算。通过定义闭合环路,I值大体配置成系统响应频率的一部分,且D值大体配置成系统响应频率的倒数的一部分。如果I值超过系统响应频率,或者D值超过系统响应频率的倒数,则系统将不稳定,因为控制将请求比涡轮机系统能够提供的更快的运动。
系统死区时间是在致动器运动从稳定状态改变直到过程运动改变开始为止之间的经过时间。相对系统死区时间是系统死区时间与系统响应频率的比率。
新的P、I和D值基于系统增益、相对系统增益、系统响应频率和相对系统死区时间参数,以及基于FAST_SLOW输入以及P_PI_PID输入计算。存在许多整定算法,其使用系统增益和系统响应作为输入,诸如齐格勒-尼克尔斯(Ziegler-Nichols)算法。还存在使用系统增益、系统响应和系统死区时间作为输入的算法,诸如科恩-科翁(Cohen-Coon)算法。这些算法都在多个出版物和在不同的实施方式中引用,每个算法均能够具有其自己的相当优势和缺点。例如,齐格勒-尼克尔斯及相关算法可被选择用于在带有最小死区时间的系统中使用,但是对于带有显著死区时间的系统可能不总是有效,且对于一些系统可能太过激进。在另一示例中,科恩-科翁和类似的算法可被选择用于在带有显著死区时间的系统中使用,但是对于通过积分器建模的系统(诸如未加载涡轮机)这些算法可能不总是有效。在一些实施方式中,齐格勒-尼克尔斯算法、科恩-科翁算法或这些和用于整定P、I、和/或D增益值的任何其他适当的算法的组合可由参数控制器140使用。
由参数控制器140计算的P值是系统增益、相对系统增益、相对系统死区时间、FAST_SLOW输入和系统是否配置为P、PI或PID控制(例如,P_PI_PID输入)的函数。P值与系统增益成反比。所计算的P值基于相对系统增益、相对系统死区时间并基于控制是否配置成P、PI或PID控制被修改。高的相对系统增益和高的相对系统死区时间将降低P值。在其中预期长的相对死区时间的实施方式中,可使用类似于科恩-科翁算法的算法,而其他系统可使用类似于齐格勒-尼克尔斯算法的算法。FAST_SLOW输入为用户提供用于P值的增益调整。在不同实施方式中,不同等式能够用于PID控制配置、PI控制配置和P控制配置。PID控制配置将相比PI控制配置具有相对更高的P和I项,PI控制配置将相比比例(P)控制配置具有相对更高的P项。
由参数控制器140计算的I和D值是所测量的系统响应频率、相对系统增益、相对系统死区时间、FAST_SLOW输入及系统是否配置为P、PI或PID控制(例如,P_PI_PID输入)的函数。所计算的I和D值基于相对系统增益、相对系统死区时间、FAST_SLOW输入且基于控制是否配置成P、PI或PID控制被修改。高的相对系统增益和高的相对系统死区时间将增大所计算的I值并降低所计算的D值。在其中预期相对地长的相对死区时间的一些实施方式中,能够使用类似于科恩-科翁算法的算法,而其他系统能够使用类似于齐格勒-尼克尔斯算法的算法。如在公开文献中通常见到的,相比在PI控制配置中所使用的,PID控制配置将具有用于P和I项的相对更高的增益值。
在PID控制器120配置成带有PI控制配置时,推荐的D设定为0,且PID控制器120配置为PI控制。在系统是作为比例控制的PID时,推荐的D和I设定为0,且PID控制器120配置为比例控制。如在上文的并行PID等式中可见,I和D的影响也是P的函数。
在计算新的值之后,参数调整算法144使用新计算的P、I和D值执行PID控制器120的阶跃响应,且监视响应。如上所述,P、I和D值基于系统增益、相对系统增益、系统响应和相对系统死区时间根据需要修改。
在330处,提供至少一个第二控制参数。例如,参数控制器140能够提供控制参数142的集合到PID控制器120以用作控制参数124的集合。
图4是示出用于控制工业涡轮机的过程400的示例的流程图。例如,过程400能够由在图1中示出的示例系统100执行。
在410处,提供PID控制器。PID控制器配置成基于至少一个第一控制参数执行控制算法。例如,提供PID控制器120,且PID控制器120执行控制算法以控制涡轮机组件110。在一些实施方式中,第一输入值能够是涡轮机速度、出口温度、入口压力、和/或以及抽汽压力。
在420处,提供参数控制器。参数控制器配置成执行参数调整算法。例如,参数控制器140配置成执行参数调整算法144。
在430处,提供涡轮机。涡轮机包括与PID控制器和参数控制器通信的涡轮机输出传感器。例如,涡轮机112具有组装到其的传感器130。
在440处,至少一个第一控制参数和第一输入值被提供到PID控制器。例如,输入参数122和参数124的集合被提供到PID控制器120。在一些实施方式中,至少一个第一控制参数能够是P增益参数210、I增益参数220、和/或SDR参数230。
在450处,PID控制器基于至少一个第一控制参数和第一输入值控制涡轮机。例如,PID控制器120基于输入参数122和参数124的集合控制可控输入114以控制涡轮机112。
在460处,参数控制器接收由涡轮机输出传感器提供的涡轮机响应值。例如,参数控制器140接收反馈信号132。能够处理反馈信号132以确定一个或多个值,这些值能够描述涡轮机112对输入参数122和控制参数124的集合的响应。
在470处,参数控制器基于涡轮机响应值和参数调整算法确定至少一个第二控制参数。例如,参数控制器140确定控制参数142的集合。在一些实施方式中,控制参数142的集合能够与控制参数124的集合不同。在一些实施方式中,至少一个第二控制参数能够是P增益参数210、I增益参数220、和/或SDR参数230。
在480处,至少一个第二控制参数被从参数控制器提供到PID控制器。例如,控制参数142的集合能够被提供到PID控制器120以用作控制参数124的集合。
在490处,由PID控制器基于至少一个第二控制参数和第二输入值控制涡轮机。例如,控制参数142的集合能够作为用于控制涡轮机组件110的控制参数124的集合由PID控制器120使用。在一些实施方式中,第二输入值能够是涡轮机速度、出口温度、入口压力、和/或以及抽汽压力。
图5是示出用于确定PID控制参数的过程500的另一示例的流程图。在一些实施方式中,过程500能够由工业涡轮机控制系统100执行。
在510处,允许系统稳定到相对于输入参数122的基本稳定操作状态。在520处,使用算法测量系统的输出,所述算法配置成用于在使用中作为涡轮机112的类型的涡轮机。例如,该算法可针对蒸汽涡轮机、燃烧液体燃料的涡轮机(例如,航空涡轮机)、或燃烧气体燃料的涡轮机(例如,天然气涡轮机)不同地配置。在一些实施方式中,该算法可针对不同类型的控制不同地配置。例如,算法可针对速度控制、负载控制、温度控制、或涡轮机112的这些或任何其他可控输出的组合不同地配置。
在530处,执行参数调整算法144以基于所测量的系统参数和期望的响应输入540计算控制参数142的集合。在550处,所计算的控制参数142的集合结合测试输入560使用,以测试控制参数142的集合,且如果需要的话触发控制参数142的集合的进一步调整。
图6是示出用于确定PID控制参数的过程600的另一示例的流程图。在一些实施方式中,过程600能够由工业涡轮机控制系统100执行。在一些实施方式中,过程500能够是图5的过程500的更详细的实施例。
过程输入602被提供到涡轮机控制过程604。涡轮机控制过程604控制涡轮机,以提供致动器输出606。例如,过程输入602能够是速度参数,且涡轮机控制过程604能够是通过致动燃料或蒸汽阀(作为致动器输出606)用于涡轮机的速度控制过程。
在610处,测量初始信号。初始信号由反馈传感器提供,反馈传感器能够用于测量涡轮机的一个或多个输出。例如,传感器130能够提供反馈信号132,且能够处理反馈信号132以确定初始控制状态。
在612处,做出确定。如果运动超过用户选择的运动限制,则在614处执行正常的PID环路。例如,参数控制器140能够确定涡轮机112不在稳定状态下操作,且作为响应,参数控制器140能够允许PID控制器120继续控制涡轮机组件110。
如果系统运动是可接受的,则在616处做出另一确定。如果不启用自适应控制,则在614处执行正常的PID环路。如果启用自适应控制,则在650处测试系统响应。例如,参数控制器140能够提供期望的输出设定,作为到PID控制器120的输入参数122。
在652处,做出确定。如果响应于输入参数从涡轮机接收到不足的响应,则在654处调整激励(例如,输入参数122)。如果响应于输入参数从涡轮机接收到足够的响应,则在660处做出另一确定。
如果在660处,已经接收到关于涡轮机对输入参数的响应的不足量的数据,则在650处继续测试系统响应。如果在660处,已经接收到关于涡轮机对输入参数的响应的足够数据,则在670处,基于期望的响应672计算P增益、I增益和SDR增益。在680处,测试所计算的P、I和SDR增益。例如,参数控制器140能够提供控制参数142到PID控制器120以用作控制参数124,且涡轮机组件110的响应能够被评估以测试用于输入参数122的所计算的P、I和SDR增益的性能。
图7是图表700,其示出整定离线控制蒸汽涡轮机、抽真空、带有初始欠阻尼响应的工业涡轮机PID控制器的示例结果。蒸汽涡轮机系统利用下述建模:具有20 mS死区时间的0.5 Hz致动器、5 mS的控制递归速率和涡轮机,其带有0.001%阻尼,以3600 RPM运行,没有负载。期望的过程运动限制是0.5%,且致动器运动受限于0.025%。初始P项设定为0.0001,初始I项设定为0.0001,且SDR设定为100,意味着PI控制器配置。图表700沿着x轴表示时间(单位是秒),且y轴表示所测量的过程输出参数,例如,在该示例中单位是RPM的旋转速度。图表700包括用于工业涡轮机(诸如在图1中示出的示例系统的涡轮机112)的参考输入值702的集合和响应输出值704的集合。在时间段710期间,从大约50s标志到大约100s标志,涡轮机在初始P增益、I增益和D增益下操作时被激励。响应输出值704示出系统在增益设定的初始集合下临界稳定,且表现出指示初始增益设定可能太高的特性。
在时间段720期间,从大约100s标志到大约157s标志,涡轮机例如通过参数控制器140被摄动(perturbed)。在一些实施发生中,系统增益和相对系统增益能够通过测量过程运动与输出需求运动的比率确定。系统响应频率能够通过测量过程响应的频率确定。相对系统死区时间能够通过测量在输出需求的运动和过程运动之间的延迟确定。如通过上文中的系统设定和曲线可见,系统死区时间最小。如上文中解释的,这些参数能够用于确定最新的P、I和D增益值。最新的P、I和SDR增益值分别是0.0015、0.21和6.85。对应D值将是0.69。这些最新的P、I和D增益然后被提供到PID控制器以用于在涡轮机的控制中使用。
在时间段730期间,从大约157s标志向前,使用最新的P、I和D增益控制涡轮机。相比在时间段710(例如,在通过参数控制器140调整之前)期间的系统的响应,在时间段730(例如,在通过参数控制器140调整之后)期间,系统的响应更稳定。
图8是图表800,其示出整定控制蒸汽涡轮机、离线、抽真空、带有初始过阻尼响应的工业涡轮机PID控制器的示例结果。再次,蒸汽涡轮机系统利用下述被建模:具有20 mS死区时间的0.5 Hz致动器、5 mS的控制递归速率和涡轮机,其带有0.001%阻尼,以3600 RPM运转,没有负载。期望的过程运动限制是0.5%,且致动器运动受限于0.025%。初始P项设定为0.01,初始I项设定为0.01,且SDR设定为100,意味着PI控制器配置。图表800沿着x轴表示时间(单位是秒),且y轴表示所测量的过程输出参数,例如,在该示例中单位是RPM的旋转速度。图表800包括用于工业涡轮机(诸如在图1中示出的示例系统的涡轮机112)的参考输入值802的集合和响应输出值804的集合。在时间段810期间,从大约50s标志到大约100s标志,涡轮机在初始P增益、I增益和D增益下操作时被激励。响应输出值804示出系统是过阻尼的(例如,迟缓反应),且在给出时间段810期间未达到设定点。这样的行为能够指示初始增益设定可能太低。
在时间段820期间,从大约100s标志到大约157s标志,涡轮机例如通过参数控制器140被摄动,且已处理涡轮机的响应。在一些实施方式中,系统增益和相对系统增益能够通过测量过程运动与输出需求运动的比率确定。系统响应频率能够通过测量过程响应的频率确定。相对系统死区时间能够通过测量在输出需求的运动和过程运动之间的延迟确定。如上文中解释的,这些参数用于确定最新的P、I和D增益值。这些最新的P、I和D增益然后被提供到PID控制器以用于在涡轮机的控制中使用。
在时间段830期间,从大约157s标志向前,使用最新的P、I和SDR增益控制涡轮机,最新的P、I和SDR增益分别是0.0015、0.21和6.85。相比在时间段810(例如,在通过参数控制器140调整之前)期间的系统的响应,在时间段830(例如,在通过参数控制器140调整之后)期间,系统的响应更灵敏。注意,图7和图8示出可重复的P、I和D项,以及具有良好性能和良好裕度(快速响应、最小的瞬时振荡)的每个整定序列的可重复响应,而不考虑PID控制器120所使用的初始值和PID控制器120及涡轮机组件110的初始响应。如与临界稳定且瞬时振荡的系统那样,参数控制器140也能够与初始迟缓、过阻尼且无响应的系统一起使用。
图9是通用计算机系统900的示例的示意图。系统900能够用于与根据一个实施方式的过程300相关联所描述的操作。例如,系统900可被包括在图1的参数控制器140和/或PID控制器120中的任一个或全部中。
系统900包括处理器910、存储器920、储存设备930、和输入/输出设备940。部件910、920、930和940中的每一个均使用系统总线950互连。处理器910能够处理用于在系统900内执行的指令。在一个实施方式中,处理器910是单线程处理器。在另一实施方式中,处理器910是多线程处理器。处理器910能够处理储存在存储器920中或在储存设备930上的指令,以显示图像信息用于输入/输出设备940上的用户界面。
存储器920储存在系统900内的信息。在一个实施方式中,存储器920是计算机可读介质。在一个实施方式中,存储器920是易失存储器单元。在另一实施方式中,存储器920是非易失存储器单元。
储存设备930能够提供用于系统900的大容量储存器。在一个实施方式中,储存设备930是计算机可读介质。在各种不同实施方式中,储存设备930可以是软盘设备、硬盘设备、光盘设备或磁带设备。
输入/输出设备940为系统900提供输入/输出操作。在一个实施方式中,输入/输出设备940包括键盘和/或定点设备。在另一实施方式中,输入/输出设备940包括用于显示图形的用户界面的显示单元。
所描述的特征能够在数字电子电路或者在计算机硬件、固件、软件或在其组合中实施。器械能够在有形地体现在信息载体中的计算机程序产品中实施,例如,在机器可读储存设备中以通过可编程处理器执行;且方法步骤能够通过可编程处理器执行,所述可编程处理器通过操作输入数据执行指令的程序以执行所描述的实施方式的函数并生成输出。所描述的特征能够有利地在一个或多个计算机程序(其可在可编程系统上执行)中实施,可编程系统包括至少一个可编程处理器、数据储存系统、至少一个输入设备和至少一个输出设备,至少一个可编程处理器联接以从数据储存系统接收数据和指令,以及传输数据和指令到数据储存系统。计算机程序是一组指令,其能够直接地或间接地在计算机中使用,以执行特定活动或带来特定结果。计算机程序能够以任何形式的程序语言书写,包括编译语言或者解释语言,且其能够以任何形式部署,包括作为独立程序或作为模块、部件、子程序或适用于在计算环境中使用的其他单元。
用于执行指令的程序的合适的处理器包括,以举例的方式,通用和专用微处理器两者,以及任何类型的计算机的唯一处理器或多个处理器中的一个。通常,处理器将从只读存储器或随机存取存储器或两者接收指令和数据。计算机的基本元件是用于执行指令的处理器和用于储存指令和数据的一个或多个存储器。通常,计算机还将包括用于储存数据文件的一个或多个大容量储存设备或操作地联接以与一个或多个大容量储存设备通信;这样的设备包括磁盘,诸如内置硬盘和可移动盘;磁光盘;和光盘。适用于有形地体现计算机程序指令和数据的储存设备包括全部形式的非易失存储器,包括(以举例的方式)半导体存储器设备,诸如EPROM、EEPROM和闪存设备;诸如内置硬盘和可移动盘的磁盘;磁光盘;和CD-ROM和DVD-ROM盘。处理器和存储器能够补充ASIC(专用集成电路)或者并入在ASIC中。
为了提供与用户的交互,能够在计算机上实施这些特征,计算机具有用于给用户显示信息的显示设备(诸如CRT(阴极射线管)或LCD(液晶显示器)显示屏)和通过其用户能够提供输入到计算机的键盘和定点设备(诸如鼠标或轨迹球)。
能够在计算机系统中实施这些特征,计算机系统包括后端部件(诸如数据服务器)或包括中介软件部件(诸如应用服务器或因特网服务器)或包括前端部件(诸如具有图形用户界面或因特网浏览器或其任何组合的客户端计算机)。系统的部件能够通过数字数据通信的任何形式或介质(诸如通信网络)连接。通信网络的示例包括例如:LAN、WAN和形成因特网的计算机和网络。
计算机系统能够包括客户端和服务器。客户端和服务器通常彼此远离,且通常通过网络(诸如所描述的一个)相互作用。客户端和服务器的关系借助于在相应计算机上运行且关于彼此具有客户端-服务器关系的计算机程序出现。
尽管上文中已经详细地描述了若干实施方式,但是其他修改是可能的。例如,在附图中绘出的逻辑流不要求示出的特定顺序或者连续顺序来实现期望的结果。此外,可提供其他步骤或者可从所描述的流中消除步骤,且其他部件可添加到所描述的系统或从其移除。因此,其他实施方式在所附权利要求的范围内。

Claims (18)

1.一种用于操作涡轮机的方法,其包括:
提供过程控制器,所述过程控制器配置成基于表示第一值的至少一个第一控制参数执行控制算法,所述第一值从包括比例增益P值、积分增益I值和微分增益D值的组中选择;
提供参数控制器,其配置成执行参数调整算法;
提供涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器与所述过程控制器和所述参数控制器通信;
向所述过程控制器提供至少一个第一控制参数和第一输入值;
基于所述至少一个第一控制参数和所述第一输入值由所述过程控制器控制所述涡轮机;
由所述参数控制器接收由所述涡轮机输出传感器提供的涡轮机响应值;
基于所述涡轮机响应值和所述参数调整算法由所述参数控制器确定至少一个第二控制参数,所述第二控制参数表示从所述组中选择的第二值;
从所述参数控制器向所述过程控制器提供所述至少一个第二控制参数;以及
基于所述至少一个第二控制参数和第二输入值由所述过程控制器控制所述涡轮机;
所述控制算法由如下等式给出:
2.根据权利要求1所述的方法,其还包括由所述参数控制器识别由所述涡轮机输出传感器提供的所述涡轮机响应值。
3.根据权利要求1到2中的任一项所述的方法,其特征在于,所述第一输入值和所述第二输入值中的至少一个是从由涡轮机速度、负载、温度、流动、电流、电压、压力和振动组成的组中选择的值。
4.根据权利要求1到2中的任一项所述的方法,其特征在于,所述P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。
5.根据权利要求1到2中的任一项所述的方法,其特征在于,所述I值和所述D值中的至少一个是测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
6.一种涡轮机参数控制器,其包括:
输入;
输出;
存储器,其储存可执行的指令;以及
一个或多个处理设备,用以执行所述指令以执行操作,所述操作包括:
在所述输入处接收涡轮机响应值,所述涡轮机响应值基于输入值和表示第一值的至少一个第一控制参数,所述第一值从包括比例增益P值、积分增益I值和微分增益D值的组中选择;
基于所述涡轮机响应值和参数调整算法确定至少一个第二控制参数,所述第二控制参数表示从所述组中选择的第二值;及
在所述输出处提供所述至少一个第二控制参数;
所述至少一个第二控制参数被提供到过程控制器,所述过程控制器配置成执行由如下等式给出的控制算法:
7.根据权利要求6所述的控制器,其特征在于,所述至少一个第一控制参数、所述至少一个第二控制参数和所述输入值是PID过程控制器值。
8.根据权利要求6到7中的任一项所述的控制器,其特征在于,所述涡轮机响应值包括由涡轮机输出传感器提供的一个或多个涡轮机输出值。
9.根据权利要求6到7中的任一项所述的控制器,其特征在于,所述涡轮机响应值基于涡轮机在配置成利用所述至少一个第一控制参数和所述输入值的过程控制器的控制下的输出响应。
10.根据权利要求6到7中的任一项所述的控制器,其还包括识别由涡轮机输出传感器提供的所述涡轮机响应值。
11.根据权利要求6到7中的任一项所述的控制器,其特征在于,所述输入值是从包括:涡轮机速度、负载、温度、流动、电流、电压、压力和振动的组中选择的值。
12.根据权利要求6到7中的任一项所述的控制器,其特征在于,所述P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。
13.根据权利要求6到7中的任一项所述的控制器,其特征在于,所述I值和所述D值中的至少一个是测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
14.一种涡轮机系统,其包括:
过程控制器,所述过程控制器配置成基于表示第一值的至少一个第一控制参数执行控制算法,所述第一值从包括比例增益P值、积分增益I值和微分增益D值的组中选择;
参数控制器,其配置成执行参数调整算法;
涡轮机,其具有组装到其的涡轮机输出传感器,所述涡轮机输出传感器与所述过程控制器和所述参数控制器通信;
其中,所述参数调整算法配置成执行操作,所述操作包括:
向所述过程控制器提供至少一个第一控制参数和第一输入值;
基于所述至少一个第一控制参数和所述第一输入值由所述过程控制器控制所述涡轮机;
由所述参数控制器接收由所述涡轮机输出传感器提供的涡轮机响应值;
基于所述涡轮机响应值和所述参数调整算法由所述参数控制器确定至少一个第二控制参数,所述第二控制参数表示从所述组中选择的第二值;
从所述参数控制器向所述过程控制器提供所述至少一个第二控制参数;以及
基于所述至少一个第二控制参数和第二输入值由所述过程控制器控制所述涡轮机;
所述控制算法由如下等式给出:
15.根据权利要求14中的任一项所述的系统,其还包括由所述参数控制器识别由所述涡轮机输出传感器提供的所述涡轮机响应值。
16.根据权利要求14到15中的任一项所述的系统,其特征在于,所述第一输入值和所述第二输入值中的至少一个是从包括涡轮机速度、负载、温度、流动、电流、电压、压力和振动的组中选择的值。
17.根据权利要求14到15中的任一项所述的系统,其特征在于,所述P值是相对系统增益、相对系统死区时间和响应速度输入参数的函数。
18.根据权利要求14到15中的任一项所述的系统,其特征在于,所述I值和所述D值中的至少一个是测量的系统响应频率、相对系统增益、相对系统死区时间和响应速度输入参数的函数。
CN201580045411.5A 2014-06-24 2015-06-22 用于工业涡轮机的自适应pid控制系统 Active CN106575102B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/313604 2014-06-24
US14/313,604 US9507365B2 (en) 2014-06-24 2014-06-24 Adaptive PID control system for industrial turbines
PCT/US2015/036948 WO2015200202A1 (en) 2014-06-24 2015-06-22 Adaptive pid control system for industrial turbines

Publications (2)

Publication Number Publication Date
CN106575102A CN106575102A (zh) 2017-04-19
CN106575102B true CN106575102B (zh) 2019-11-15

Family

ID=53514406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580045411.5A Active CN106575102B (zh) 2014-06-24 2015-06-22 用于工业涡轮机的自适应pid控制系统

Country Status (4)

Country Link
US (2) US9507365B2 (zh)
EP (1) EP3161563B1 (zh)
CN (1) CN106575102B (zh)
WO (1) WO2015200202A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739262B2 (en) * 2014-12-10 2017-08-22 State Grid Corporation Of China Static testing and calibrating method for PID link of control system of wind turbine
US10001764B2 (en) * 2015-09-11 2018-06-19 Woodward, Inc. Adaptive multiple input multiple output PID control system for industrial turbines
CN105739300B (zh) * 2016-01-13 2019-02-12 天津中科智能识别产业技术研究院有限公司 应用于应急指挥无人机姿态控制的新型pid控制方法
US9926803B2 (en) * 2016-06-28 2018-03-27 Woodward, Inc. Turbine control device prognostics
CN107100741B (zh) * 2017-05-08 2019-05-10 南京航空航天大学 一种提高涡扇发动机控制系统性能的方法及其系统
TWI650727B (zh) * 2017-06-01 2019-02-11 大青節能科技公司 養殖雲端監控系統
CN108873683A (zh) * 2018-06-13 2018-11-23 广东海沃森科创自动化有限公司 一种双输入智能调节器
CN109459925B (zh) * 2018-11-14 2020-08-21 浙江大学 一种pid控制数据手绘识别和参数整定的方法
GB201820282D0 (en) * 2018-12-13 2019-01-30 Ge Healthcare Bio Sciences Ab Method for control of a bioprocess
CN109799699B (zh) 2019-02-19 2022-06-07 阿波罗智能技术(北京)有限公司 自动驾驶系统控制参数处理方法、装置、设备、存储介质
JP2020160659A (ja) * 2019-03-26 2020-10-01 アズビル株式会社 制御装置および制御方法
CN109976145B (zh) * 2019-04-16 2022-03-25 新奥能源动力科技(上海)有限公司 一种调节pid参数的方法、主控制器及存储介质
CN110080885B (zh) * 2019-04-16 2020-05-26 新奥能源动力科技(上海)有限公司 一种控制燃气轮机的方法、装置及存储介质
CN114341467B (zh) * 2019-08-06 2023-09-22 西门子能源美国公司 联合循环频率控制系统和方法
CN111399372B (zh) * 2020-03-27 2022-09-20 华能铜川照金煤电有限公司 一种汽机主控变pid控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106272A (zh) * 1985-09-18 1987-03-18 山武-霍尼韦尔公司 自动调谐控制器及判定pid参数的方法
US6064920A (en) * 1996-01-24 2000-05-16 Agie Sa Electroerosion apparatus drive control system employing fuzzy logic
CN101221447A (zh) * 2008-01-18 2008-07-16 中国农业大学 一种机械自动转向控制方法
CN101550907A (zh) * 2008-04-02 2009-10-07 西门子公司 缓冲风力涡轮机的塔振动的方法和风力涡轮机的控制系统
CN201725180U (zh) * 2010-05-24 2011-01-26 安徽理工大学 基于fpga的自整定pid控制器
CN102214930A (zh) * 2010-04-12 2011-10-12 维斯塔斯风力系统集团公司 风力涡轮发电机的控制
CN102830665A (zh) * 2011-06-13 2012-12-19 诺迈士科技有限公司 用于操作涡轮机电厂的系统和方法
CN102870310A (zh) * 2010-04-26 2013-01-09 金斯顿女王大学 用于发电机的最大功率点的跟踪

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407013A (en) * 1980-10-20 1983-09-27 Leeds & Northrup Company Self tuning of P-I-D controller by conversion of discrete time model identification parameters
US5103629A (en) 1989-11-20 1992-04-14 Westinghouse Electric Corp. Gas turbine control system having optimized ignition air flow control
US5252860A (en) 1989-12-11 1993-10-12 Westinghouse Electric Corp. Gas turbine control system having maximum instantaneous load-pickup limiter
US5394322A (en) * 1990-07-16 1995-02-28 The Foxboro Company Self-tuning controller that extracts process model characteristics
US5406474A (en) * 1990-07-16 1995-04-11 The Foxboro Company Self-tuning controller
US5229699A (en) * 1991-10-15 1993-07-20 Industrial Technology Research Institute Method and an apparatus for PID controller tuning
FR2685792A1 (fr) * 1991-12-30 1993-07-02 Kodak Pathe Regulation par pid numerique.
US5307619A (en) 1992-09-15 1994-05-03 Westinghouse Electric Corp. Automatic NOx control for a gas turbine
US5223778A (en) * 1992-09-16 1993-06-29 Allen-Bradley Company, Inc. Automatic tuning apparatus for PID controllers
US5420785A (en) * 1993-05-26 1995-05-30 The Foxboro Company Self-tuning deadtime process controller
AU2968295A (en) * 1994-08-10 1996-03-07 Motorola, Inc. Cascade tuning controller and method of use therefor
US5748467A (en) * 1995-02-21 1998-05-05 Fisher-Rosemont Systems, Inc. Method of adapting and applying control parameters in non-linear process controllers
US5553589A (en) * 1995-06-07 1996-09-10 Cummins Electronics Company, Inc. Variable droop engine speed control system
KR100194377B1 (ko) * 1996-04-08 1999-06-15 윤종용 유전 이론을 이용한 피드 제어기의 이득 결정 장치및방법
US6055459A (en) 1997-08-22 2000-04-25 Honeywell Inc. Method for preventing windup in PID controllers employing nonlinear gain
DE19830341C1 (de) * 1998-07-07 2000-03-30 Siemens Ag Verfahren zum Betreiben einer Regelungseinrichtung und Vorrichtung zur Durchführung des Verfahrens
US6415272B1 (en) 1998-10-22 2002-07-02 Yamaha Hatsudoki Kabushiki Kaisha System for intelligent control based on soft computing
FI111106B (fi) * 1999-02-19 2003-05-30 Neles Controls Oy Menetelmä prosessinsäätösilmukan virittämiseksi teollisuusprosessissa
DE19950304A1 (de) 1999-10-19 2001-05-10 Zahnradfabrik Friedrichshafen Verfahren zur Drehzahlregelung
US8280533B2 (en) * 2000-06-20 2012-10-02 Fisher-Rosemount Systems, Inc. Continuously scheduled model parameter based adaptive controller
US6577908B1 (en) 2000-06-20 2003-06-10 Fisher Rosemount Systems, Inc Adaptive feedback/feedforward PID controller
US7024253B2 (en) * 2000-08-21 2006-04-04 Honeywell International Inc. Auto-tuning controller using loop-shaping
US6980869B1 (en) * 2000-11-20 2005-12-27 National Instruments Corporation System and method for user controllable PID autotuning and associated graphical user interface
US6796129B2 (en) 2001-08-29 2004-09-28 Catalytica Energy Systems, Inc. Design and control strategy for catalytic combustion system with a wide operating range
US6591808B2 (en) 2001-10-01 2003-07-15 Ford Global Technologies, Llc Adaptive PID control method and system for internal combustion engine rotation speed pulsation damping
JP3881871B2 (ja) * 2001-11-13 2007-02-14 三菱重工業株式会社 ガスタービンの燃料制御方法、及びそれに供する制御装置
US6719523B2 (en) * 2001-11-15 2004-04-13 Compressor Controls Corporation Method and apparatus for steam turbine speed control
JP2003172154A (ja) 2001-12-04 2003-06-20 Mitsubishi Heavy Ind Ltd ガスタービン発電プラント、及びガスタービン発電プラント制御装置
US6663777B2 (en) * 2002-03-12 2003-12-16 Keith A. Schimel Apparatus, system, and process for anaerobic conversion of biomass slurry to energy
AU2003250280A1 (en) 2002-07-04 2004-01-23 All-Russian Research Institute Of Automatics Method and device for regulating the rotational speed of a turbine connected to an electric power supply mains by means of a generator
JP4123890B2 (ja) * 2002-10-04 2008-07-23 株式会社日立製作所 ポンプ水車
WO2004053312A1 (en) * 2002-12-12 2004-06-24 Ebara Corporation Gas turbine apparatus
US7496041B2 (en) * 2003-02-28 2009-02-24 Fisher-Rosemount Systems, Inc. High speed auto-tuning loop
DE102004038156A1 (de) 2004-08-06 2006-02-23 Mtu Friedrichshafen Gmbh Einrichtung und Verfahren zur Regelung eines Abgasturboladers mit veränderbarer Turbinengeometrie
JP2006302078A (ja) * 2005-04-22 2006-11-02 Yamatake Corp 制御対象モデル生成装置および生成方法
US7599752B2 (en) * 2005-05-17 2009-10-06 Utah State University Tuning methods for fractional-order controllers
WO2007001252A1 (en) * 2005-06-13 2007-01-04 Carnegie Mellon University Apparatuses, systems, and methods utilizing adaptive control
JP4119909B2 (ja) 2005-09-14 2008-07-16 三菱重工業株式会社 ガスタービンの燃焼制御装置
US7920929B2 (en) * 2005-09-29 2011-04-05 Honeywell International Inc. On-demand auto-tuner for a plant control system
US7617687B2 (en) 2006-02-28 2009-11-17 General Electric Company Methods and systems of variable extraction for gas turbine control
US7784288B2 (en) 2006-03-06 2010-08-31 General Electric Company Methods and systems of variable extraction for compressor protection
US20080065257A1 (en) * 2006-09-13 2008-03-13 Jianmin He Controlled material removal rate (CMRR) and self-tuning force control in robotic machining process
US7809668B1 (en) * 2006-11-22 2010-10-05 Universidad Del Norte System and method to avoid oscillatory behavior in proportional-integral-derivative (PID) controllers by using fuzzy inference and modified/active damping
US7685802B2 (en) 2006-12-19 2010-03-30 General Electric Company Methods and apparatus to facilitate gas turbine fuel control
US7546170B2 (en) 2007-01-02 2009-06-09 Neuroblast, Inc. Easily tuned and robust control algorithm for single or multiple variable systems
DE102007017259B4 (de) 2007-04-12 2009-04-09 Siemens Ag Verfahren zur rechnergestützten Steuerung und/oder Regelung eines technischen Systems
KR100931769B1 (ko) 2007-09-14 2009-12-14 엘에스산전 주식회사 터빈의 과속도 감시 및 제어 시스템과 그 방법
CN101919134B (zh) * 2007-12-19 2013-04-24 维斯塔斯风力系统集团公司 用于风力涡轮发电机的基于事件的控制系统及控制方法
US7822512B2 (en) 2008-01-08 2010-10-26 General Electric Company Methods and systems for providing real-time comparison with an alternate control strategy for a turbine
CN102265012B (zh) 2008-12-26 2013-07-17 三菱重工业株式会社 废热回收系统的控制装置
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US8594813B2 (en) * 2009-08-14 2013-11-26 General Cybernation Group, Inc. Dream controller
US8499561B2 (en) 2009-09-08 2013-08-06 General Electric Company Method and apparatus for controlling moisture separator reheaters
RU2418964C1 (ru) 2009-09-29 2011-05-20 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Система автоматического управления частотой вращения ротора газотурбинного двигателя
US8025476B2 (en) 2009-09-30 2011-09-27 General Electric Company System and methods for controlling a wind turbine
CN201574786U (zh) 2009-12-21 2010-09-08 上海电气电站设备有限公司 汽轮机组油动机数字化伺服系统
US8301275B2 (en) * 2010-06-04 2012-10-30 Sti Srl Modified proportional integral derivative controller
CN101963074A (zh) 2010-08-27 2011-02-02 浙江晋巨化工有限公司 汽轮机驱动负载负荷瞬间宽幅自动调节和功热电联产方法
US20120215326A1 (en) * 2011-02-17 2012-08-23 Invensys Systems Inc. Distributed Proportional/Integral/Derivative Tuning
CN102953775A (zh) 2011-08-23 2013-03-06 上海漕泾热电有限责任公司 基于燃气-蒸汽联合热电联供机组的自动发电控制系统
US8245493B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and control method
GB2494416A (en) 2011-09-07 2013-03-13 Rolls Royce Plc Asset Condition Monitoring Using Internal Signals Of The Controller
US20130197672A1 (en) * 2012-01-26 2013-08-01 Intuitive Surgical Operations, Inc. Pass-Through Controller for Cascaded Proportional-Integral-Derivative Control Loops
CN102588011B (zh) 2012-03-06 2014-06-04 山西省电力公司电力科学研究院 大型火电机组的汽机主控制系统
CN202483642U (zh) 2012-03-06 2012-10-10 山西省电力公司电力科学研究院 大型火电机组的汽机主控制系统
CN102994672B (zh) 2012-11-30 2014-11-26 武汉钢铁(集团)公司 高炉煤气余压透平发电装置trt系统顶压的自动控制方法
CN203285494U (zh) 2013-05-30 2013-11-13 浙江汽轮成套技术开发有限公司 凝汽式汽轮机的热井液位控制系统
CN203285493U (zh) 2013-05-30 2013-11-13 浙江汽轮成套技术开发有限公司 汽轮机多汽源自动切换控制系统
US9841185B2 (en) * 2013-10-29 2017-12-12 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control using model-based temperature balancing
US10001764B2 (en) * 2015-09-11 2018-06-19 Woodward, Inc. Adaptive multiple input multiple output PID control system for industrial turbines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106272A (zh) * 1985-09-18 1987-03-18 山武-霍尼韦尔公司 自动调谐控制器及判定pid参数的方法
US6064920A (en) * 1996-01-24 2000-05-16 Agie Sa Electroerosion apparatus drive control system employing fuzzy logic
CN101221447A (zh) * 2008-01-18 2008-07-16 中国农业大学 一种机械自动转向控制方法
CN101550907A (zh) * 2008-04-02 2009-10-07 西门子公司 缓冲风力涡轮机的塔振动的方法和风力涡轮机的控制系统
CN102214930A (zh) * 2010-04-12 2011-10-12 维斯塔斯风力系统集团公司 风力涡轮发电机的控制
CN102870310A (zh) * 2010-04-26 2013-01-09 金斯顿女王大学 用于发电机的最大功率点的跟踪
CN201725180U (zh) * 2010-05-24 2011-01-26 安徽理工大学 基于fpga的自整定pid控制器
CN102830665A (zh) * 2011-06-13 2012-12-19 诺迈士科技有限公司 用于操作涡轮机电厂的系统和方法

Also Published As

Publication number Publication date
US10359798B2 (en) 2019-07-23
WO2015200202A1 (en) 2015-12-30
EP3161563A1 (en) 2017-05-03
EP3161563B1 (en) 2020-11-04
CN106575102A (zh) 2017-04-19
US20170023965A1 (en) 2017-01-26
US20150370277A1 (en) 2015-12-24
US9507365B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
CN106575102B (zh) 用于工业涡轮机的自适应pid控制系统
US10400677B2 (en) Compact aero-thermo model stabilization with compressible flow function transform
US10400776B2 (en) Load sharing control for compressors in series
CN108351621A (zh) 用于工业涡轮机的自适应多输入多输出pid控制系统
JP2009008078A (ja) マルチ缶型燃焼器に対して燃焼ダイナミックス調整アルゴリズムを用いるためのシステム及び方法
WO2018144744A1 (en) Generating steam turbine performance maps
Yu et al. A new method for the design of optimal control in the transient state of a gas turbine engine
Dandelia et al. Optimal control of growth of instabilities in Taylor–Couette flow
Gutierrez et al. Smoothing Techniques for Real-Time Turbine Speed Sensors
An-hua GRA-based approach to PID parameter tuning for closed-loop servo systems
EP3473816B1 (en) Systems and methods to control power plant operation via control of turbine run-up and acceleration
Trentini et al. Modeling, parameter estimation and state-space control of a steam turbine
US10156160B2 (en) Systems and methods to control power plant operation via control of turbine run-up and acceleration
Nassirharand et al. Nonlinear Proportional and Rate Feedback Controller Design Synthesis with Experimental Verification
Vostrikov et al. Control adjustment of an air-gas path based on the localization principle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant