CN106565394B - 一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法 - Google Patents

一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法 Download PDF

Info

Publication number
CN106565394B
CN106565394B CN201610998076.7A CN201610998076A CN106565394B CN 106565394 B CN106565394 B CN 106565394B CN 201610998076 A CN201610998076 A CN 201610998076A CN 106565394 B CN106565394 B CN 106565394B
Authority
CN
China
Prior art keywords
graphene
mellow
fragrant
copper powder
supported nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610998076.7A
Other languages
English (en)
Other versions
CN106565394A (zh
Inventor
郑庚修
高令峰
冯雪
牟应科
魏成飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jincheng Graphene Technology Co Ltd
Original Assignee
Shandong Jincheng Graphene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jincheng Graphene Technology Co Ltd filed Critical Shandong Jincheng Graphene Technology Co Ltd
Priority to CN201610998076.7A priority Critical patent/CN106565394B/zh
Publication of CN106565394A publication Critical patent/CN106565394A/zh
Application granted granted Critical
Publication of CN106565394B publication Critical patent/CN106565394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/48Aldehydo radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,通过氧化石墨烯和铜盐溶液的原位还原,再经分离、干燥得到石墨烯负载纳米铜粉体。使用所得复合催化剂在自由基引发剂引发下,在水中,常压氧气把芳醇高选择性、高转化率的氧化成芳基醛。反应在常压下进行,水作溶剂,环境友好,芳醇转化率超过96%,醛选择性超过95%,对多种芳醇有优秀的催化适用性。

Description

一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的 方法
技术领域
本发明属于化工材料制备领域,具体涉及一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法。
背景技术
自2004年英国曼彻斯特大学诺贝尔奖获得者安德烈·盖姆和康斯坦丁·诺沃肖洛夫首次从石墨中分离出石墨烯以来,十几年的发展使石墨烯及其类似物在力学、电学、光学、生物学方面得到广泛的应用。其中主要应用了石墨烯独特的电荷载流子迁移率,较大的比表面积,极高的透明性和化学稳定性。石墨烯类似物氧化石墨烯、还原石墨烯及其各种复合材料在调控石墨烯的物理性质方面也表现出优化的效果。虽然石墨类复合材料在物理催化领域得到了广泛研究,但是由于石墨烯材料较难大量制备,结构确证难以及有机溶剂不易溶解,容易团聚而难于稳定保存的问题限制了石墨烯材料在有机催化领域的应用。中国专利CN 104711443A报道了将铜镍合金与鳞片石墨共同机械球磨,得到复合粉末,再经过冶金,热挤压等得到石墨烯/铜的复合带材。此方法需要球磨机的长时间球磨和高温的冶金和热挤压,高耗能。已授权的中国专利CN102218540B是将石墨烯片层材料以薄膜的形式分散到基体金属的金属颗粒之间,共同作用来促进金属材料的性能。
苯甲醛是重要的精细化学中间体和原料,被广泛应用于医药、食品、饮料、农药、染料、烟草等各个领域之中。目前,苯甲醛主要来自化学合成法。苯甲醇氧化是制备苯甲醛的重要途径之一。在现有技术当中,为获取高产率的醛,一般需要使用有机溶剂及高压的氧气。因此需要开发出一种绿色、条件温和的制备方法。
发明内容
本发明的目的在于提供一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,芳醇转化率高,芳醛选择性高,以水作溶剂,环境友好,且催化剂可重复利用。
本发明解决其技术问题所采用的技术方案是:一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,包括下述步骤:将石墨烯负载纳米铜粉体、四甲基哌啶氮氧化物置于反应装置中,加入蒸馏水、芳醇,抽真空换入氧气,80~140℃下反应4~8h。
具体地,所述石墨烯负载纳米铜粉体由石墨烯、铜盐原位还原反应制得,其制备方法包括以下步骤:Hummers法制备的氧化石墨烯水溶浆液和一水合醋酸铜溶液搅拌混合60min,滴加硼氢化钠水溶液,20~25℃搅拌反应50~90min;离心,水、乙醇各洗涤三次,50℃真空干燥12h得石墨烯负载纳米铜粉体。
具体地,所述氧化石墨烯的水溶浆液浓度为0.08~0.15mg/mL,一水合醋酸铜水溶液浓度为0.1~1.5mol/L,硼氢化钠水溶液浓度为0.4~1.2mol/L,氧化石墨烯与一水合醋酸铜质量比为10:1,一水合醋酸铜与硼氢化钠摩尔比为1:5。
具体地,所述芳醇与石墨烯负载纳米铜粉体的质量比为50~200:1,所述氧气的压力为0.1013MPa,即为大气压。
具体地,所述芳醇为苯甲醇、2-苯乙醇、4-甲氧基苯甲醇,邻羟基苯甲醇,4-羟基苯甲醇、3,4-二羟基苯甲醇、4-氯苯甲醇、4-氟苯甲醇、肉桂醇、3,4-二甲氧基苯甲醇、2-萘甲醇、2-吡啶甲醇中的一种。
石墨烯与金属纳米粒子的复合材料常常表现出更为突出的物理化学性能,主要由于石墨烯独特的片层结构,对金属有良好的分散活化作用,不仅能为纳米粒子提供平面固载结构和特殊的性能,同时金属纳米粒子的存在能抑制石墨烯片的团聚,所以石墨烯和金属纳米粒子的复合材料能够表现出良好的催化效果。原位还原制备的纳米金属粒子同时固载在原位还原的石墨烯片上,在还原过程中纳米金属粒子直接生长在石墨烯表面,能够有效避免了连接剂的使用,同时整个材料的导电性也得到了提升。
本发明通过氧化石墨烯和铜盐溶液经硼氢化钠的原位还原,把氧化石墨烯和铜离子同时还原,从而得到纳米尺寸的铜粒子均匀分散在还原石墨烯片上。反应后混合液经离心分离、真空干燥得到石墨烯负载的纳米铜粉体催化剂。使用所得复合催化剂在自由基引发剂引发下,在水溶剂中,常压氧气即可把芳醇高选择性、高转化率地氧化成芳基醛。所述方法能有效催化芳醇合成芳基醛,反应在常压下进行,水作溶剂,环境友好,且芳醇转化率超过96%,芳基醛选择性超过95%。反应完成后,过滤回收石墨烯负载纳米铜粉体催化剂,重复使用五次,苯甲醇转化率仍超过92%,苯甲醛选择性仍超过95%。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案做进一步描述,但是本发明的保护范围并不限于这些实施例。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
实施例1
石墨烯负载纳米铜粉体的制备方法包括以下步骤:Hummers法制备的氧化石墨烯水溶浆液和一水合醋酸铜溶液搅拌混合60min,滴加硼氢化钠水溶液,20℃搅拌反应70min;离心,水、乙醇各洗涤三次,50℃真空干燥12h得石墨烯负载纳米铜粉体。其中,氧化石墨烯的水溶浆液浓度为0.1mg/mL,一水合醋酸铜水溶液浓度为1.5mol/L,硼氢化钠水溶液浓度为1.2mol/L,氧化石墨烯与一水合醋酸铜质量比为10:1,一水合醋酸铜与硼氢化钠摩尔比为1:5。
实施例2
石墨烯负载纳米铜粉体的制备方法包括以下步骤:Hummers法制备的氧化石墨烯水溶浆液和一水合醋酸铜溶液搅拌混合60min,滴加硼氢化钠水溶液,25℃搅拌反应90min;离心,水、乙醇各洗涤三次,50℃真空干燥12h得石墨烯负载纳米铜粉体。其中,氧化石墨烯的水溶浆液浓度为0.08mg/mL,一水合醋酸铜水溶液浓度为1mol/L,硼氢化钠水溶液浓度为0.8mol/L,氧化石墨烯与一水合醋酸铜质量比为10:1,一水合醋酸铜与硼氢化钠摩尔比为1:5。
实施例3
石墨烯负载纳米铜粉体的制备方法包括以下步骤:Hummers法制备的氧化石墨烯水溶浆液和一水合醋酸铜溶液搅拌混合60min,滴加硼氢化钠水溶液,23℃搅拌反应50min;离心,水、乙醇各洗涤三次,50℃真空干燥12h得石墨烯负载纳米铜粉体。其中,氧化石墨烯的水溶浆液浓度为0.15mg/mL,一水合醋酸铜水溶液浓度为0.1mol/L,硼氢化钠水溶液浓度为0.4mol/L,氧化石墨烯与一水合醋酸铜质量比为10:1,一水合醋酸铜与硼氢化钠摩尔比为1:5。
实施例4
石墨烯负载纳米铜粉体的制备方法包括以下步骤:Hummers法制备的氧化石墨烯水溶浆液和一水合醋酸铜溶液搅拌混合60min,滴加硼氢化钠水溶液,22℃搅拌反应60min;离心,水、乙醇各洗涤三次,50℃真空干燥12h得石墨烯负载纳米铜粉体。其中,氧化石墨烯的水溶浆液浓度为0.05mg/mL,一水合醋酸铜水溶液浓度为0.8mol/L,硼氢化钠水溶液浓度为1mol/L,氧化石墨烯与一水合醋酸铜质量比为10:1,一水合醋酸铜与硼氢化钠摩尔比为1:5。
实施例5
取一25mL圆底烧瓶,量取1.5g苯甲醇和3mL水加入其中,再称取30mg实施例1制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至100℃,回流反应4h。反应完成后停止加热,自然冷却至室温,过滤得固体催化剂,滤液用醋酸乙酯萃取有机相,气相色谱(GC)分析,苯甲醇的转化率为96.9%,醛的选择性为98.7%。
另取一25mL圆底烧瓶,量取1.5g苯甲醇和3mL水加入其中,将过滤回收的固体催化剂和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至100℃,回流反应4h。反应完成后停止加热,自然冷却至室温,过滤得固体催化剂,滤液用醋酸乙酯萃取有机相,气相色谱(GC)分析,苯甲醇的转化率为96.8%,醛的选择性为98.3%。按此方法重复套用石墨烯负载纳米铜粉体催化剂5次后,苯甲醇的转化率为92.6%,醛的选择性为95.7%。
实施例6
取一25mL圆底烧瓶,量取3g2-苯乙醇和6mL水加入其中,再称取30mg实施例2制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至80℃,回流反应5h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,2-苯乙醇的转化率为96.0%,醛的选择性为98.1%。
实施例7
取一25mL圆底烧瓶,量取4.5g4-甲氧基苯甲醇和10mL水加入其中,再称取30mg实施例3制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至140℃,回流反应8h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,4-甲氧基苯甲醇的转化率为96.7%,醛的选择性为97.4%。
实施例8
取一100mL圆底烧瓶,量取6g邻羟基苯甲醇和20mL水加入其中,再称取30mg实施例4制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至120℃,回流反应7h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,邻羟基苯甲醇的转化率为96.5%,醛的选择性为97.9%。
实施例9
取一25mL圆底烧瓶,量取1.5g4-羟基苯甲醇和3mL水加入其中,再称取30mg实施例1制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至100℃,回流反应4h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,4-羟基苯甲醇的转化率为96.8%,醛的选择性为99.1%。
实施例10
取一25mL圆底烧瓶,量取3g3,4-二羟基苯甲醇和6mL水加入其中,再称取30mg实施例2制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至80℃,回流反应5h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,3,4-二羟基苯甲醇的转化率为96.4%,醛的选择性为98.7%。
实施例11
取一25mL圆底烧瓶,量取4.5g4-氯苯甲醇和10mL水加入其中,再称取30mg实施例3制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至140℃,回流反应8h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,4-氯苯甲醇的转化率为96.3%,醛的选择性为95.9%。
实施例12
取一100mL圆底烧瓶,量取6g4-氟苯甲醇和20mL水加入其中,再称取30mg实施例4制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至120℃,回流反应7h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,4-氟苯甲醇的转化率为96.9%,醛的选择性为97.7%。
实施例13
取一25mL圆底烧瓶,量取1.5g肉桂醇和3mL水加入其中,再称取30mg实施例1制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至100℃,回流反应4h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,肉桂醇的转化率为96.8%,醛的选择性为98.0%。
实施例14
取一25mL圆底烧瓶,量取3g3,4-二甲氧基苯甲醇和6mL水加入其中,再称取30mg实施例2制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至80℃,回流反应5h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,3,4-二甲氧基苯甲醇的转化率为96.2%,醛的选择性为96.7%。
实施例15
取一25mL圆底烧瓶,量取4.5g2-萘甲醇和10mL水加入其中,再称取30mg实施例3制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至140℃,回流反应8h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,2-萘甲醇的转化率为96.5%,醛的选择性为97.8%。
实施例16
取一100mL圆底烧瓶,量取6g2-吡啶甲醇和20mL水加入其中,再称取30mg实施例4制备的石墨烯负载纳米铜粉体和30mg TEMPO加入其中,抽真空,接氧气球换入常压氧气。油浴升温至120℃,回流反应7h。反应完成后停止加热,自然冷却至室温,过滤得到滤液,并用醋酸乙酯萃取有机相,气相色谱(GC)分析,2-吡啶甲醇的转化率为96.3%,醛的选择性为97.6%。

Claims (4)

1.一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,其特征在于,包括下述步骤:将石墨烯负载纳米铜粉体、四甲基哌啶氮氧化物置于反应装置中,加入蒸馏水、芳醇,抽真空换入氧气,80~140℃下反应4~8h;所述石墨烯负载纳米铜粉体由石墨烯、铜盐原位还原反应制得,其制备方法包括以下步骤:Hummers法制备的氧化石墨烯水溶浆液和一水合醋酸铜溶液搅拌混合60min,滴加硼氢化钠水溶液,20~25℃搅拌反应50~90min;离心,水、乙醇各洗涤三次,50℃真空干燥12h得石墨烯负载纳米铜粉体。
2.如权利要求1所述的石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,其特征在于,所述氧化石墨烯的水溶浆液浓度为0.08~0.15mg/mL,一水合醋酸铜水溶液浓度为0.1~1.5mol/L,硼氢化钠水溶液浓度为0.4~1.2mol/L,氧化石墨烯与一水合醋酸铜质量比为10:1,一水合醋酸铜与硼氢化钠摩尔比为1:5。
3.如权利要求1所述的石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,其特征在于,所述芳醇与石墨烯负载纳米铜粉体的质量比为50~200:1,所述氧气的压力为0.1013MPa。
4.如权利要求1所述的石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法,其特征在于,所述芳醇为苯甲醇、2-苯乙醇、4-甲氧基苯甲醇、邻羟基苯甲醇、4-羟基苯甲醇、3,4-二羟基苯甲醇、4-氯苯甲醇、4-氟苯甲醇、肉桂醇、3,4-二甲氧基苯甲醇、2-萘甲醇、2-吡啶甲醇中的一种。
CN201610998076.7A 2016-11-14 2016-11-14 一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法 Active CN106565394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610998076.7A CN106565394B (zh) 2016-11-14 2016-11-14 一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610998076.7A CN106565394B (zh) 2016-11-14 2016-11-14 一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法

Publications (2)

Publication Number Publication Date
CN106565394A CN106565394A (zh) 2017-04-19
CN106565394B true CN106565394B (zh) 2019-08-13

Family

ID=58542586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610998076.7A Active CN106565394B (zh) 2016-11-14 2016-11-14 一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法

Country Status (1)

Country Link
CN (1) CN106565394B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191619A (zh) * 2016-12-08 2018-06-22 中国科学院大连化学物理研究所 一种分子氧氧化醇类化合物制醛/酮的催化方法
CN110624546A (zh) * 2019-10-22 2019-12-31 特烯(厦门)科技有限公司 一种铜/石墨烯催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028269A (zh) * 2014-06-20 2014-09-10 南京工业大学 一种石墨烯负载金属纳米复合材料、制备方法及应用
CN104693002A (zh) * 2015-03-11 2015-06-10 南京工业大学 一种甲苯氧化制备苯甲醛的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028269A (zh) * 2014-06-20 2014-09-10 南京工业大学 一种石墨烯负载金属纳米复合材料、制备方法及应用
CN104693002A (zh) * 2015-03-11 2015-06-10 南京工业大学 一种甲苯氧化制备苯甲醛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pyrazole-Based Ligands for the [Copper–TEMPO]-Mediated Oxidation of Benzyl Alcohol to Benzaldehyde and Structures of the Cu Coordination Compounds;Jorge Salinas Uber等;《Eur. J. Inorg. Chem.》;20071231;第4197-4206页

Also Published As

Publication number Publication date
CN106565394A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
Islam et al. Graphene based material as a base catalyst for solvent free Aldol condensation and Knoevenagel reaction at room temperature
Takale et al. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis
Stratakis et al. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes
Zhao et al. Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties
Lu et al. Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation
Yin et al. Asymmetric hydrogenation of ketones catalyzed by a silica-supported chitosan–palladium complex
Zamani et al. Palladium nanoparticles supported on Fe3O4/amino acid nanocomposite: Highly active magnetic catalyst for solvent-free aerobic oxidation of alcohols
CN108283939B (zh) 一种催化苯酚羟基化固体催化剂及其制备方法与应用
CN106582710B (zh) 一种石墨烯负载钯铜纳米催化Suzuki反应制备联苯的方法
Feng et al. Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen
CN106582887A (zh) 一种基于金属有机框架材料的新型催化剂及其制备方法和应用
Choudhary et al. Magnesium oxide supported nano-gold: A highly active catalyst for solvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP
Zhao et al. Reversible control of chemoselectivity in Au38 (SR) 24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives
Zhang et al. Synthesis of highly loaded and well dispersed CuO/SBA-15 via an ultrasonic post-grafting method and its application as a catalyst for the direct hydroxylation of benzene to phenol
CN106565394B (zh) 一种石墨烯负载纳米铜粉体催化常压氧气氧化芳醇制备醛的方法
CN101912777A (zh) 氧化石墨烯三维自组装体及其制备方法与应用
CN113209958B (zh) 一种掺杂Zn元素的固溶体催化剂及制备和应用
Kogan et al. Preferential catalytic hydrogenation of aromatic compounds versus ketones with a palladium substituted polyoxometalate as pre-catalyst
Li et al. Mo2N nanobelts for dehydrogenation of aromatic alcohols
CN103055851A (zh) 一种co气相氧化偶联合成草酸酯的催化剂及其制备和应用方法
Liu et al. Metal oxide-containing SBA-15-supported gold catalysts for base-free aerobic homocoupling of phenylboronic acid in water
CN105478019A (zh) 一种复合金属氢气分离膜及其制备方法和应用
CN106238063B (zh) 一种甘油加氢制备丙二醇的铜-氧化锌催化剂及其制备方法
CN101733406B (zh) 一种纳米多孔铜/四氧化三铁复合材料的制备方法
CN104607195A (zh) 一种金属/氧化锌纳米异质阵列的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant