CN106568811A - 一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法 - Google Patents

一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法 Download PDF

Info

Publication number
CN106568811A
CN106568811A CN201611016585.1A CN201611016585A CN106568811A CN 106568811 A CN106568811 A CN 106568811A CN 201611016585 A CN201611016585 A CN 201611016585A CN 106568811 A CN106568811 A CN 106568811A
Authority
CN
China
Prior art keywords
btc
ammonia
graphene
gas sensor
ammonia gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611016585.1A
Other languages
English (en)
Inventor
邹勇进
陈婷
向翠丽
徐芬
孙立贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201611016585.1A priority Critical patent/CN106568811A/zh
Publication of CN106568811A publication Critical patent/CN106568811A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法,包括氨气传感器和氨敏感纳米复合材料,所述氨敏感纳米复合材料为Cu‑BTC、聚吡咯纳米线、石墨烯纳米复合材料,氨敏感纳米复合材料固定于ITO导电玻璃上。该氨气传感器可以在室温条件下定量检测氨气的浓度,而且操作简便,重现性好。所述聚吡咯纳米线/石墨烯复合材料具有良好的化学稳定性和独特的化学结构,诱导了纳米Cu‑BTC的合成,另一方面,Cu‑BTC有效地提高了复合材料的比表面积,对氨气有良好的吸附作用,两者协同作用,提高了在室温下氨气检测的灵敏度和选择性,而且还具有工艺简单,应用范围广和制造成本低等优点。

Description

一种基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气 传感器及其制备方法
技术领域
本发明涉及氨气传感器,具体地说是一种基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法和应用。
背景技术
氨气(NH3)是一种无色弱碱性气体,极易溶于水,1体积水可以溶700体积的NH3,有强烈刺激性气味 ,有一定的腐蚀性。此外, NH3还对人体的感官有明显的刺激性,这都是因为氨气分子很小,极易泄漏,而且氨气无色,爆炸极限范围宽,遇明火即发生爆炸。一旦发生事故,将对人的生命和国家的财产安全造成严重的危害,因此,NH3检测显得尤为重要。现有的技术中对氨气泄露的检测一般采用敏感元件,多为无定量的检测,只给出简单的报警信息,而且大部分要在高温下才能实现检测,因此,定量检测室温空气中的氨气的含量显得尤为重要。
发明内容
本发明的目的在于提供了一种基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法和应用。
为达到上述目的,本发明的技术方案是:
一种基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器,包括氨气传感器和氨敏感纳米复合材料,所述氨敏感纳米复合材料为Cu-BTC、聚吡咯纳米线、石墨烯纳米复合材料,氨敏感纳米复合材料固定于ITO导电玻璃上。
所述氨气传感器的制备方法是,先制备Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料,再将其负载在到ITO导电玻璃上,最后组装成氨气传感器。
所述制备Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料,先采用原位化学聚合法合成聚吡咯纳米线/石墨烯纳米复合材料,再采用水热法,在聚吡咯纳米线/石墨烯复合材料上沉积Cu-BTC,其中石墨烯的重量负载量为0.1-10%,Cu-BTC的颗粒大小为50-100纳米。
所述制备Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料过程如下:
在烧瓶中加入0.1-1 mol/L的吡咯、0.1 -1mol/L的十六烷基三甲基溴化铵、0.1-1mol/L的柠檬酸和过量的去离子水,在磁力搅拌器上搅拌3小时;
然后,再在混合液中用滴定管缓慢加入0.5 mol/L的过硫酸铵溶液20-50 mL,继续搅拌4小时后取出,在溶剂过滤器上用去离子水和无水乙醇反复清洗,得到的固体物品在真空干燥箱中60℃干燥12小时后取出,得到聚吡咯纳米线/石墨烯复合材料;
取0.5 g制备的聚吡咯纳米线/石墨烯复合材料加入含有0.1-0.5mol/L均苯三甲酸、0.1-0.5 mol/L 硝酸铜、12-50 mLDMF,12-50 mL 乙醇和8-20mL 水的溶液中超声分散1h,转移到反应釜中,盖上盖子,置于80-120℃烘箱中反应24h, 过滤、洗涤、干燥得到Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料。
所述组装成氨气传感器包括如下步骤:
(1)在ITO导电玻璃上贴上两条导电铜箔,其大小为 0.5 cm×4 cm规格,两片铜箔间距为5 mm,
(2)取Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料粉末在5 mL的乙醇中超声30分钟,用注射器取出1 mL超声液加到两片铜箔胶之间并在空气中干燥,接上导线,即组装成氨气传感器。
本发明氨气传感器的应用,可通过氨敏感纳米复合材料电阻的变化来检测空气或样品气中氨气的浓度;其可以在常温常压下检测氨气的浓度,所检测氨气的质量浓度范围为10-200 ppm,而且对氢气、H2S、甲醇和CH4等气体具有良好的选择性。
本发明的工作原理:聚吡咯纳米线/石墨烯纳米复合材料为P型半导体材料,当在石墨烯上复合聚吡咯后,电荷从聚吡咯转移到石墨烯,从而使聚吡咯带上正电荷,而氨气为还原性气体,可以提供给聚吡咯纳米线/石墨烯纳米复合材料电子,从而使聚吡咯纳米线/石墨烯纳米复合材料电阻升高。但聚吡咯纳米线/石墨烯纳米复合材料的比表面积有效,吸附的氨气数量少,从而使其对氨气的响应差。Cu-BTC沉积在聚吡咯纳米线/石墨烯纳米复合材料后,使材料的比表面积显著增大,对气体的吸附也明显增强,从而提高了其对氨气检测的灵敏度。
本发明具有如下优点:
1.有效提高了氨气检测的灵敏度。由于Cu-BTC具有大的比表面积,对氨有特殊的亲和力,但其导电性差,因此不能独立用于电阻式气体传感器的敏感材料。但将其负载到聚吡咯纳米线/石墨烯复合材料上,可以起到富集氨气的作用。而聚吡咯纳米线/石墨烯复合材料复合材料对氨气有良好的响应,两者协同作用,可以提高了氨气检测的灵敏度。
2. Cu-BTC通常颗粒很大,一般粒径可达几个微米,但聚吡咯纳米线/石墨烯复合材料可以诱导纳米Cu-BTC的合成,得到具有更高比表面的复合材料。
3. 本发明采用Cu-BTC/聚吡咯纳米线/石墨烯复合材料作为氨气敏感材料来检测氨气,利用复合材料电阻的变化来检测氨气的浓度,可定量检测氨气的泄露。
4.应用效果好。Cu-BTC和聚吡咯纳米线/石墨烯相互作用,相互协同,提高了氨气检测的灵敏度和选择性。
5.制备工艺简单,产品性能稳定。复合材料的制备采用原位化学聚合和水热法相结合的方法完成,不需要复杂的步骤,适合大量的制备,而且保证了材料制备的重现性。
6.使用方便。本发明氨气传感器可以在室温条件下定量检测氨气的浓度,而且操作简便,重现性好。
7.本发明氨气传感器还具有工艺简单,应用范围广和制造成本低等优点。
附图说明
图1为本发明Cu-BTC和Cu-BTC/聚吡咯纳米线/石墨烯复合材料的扫描电镜图;
图2为实施例1的氨气传感器对氨气浓度的响应曲线;
图3为实施例1氨气传感器的工作曲线。
具体实施方式
实施例1
制备基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器:
(1)在烧瓶中加入0.1mol/L的吡咯、0.1mol/L的十六烷基三甲基溴化铵、0.1 mol/L的柠檬酸和过量的去离子水,在磁力搅拌器上搅拌3小时;
(2)再步骤(1)在混合液中用滴定管缓慢加入0.5 mol/L的过硫酸铵溶液20 mL,继续搅拌4小时后,过滤,洗涤,60℃干燥;
(3)取0.5 g制备的聚吡咯纳米线/石墨烯复合材料加入含有0.1mol/L均苯三甲酸、0.1mol/L 硝酸铜、20 mLDMF,12 mL 乙醇和8 mL 水的溶液中超声分散1h;
(4)将步骤(3)中的溶液转移到反应釜中,盖上盖子,置于80℃烘箱中反应24h, 过滤、洗涤、干燥得到Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料,再将其负载在到ITO导电玻璃上;
(5)在ITO导电玻璃上贴上两条导电铜箔,其大小为 0.5 cm×4 cm规格,两片铜箔间距为5 mm;
(6)取Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料粉末在5 mL的乙醇中超声30分钟,用注射器取出1 mL超声液加到两片铜箔胶之间并在空气中干燥,接上导线,通过测试复合材料在氨气中的电阻变化来检测空气或样品气中氨气的浓度。
图1为本发明Cu-BTC和Cu-BTC/聚吡咯纳米线/石墨烯复合材料的扫描电镜图;从图1可以看出,Cu-BTC为棱柱状的颗粒,其大小约为15 微米,而在聚吡咯/石墨烯复合材料上的Cu-BTC粒径明显减小,其粒径约为100 nm。
图2为实施例1的氨气传感器对氨气浓度的响应曲线;从图2中可以看出,随着氨气浓度的增大,其响应也明显增大。
图3为实施例1氨气传感器的工作曲线;从图3中可以看出,在10-150 ppm范围内,表现出良好的线性关系。
实施例2
制备基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器:
(1)在烧瓶中加入0.2mol/L的吡咯、0.15mol/L的十六烷基三甲基溴化铵、0.2 mol/L的柠檬酸和过量的去离子水,在磁力搅拌器上搅拌3小时;
(2)再步骤(1)在混合液中用滴定管缓慢加入0.5 mol/L的过硫酸铵溶液30 mL,继续搅拌4小时后,过滤,洗涤,60℃干燥;
(3)取0.5 g制备的聚吡咯纳米线/石墨烯复合材料加入含有0.1mol/L均苯三甲酸、0.2mol/L 硝酸铜、12 mL DMF,15 mL 乙醇和8 mL 水的溶液中超声分散1h;
(4)将步骤(3)中的溶液转移到反应釜中,盖上盖子,置于85℃烘箱中反应24 h, 过滤、洗涤、干燥得到Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料;
(5)在ITO导电玻璃上贴上两条导电铜箔,其大小为 0.5 cm×4 cm规格,两片铜箔间距为5 mm;
(6)取Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料粉末在5 mL的乙醇中超声30分钟,用注射器取出1 mL超声液加到两片铜箔胶之间并在空气中干燥,接上导线,通过测试复合材料在氨气中的电阻变化来检测空气或样品气中氨气的浓度。

Claims (7)

1.一种基于Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器,包括氨气传感器,其特征在于:还包括氨敏感纳米复合材料,所述氨敏感纳米复合材料为Cu-BTC、聚吡咯纳米线、石墨烯纳米复合材料,氨敏感纳米复合材料固定于ITO导电玻璃上。
2.根据权利要求1所述的氨气传感器的制备方法,其特征在于:先制备Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料,再将其负载在到ITO导电玻璃上,最后组装成氨气传感器。
3.根据权利要求2所述的氨气传感器的制备方法,其特征在于:所述制备Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料,先采用原位化学聚合法合成聚吡咯纳米线/石墨烯纳米复合材料,再采用水热法,在聚吡咯纳米线/石墨烯复合材料上沉积Cu-BTC,其中石墨烯的重量负载量为0.1-10%,Cu-BTC的颗粒大小为50-100纳米。
4.根据权利要求3所述的氨气传感器的制备方法,其特征在于:所述制备Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料过程如下:
在烧瓶中加入0.1-1 mol/L的吡咯、0.1 -1mol/L的十六烷基三甲基溴化铵、0.1-1mol/L的柠檬酸和过量的去离子水,在磁力搅拌器上搅拌3小时;
然后,再在混合液中用滴定管缓慢加入0.5 mol/L的过硫酸铵溶液20-50 mL,继续搅拌4小时后取出,在溶剂过滤器上用去离子水和无水乙醇反复清洗,得到的固体物品在真空干燥箱中60℃干燥12小时后取出,得到聚吡咯纳米线/石墨烯复合材料;
取0.5 g制备的聚吡咯纳米线/石墨烯复合材料加入含有0.1-0.5mol/L均苯三甲酸、0.1-0.5 mol/L 硝酸铜、12-50 mLDMF,12-50 mL 乙醇和8-20mL 水的溶液中超声分散1h,转移到反应釜中,盖上盖子,置于80-120℃ 烘箱中反应24h, 过滤、洗涤、干燥得到Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料。
5.根据权利要求2所述的氨气传感器的制备方法,其特征在于,所述组装成氨气传感器包括如下步骤:
(1)在ITO导电玻璃上贴上两条导电铜箔,其大小为 0.5 cm×4 cm规格,两片铜箔间距为5 mm,
(2)取Cu-BTC/聚吡咯纳米线/石墨烯纳米复合材料粉末在5 mL的乙醇中超声30分钟,用注射器取出1 mL超声液加到两片铜箔胶之间并在空气中干燥,接上导线,即组装成氨气传感器。
6.根据权利要求2-5任一项所述制备方法制备的氨气传感器的应用,其特征在于:所述氨气传感器可通过氨敏感纳米复合材料电阻的变化来检测空气或样品气中氨气的浓度。
7.根据权利要求6所述氨气传感器的应用,其特征在于:所述氨气传感器可以在常温常压下检测氨气的浓度,所检测氨气的质量浓度范围为10-200 ppm,而且对氢气、H2S、甲醇和CH4气体具有良好的选择性。
CN201611016585.1A 2016-11-18 2016-11-18 一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法 Pending CN106568811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611016585.1A CN106568811A (zh) 2016-11-18 2016-11-18 一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611016585.1A CN106568811A (zh) 2016-11-18 2016-11-18 一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN106568811A true CN106568811A (zh) 2017-04-19

Family

ID=58542059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611016585.1A Pending CN106568811A (zh) 2016-11-18 2016-11-18 一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN106568811A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271522A (zh) * 2017-08-14 2017-10-20 扬州大学 基于多级孔Cu‑BTC材料的电化学传感器及其在农药草甘膦检测中的应用
CN108559101A (zh) * 2018-06-11 2018-09-21 南京工业大学 一种制备二维片状Cu-MOF材料的方法
CN110133073A (zh) * 2019-05-09 2019-08-16 山西大学 采用电化学合成制备聚吡咯-金属有机骨架复合材料修饰电极的方法
CN110455978A (zh) * 2019-06-30 2019-11-15 北京联合大学 一种苯和氨的低温催化发光交叉敏感材料
CN110940705A (zh) * 2018-09-25 2020-03-31 天津大学 一种具有三维立体多孔特征的聚吡咯-石墨烯纳米复合气敏结构材料及其制备方法
CN113109400A (zh) * 2021-03-22 2021-07-13 东南大学 一种基于石墨烯/聚吡咯的氨气传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089550A2 (en) * 2006-01-26 2007-08-09 Nanoselect, Inc. Cnt-based sensors: devices, processes and uses thereof
CN101907593A (zh) * 2010-07-20 2010-12-08 浙江大学 聚吡咯/聚偏氟乙烯纳米纤维复合电阻型薄膜气敏元件及其制作方法
CN103641061A (zh) * 2013-12-03 2014-03-19 电子科技大学 一种具有气敏重构效应的微纳气体传感器及其制备方法
CN104569074A (zh) * 2014-12-23 2015-04-29 桂林电子科技大学 一种纳米复合湿度敏感材料、电阻式湿度传感器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089550A2 (en) * 2006-01-26 2007-08-09 Nanoselect, Inc. Cnt-based sensors: devices, processes and uses thereof
CN101907593A (zh) * 2010-07-20 2010-12-08 浙江大学 聚吡咯/聚偏氟乙烯纳米纤维复合电阻型薄膜气敏元件及其制作方法
CN103641061A (zh) * 2013-12-03 2014-03-19 电子科技大学 一种具有气敏重构效应的微纳气体传感器及其制备方法
CN104569074A (zh) * 2014-12-23 2015-04-29 桂林电子科技大学 一种纳米复合湿度敏感材料、电阻式湿度传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUILI XIANG ET AL.: "Ammonia sensor based on polypyrrole–grapheme nanocomposite decorated with titania nanoparticles", 《CERAMICS INTERNATIONAL 》 *
TRAVLOU N.A. ET AL.: "Cu-BTC MOF-graphene-based hybrid materials as low concentration ammonia sensors", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271522A (zh) * 2017-08-14 2017-10-20 扬州大学 基于多级孔Cu‑BTC材料的电化学传感器及其在农药草甘膦检测中的应用
CN108559101A (zh) * 2018-06-11 2018-09-21 南京工业大学 一种制备二维片状Cu-MOF材料的方法
WO2019237452A1 (zh) * 2018-06-11 2019-12-19 南京工业大学 一种制备二维片状Cu-MOF材料的方法
JP2020528043A (ja) * 2018-06-11 2020-09-17 南京工▲業▼大学 二次元シート状Cu−MOF材料を調製する方法
CN108559101B (zh) * 2018-06-11 2020-09-29 南京工业大学 一种制备二维片状Cu-MOF材料的方法
CN110940705A (zh) * 2018-09-25 2020-03-31 天津大学 一种具有三维立体多孔特征的聚吡咯-石墨烯纳米复合气敏结构材料及其制备方法
CN110133073A (zh) * 2019-05-09 2019-08-16 山西大学 采用电化学合成制备聚吡咯-金属有机骨架复合材料修饰电极的方法
CN110455978A (zh) * 2019-06-30 2019-11-15 北京联合大学 一种苯和氨的低温催化发光交叉敏感材料
CN110455978B (zh) * 2019-06-30 2021-09-14 北京联合大学 一种苯和氨的低温催化发光交叉敏感材料
CN113109400A (zh) * 2021-03-22 2021-07-13 东南大学 一种基于石墨烯/聚吡咯的氨气传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN106568811A (zh) 一种基于Cu‑BTC/聚吡咯纳米线/石墨烯纳米复合材料的氨气传感器及其制备方法
Li et al. Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow
Wang et al. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1
Su et al. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films
Liu et al. Molecularly imprinted polymer decorated 3D-framework of functionalized multi-walled carbon nanotubes for ultrasensitive electrochemical sensing of Norfloxacin in pharmaceutical formulations and rat plasma
Bagheri et al. Fabrication of a novel electrochemical sensing platform based on a core–shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine
CN106442671B (zh) 一种基于BiOBr/Ag2S复合材料无标记胰岛素传感器的制备方法
Ali et al. Nanoporous naphthalene diimide surface enhances humidity and ammonia sensing at room temperature
Maheshwaran et al. An ultra-sensitive electrochemical sensor for the detection of oxidative stress biomarker 3-nitro-l-tyrosine in human blood serum and saliva samples based on reduced graphene oxide entrapped zirconium (IV) oxide
CN107064277A (zh) 一种电化学传感器的制备方法及应用
Uwaya et al. Electrochemical detection of serotonin in banana at green mediated PPy/Fe3O4NPs nanocomposites modified electrodes
Ji et al. Facile synthesis of Fe-BTC and electrochemical enhancement effect for sunset yellow determination
Meenakshi et al. Simultaneous voltammetry detection of dopamine and uric acid in pharmaceutical products and urine samples using ferrocene carboxylic acid primed nanoclay modified glassy carbon electrode
CN108241011B (zh) 一种镶金的碳纳米管接枝二茂铁聚合物纳米复合电化学传感材料及其制备方法和应用
Xiao et al. Ferrocene-terminated dendrimer functionalized graphene oxide layered sensor toward highly sensitive evaluation of Di (2-ethylhexyl) phthalate in liquor samples
Xiao et al. Enhanced electrochemical sensitivity towards plasticizer determination based on ferrocene-end-cap dendrimer functionalized graphene oxide electrochemical sensor
Zhao et al. A piezoelectric magnetic molecularly imprinted surface sensor for the detection of Sudan I
Chen et al. Fabrication of PEDOT nanowhiskers for electrical connection of the hemoglobin active center for H 2 O 2 electrochemical biosensing
CN103937021B (zh) 磁场诱导功能化纳米粒分子印迹搅拌棒固相萃取体系的制备方法
Zhang et al. Advances in application of sensors for determination of phthalate esters
Han et al. Mini review: Electrochemical electrode based on graphene and its derivatives for heavy metal ions detection
Ganjali et al. Chloramphenicol biomimetic molecular imprinted polymer used as a sensing element in nano-composite carbon paste potentiometric sensor
CN109709167A (zh) 基于三维金纳米结构的检测毒品类似物用传感器的制备方法
Mandal et al. Selective sensing of the biotinyl moiety using molecularly imprinted polyaniline nanowires
Salandari-Jolge et al. Metal–organic framework derived metal oxide/reduced graphene oxide nanocomposite, a new tool for the determination of dipyridamole

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419

RJ01 Rejection of invention patent application after publication