CN106563483A - 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法 - Google Patents

一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法 Download PDF

Info

Publication number
CN106563483A
CN106563483A CN201610953699.2A CN201610953699A CN106563483A CN 106563483 A CN106563483 A CN 106563483A CN 201610953699 A CN201610953699 A CN 201610953699A CN 106563483 A CN106563483 A CN 106563483A
Authority
CN
China
Prior art keywords
catalyst
preparation
coated copper
product
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610953699.2A
Other languages
English (en)
Other versions
CN106563483B (zh
Inventor
任军
李海霞
刘树森
李忠
王娟
韩亚红
孙伟
朱继宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610953699.2A priority Critical patent/CN106563483B/zh
Publication of CN106563483A publication Critical patent/CN106563483A/zh
Application granted granted Critical
Publication of CN106563483B publication Critical patent/CN106563483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及铜基催化剂的制备领域,具体是一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法,包括如下步骤:⑴在每粒SiO2微球表面包裹一层酚醛树脂;⑵将步骤⑴的产物进行三聚氰胺以及铜盐溶液的过量浸渍;⑶在步骤⑵的产物表面进行SiO2微球的再包裹,然后最外层再包裹一层酚醛树脂;⑷将步骤⑶的产物进行高温碳化处理,两层酚醛树脂被碳化;采用HF洗涤处理,SiO2微球被去除;然后将产物在氢气氛围下活化处理,获得催化剂。催化活性高达1670 mg/g∙h,相比较于结构简易的碳包铜催化剂,有效地提高了催化活性及稳定性,反应后活性组分不易团聚,是一种先进的制备掺氮中空碳球包覆纳米铜催化剂的方法。

Description

一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法
技术领域
本发明涉及铜基催化剂的制备领域,具体是一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法,可用于催化甲醇氧化羰基化制备碳酸二甲酯。
背景技术
近年来,人们已将纳米尺寸上的限域效应成功应用于催化科学。碳材料具有稳定的化学性质、低质量密度、优良的导电性,而常被广泛地用于催化领域。目前,在限域效应基础上,碳纳米管、石墨烯、中空碳球等碳材料常被设计为催化剂载体。
铜基催化剂催化甲醇氧化羰基化合成碳酸二甲酯(DMC)的反应,因其生产成本低、对设备腐蚀性小、选择性高、原料廉价易得等优点,而得到很广泛的应用。专利CN201410638225.X报道了一种核壳型碳包覆纳米铜催化剂的制备方法,此方法制得的催化剂稳定性高,但活性组分在壳层内部发生团聚而使得催化活性不理想。相关文献报道中,将碳壳进行杂原子掺杂可有效改善其物理、化学性能,例如在碳层中进行氮掺杂,氮原子提供的孤对电子可改变碳材料的局部电荷分布,增强载体与金属之间的作用力,显著地提高了金属颗粒在碳材料表面的分散度。另外研究中也发现多层核壳结构也可有效避免活性组分的团聚。
针对甲醇氧化羰基化制备DMC中活性组分易团聚的问题,制备双层结构的掺氮碳球是解决这一难题的新方法,目前仍处于研究之中。
发明内容
为了优化核壳结构在甲醇氧化羰基化制DMC中的催化性能,本发明提供了一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法。
本发明是通过以下技术方案实现的:一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法,包括如下步骤:
⑴在每粒SiO2微球表面包裹一层酚醛树脂;
⑵将步骤⑴的产物进行三聚氰胺以及铜盐溶液的过量浸渍;
⑶在步骤⑵的产物表面进行SiO2微球的再包裹,然后最外层再包裹一层酚醛树脂;
⑷将步骤⑶的产物进行高温碳化处理,两层酚醛树脂被碳化;采用HF洗涤处理,SiO2微球被去除;然后将产物在氢气氛围下活化处理,获得催化剂。
本发明的核壳结构利用中空壳层的屏障作用可使得内核组分免受外界环境因素的影响。利用特殊的限域结构体系,可有效防止金属纳米核在反应中的聚集、长大,最大程度的保证了金属纳米粒子的组成和结构的完整性。其次,通过原位合成法进行掺氮,有效的将氮元素引入碳骨架,在反应过程中可充分发挥氮元素的化学作用,增加催化剂的稳定性。因此,本发明所述催化剂无论在结构上还是性能上都能够解决活性组分易团聚的问题。
具体实施时,步骤⑶的产物惰性气体氛围下,碳化温度700℃±5℃,保温5h。
优选的,所述在氢气氛围下活化处理为:在氢气氛围下,活化温度400℃±5℃,保温2h。
本发明与背景技术相比之下具有明显的先进性,双碳层结构提供了优良的空间限域效应,有效避免活性组分在反应过程中的增长团聚,同时构筑了高活性的纳米反应器。其所制备的催化剂对于避免活性组分的团聚和剥离具有显著地效果。实验数据精确翔实,成本低,原料易得,产物为黑色粉体,粉体颗粒直径不大于500nm,产物纯度达98.7%,催化活性高达1670mg/g∙h,相比较于结构简易的碳包铜催化剂,有效地提高了催化活性及稳定性,反应后活性组分不易团聚,是一种先进的制备掺氮中空碳球包覆纳米铜催化剂的方法。
附图说明
图1为本发明所述双层中空掺氮碳球包覆铜纳米催化剂的制备工艺流程图。
图2为本发明所述双层中空掺氮碳球包覆铜纳米催化剂的形貌图。由图3可以看出,制备得到的催化剂是核壳型粉体,形貌规整,大小均一。
图3为本发明所述双层中空掺氮碳球包覆铜纳米催化剂的射线衍射图谱。图中:纵坐标为衍射强度,横坐标为衍射角2θ,图中43.31º、50.43º、74.13º为零价铜的衍射峰,36.42º、61.34º为一价亚铜的衍射峰。由图可得出结论,衍射峰峰型尖锐,可表明单质铜结晶度高。
具体实施方式
本发明使用的化学物质材料为:无水乙醇、去离子水、氨水、正硅酸乙酯(TEOS)、3-氨基酚、甲醛、三聚氰胺、硝酸铜、甲醇、十六烷基三甲基溴化铵(CTAB)、氢氟酸(40%)、高纯氮气、高纯氢气,其准备用量如下:以克、毫升、厘米3为计量单位
无水乙醇:CH3CH2OH 液体100ml±0.1ml
去离子水:H2O 液体3000ml±50ml
氨水:NH3•H2O 液体6ml±0.1ml
甲醇:CH3OH 液体40ml±0.1ml
正硅酸乙酯:C4H12O4Si 液体6ml±0.1ml
甲醛:HCHO 液体0.61ml±0.01ml
正己醇:C6H14O 液体30ml±0.1ml
氢氟酸:HF 液体300ml±10ml
十六烷基三甲基溴化铵:C19H42BrN 固体5g±0.001g
三聚氰胺:C3H6N6 固体1.0g±0.001g
3-氨基酚:C6H7NO 固体0.4g±0.001g
硝酸铜:Cu(NO3)2•3H2O 固体5g±0.001g
氢气:H2 气体100000cm3±100cm3
氮气:N2 气体100000cm3±100cm3
双层中空掺氮碳球包覆铜纳米催化剂的制备方法如下:
(1)用Stöber法制备单分散SiO2微球:量取70ml±0.1ml无水乙醇、10ml±0.1ml去离子水、3ml±0.1ml氨水、2.5ml±0.1mlTEOS于150ml烧杯中,室温搅拌15~20min。
(2)称取0.4g±0.001g3-氨基酚同时量取0.56ml±0.1ml甲醛加入上述混合溶液中,室温持续搅拌24h,离心后用去离子水及无水乙醇各洗涤3遍,置于50℃烘箱中干燥,得到SiO2@Polymer。
(3)将(2)中干燥产物与1.0g±0.001g三聚氰胺、硝酸铜5g±0.001g分散于40ml±0.1ml甲醇溶液中,50℃持续搅拌蒸干。将产物收集后置于烧杯,量取30ml±0.1ml正己醇,放于35℃水浴中,放入5g±0.001gCTAB后剧烈搅拌5min。接着,量取3ml±0.1ml TEOS、3ml±0.1ml氨水加入上述溶液中,持续搅拌20min。
(4)称取0.4g±0.001g3-氨基酚同时量取0.56ml±0.1ml甲醛加入(3)中混合溶液,室温搅拌24h,离心、洗涤、干燥得产物一。
(5)将产物一置于管式炉中,通入的氮气流速为100cm3/min,以5℃/min升至700ºC±5℃,后在此温度下保持5h,得高温碳化后所得的产物二。
(6)产物二经20%HF溶液洗涤,得双层中空结构的催化剂。
(7)在管式炉通入氮气、氢气,氮气流速设为100cm3/min、氢气10cm3/min对催化剂进行活化。升温速率为3℃/min,活化温度为400℃±5℃,保温2h,得双层中空掺氮碳球包覆铜纳米催化剂。
(8)研磨、过筛
将活化后的催化剂用玛瑙研钵研磨,后用650目筛网过筛。
(9)产物储存
将制备的催化剂储存于氮气气氛下的样品袋中,干燥密闭储存。
(10)活性评价
催化剂活性评价在25ml容积的微型高压反应釜中进行。称取0.1g催化剂加入反应釜釜体内,加入10mL甲醇,密闭釜体后,通入反应气CO至压力为2.0MPa、O2至总压力为3.0MPa。设置搅拌速率为900 r/min,温度为110℃下反应90min后停止加热,降至室温,离心后取上层清液,再用气象色谱进行产物分析。
(11)检测、分析、表征
对制备的催化剂进行表面形貌、化学物理性能进行检测、分析和表征;
用扫描电子显微镜SEM观察样品表面形貌;
用X-射线粉末衍射仪进行晶相分析;
结论:双层掺氮中空碳球包覆铜纳米催化剂为黑色粉体,粉体颗粒直径不大于500nm,产物纯度达98.7%,催化活性高达1670 mg/g∙h,选择性高达99.99%。

Claims (3)

1.一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法,其特征在于,包括如下步骤:
⑴在每粒SiO2微球表面包裹一层酚醛树脂;
⑵将步骤⑴的产物进行三聚氰胺以及铜盐溶液的过量浸渍;
⑶在步骤⑵的产物表面进行SiO2微球的再包裹,然后最外层再包裹一层酚醛树脂;
⑷将步骤⑶的产物进行高温碳化处理,两层酚醛树脂被碳化;采用HF洗涤处理,SiO2微球被去除;然后将产物在氢气氛围下活化处理,获得催化剂。
2.根据权利要求1所述的一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法,其特征在于,所述高温碳化处理为:步骤⑶的产物惰性气体氛围下,碳化温度700℃±5℃,保温5h。
3.根据权利要求1所述的一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法,其特征在于,所述在氢气氛围下活化处理为:在氢气氛围下,活化温度400℃±5℃,保温2h。
CN201610953699.2A 2016-11-03 2016-11-03 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法 Active CN106563483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953699.2A CN106563483B (zh) 2016-11-03 2016-11-03 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953699.2A CN106563483B (zh) 2016-11-03 2016-11-03 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106563483A true CN106563483A (zh) 2017-04-19
CN106563483B CN106563483B (zh) 2019-01-25

Family

ID=58535273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953699.2A Active CN106563483B (zh) 2016-11-03 2016-11-03 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106563483B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109589922A (zh) * 2019-01-14 2019-04-09 太原理工大学 一种具有高吸附性能的磁性中空碳纳米球的制备方法
CN110898847A (zh) * 2019-08-14 2020-03-24 新奥科技发展有限公司 一种合成气制低碳醇用复合载体型催化剂及其制备方法
CN113649004A (zh) * 2021-07-07 2021-11-16 中国科学院合肥物质科学研究院 一种空心碳球负载金属颗粒催化剂及其制备方法和用途
CN115779954A (zh) * 2022-12-21 2023-03-14 北京化工大学 一种双层核壳结构的金属单原子氮碳材料及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102013031741A2 (pt) * 2013-12-10 2015-09-29 Univ Estadual De Maringá carvão ativado dopado com nitrogênio produzido a partir da regeneração térmica do material saturado com azul de metileno e sua aplicação como eletrodo para supercapacitores
CN105692590A (zh) * 2016-03-17 2016-06-22 南京理工大学 一种氮掺杂中空介孔核壳碳球的制备方法
CN106006549A (zh) * 2016-06-30 2016-10-12 上海电力学院 杂原子掺杂中空碳球材料负载贵金属纳米粒子及其制备
CN106058276A (zh) * 2016-07-11 2016-10-26 华南理工大学 一种二氧化硅修饰的多球腔碳材料的制法及其在燃料电池膜电极中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102013031741A2 (pt) * 2013-12-10 2015-09-29 Univ Estadual De Maringá carvão ativado dopado com nitrogênio produzido a partir da regeneração térmica do material saturado com azul de metileno e sua aplicação como eletrodo para supercapacitores
CN105692590A (zh) * 2016-03-17 2016-06-22 南京理工大学 一种氮掺杂中空介孔核壳碳球的制备方法
CN106006549A (zh) * 2016-06-30 2016-10-12 上海电力学院 杂原子掺杂中空碳球材料负载贵金属纳米粒子及其制备
CN106058276A (zh) * 2016-07-11 2016-10-26 华南理工大学 一种二氧化硅修饰的多球腔碳材料的制法及其在燃料电池膜电极中的应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109589922A (zh) * 2019-01-14 2019-04-09 太原理工大学 一种具有高吸附性能的磁性中空碳纳米球的制备方法
CN109589922B (zh) * 2019-01-14 2021-09-14 太原理工大学 一种具有高吸附性能的磁性中空碳纳米球的制备方法
CN110898847A (zh) * 2019-08-14 2020-03-24 新奥科技发展有限公司 一种合成气制低碳醇用复合载体型催化剂及其制备方法
CN110898847B (zh) * 2019-08-14 2022-05-20 新奥科技发展有限公司 一种合成气制低碳醇用复合载体型催化剂及其制备方法
CN113649004A (zh) * 2021-07-07 2021-11-16 中国科学院合肥物质科学研究院 一种空心碳球负载金属颗粒催化剂及其制备方法和用途
CN113649004B (zh) * 2021-07-07 2023-10-13 中国科学院合肥物质科学研究院 一种空心碳球负载金属颗粒催化剂及其制备方法和用途
CN115779954A (zh) * 2022-12-21 2023-03-14 北京化工大学 一种双层核壳结构的金属单原子氮碳材料及其制备方法和用途

Also Published As

Publication number Publication date
CN106563483B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN109304194B (zh) 一种碳包覆过渡金属的纳米复合材料及应用
Vinokurov et al. Halloysite nanotube-based cobalt mesocatalysts for hydrogen production from sodium borohydride
Xiang et al. Hydrogen generation by hydrolysis of alkaline sodium borohydride using a cobalt–zinc–boron/graphene nanocomposite treated with sodium hydroxide
CN106563483A (zh) 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法
Wang et al. Highly active cobalt-and nitrogen-doped carbon derived from ZIF-67@ melamine towards oxygen reduction reaction
Wang et al. Highly active catalysis of methanol oxidative carbonylation over nano Cu2O supported on micropore-rich mesoporous carbon
Yang et al. Construction of core-shell mesoporous carbon nanofiber@ nickel cobaltite nanostructures as highly efficient catalysts towards 4-nitrophenol reduction
Zhou et al. Hierarchical nanoporous platinum–copper alloy nanoflowers as highly active catalysts for the hydrolytic dehydrogenation of ammonia borane
Kim et al. Ultrafine Pd nanoparticles on amine-functionalized carbon nanotubes for hydrogen production from formic acid
CN111330639B (zh) 一种多孔钴锌核壳金属有机框架化合物限域贵金属纳米粒子的杂化材料及其制备方法和应用
CN106563484B (zh) 一种介孔型中空掺氮碳包铜纳米催化剂的制备方法
Han et al. N-doped carbon nanoweb-supported Ni/NiO heterostructure as hybrid catalysts for hydrogen evolution reaction in an alkaline phase
CN108554432A (zh) 一种磷氮共掺杂石墨烯负载钯基催化剂及制备方法与应用
Chen et al. The synergetic effect of h-BN shells and subsurface B in CoB x@ h-BN nanocatalysts for enhanced oxygen evolution reactions
CN109603831A (zh) 一种钴和石墨烯复合纳米材料催化剂及其制备方法
Qiu et al. Synthesis of Fe0. 3Co0. 7/rGO nanoparticles as a high performance catalyst for the hydrolytic dehydrogenation of ammonia borane
Xie et al. Carbon supported copper catalyst prepared in situ by one-pot pyrolysis of Bougainvillea glabra: An efficient and stable catalyst for selective oxidation of cyclohexane
Zhang et al. Effect of carbon support on the catalytic performance of Cu-based nanoparticles for oxidative carbonylation of methanol
Zhang et al. MOF-derived CeO 2/Au@ SiO 2 hollow nanotubes and their catalytic activity toward 4-nitrophenol reduction
Ma et al. Clean synthesis of RGO/Mn3O4 nanocomposite with well-dispersed Pd nanoparticles as a high-performance catalyst for hydroquinone oxidation
Li et al. Enhanced adsorption and catalytic peroxymonosulfate activation by metal-free N-doped carbon hollow spheres for water depollution
Liu et al. N-rich MOFs derived N-doped carbon nanotubes encapsulating cobalt nanoparticles as efficient and magnetic recoverable catalysts for nitro aromatics reduction
Xu et al. Synthesis of multiple Ag nanoparticles loaded hollow mesoporous carbon spheres for highly efficient and recyclable catalysis
Kosydar et al. New insight into the effect of surface oxidized groups of nanostructured carbon supported Pd catalysts on the furfural hydrogenation
CN109331775A (zh) 一种绿色合成石墨烯负载纳米铁/镍复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Han Yahong

Inventor after: Ren Jun

Inventor after: Li Haixia

Inventor after: Liu Shusen

Inventor after: Li Zhong

Inventor after: Wang Juan

Inventor after: Sun Wei

Inventor after: Zhu Jiyu

Inventor before: Ren Jun

Inventor before: Li Haixia

Inventor before: Liu Shusen

Inventor before: Li Zhong

Inventor before: Wang Juan

Inventor before: Han Yahong

Inventor before: Sun Wei

Inventor before: Zhu Jiyu

GR01 Patent grant
GR01 Patent grant