CN109589922B - 一种具有高吸附性能的磁性中空碳纳米球的制备方法 - Google Patents

一种具有高吸附性能的磁性中空碳纳米球的制备方法 Download PDF

Info

Publication number
CN109589922B
CN109589922B CN201910030312.XA CN201910030312A CN109589922B CN 109589922 B CN109589922 B CN 109589922B CN 201910030312 A CN201910030312 A CN 201910030312A CN 109589922 B CN109589922 B CN 109589922B
Authority
CN
China
Prior art keywords
hollow carbon
magnetic hollow
magnetic
carbon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910030312.XA
Other languages
English (en)
Other versions
CN109589922A (zh
Inventor
刘旭光
崔燕
康伟伟
秦蕾
杨永珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910030312.XA priority Critical patent/CN109589922B/zh
Publication of CN109589922A publication Critical patent/CN109589922A/zh
Application granted granted Critical
Publication of CN109589922B publication Critical patent/CN109589922B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种具有高吸附性能的磁性中空碳纳米球的制备方法,是以1,5‑二羟基萘为碳源,在氧化剂双氧水和表面活性剂P123存在下的甲苯溶剂体系中,添加二茂铁为铁源,微波加热至200~220℃进行溶剂热反应制备得到。本发明制备的磁性中空碳纳米球具有磁性和明显的中空结构,可以作为具有高吸附容量且容易回收再利用的吸附剂,应用于污水处理、油品脱硫、靶向给药等领域。

Description

一种具有高吸附性能的磁性中空碳纳米球的制备方法
技术领域
本发明属于纳米碳材料制备技术领域,涉及一种碳纳米球的制备方法,特别是涉及一种具有中空结构的磁性碳纳米球的制备方法。
背景技术
中空碳纳米球作为一种新型碳材料,由于具有特殊的空心结构,从而具有许多优异的物理化学性质,如大的比表面积、较低的密度、高的孔隙率、优异的导电性、良好的化学稳定性和热稳定性等。因此,被广泛应用于吸附剂、锂离子电池、催化剂载体、分子印迹材料、药物包裹等领域。
焦化废水作为一种有毒废水,经生物脱酚处理后,虽然大量污染物已经被去除,但氨氮等指标却依然难以达标,其中又以喹啉所占比重较大,需要进行进一步地深度处理。吸附法虽然不利于处理高浓度焦化废水,但却被广泛用于焦化废水的深度处理工艺。现有吸附剂普遍存在处理成本高,吸附剂难以回收、再生困难的问题。
纳米Fe3O4作为一种优异的磁性纳米微球,具有超顺磁性,在外加磁场作用下可以实现快速定位和分离回收。以中空碳纳米球与纳米Fe3O4复合制备磁性中空碳纳米球,作为焦化废水深度处理用吸附剂,不失为一种更优的选择。
目前制备中空碳纳米球的方法主要包括有机物高温热解法、化学气相沉积法、激光蒸馏法、电弧放电法、模板法、溶剂热法等。但现有制备方法普遍存在制备步骤复杂,条件苛刻,反应温度高及时间长等弊端,很大程度上限制了其的实际应用。
CN 101224883A提供了一种以无水乙醇为碳源、金属锌作还原剂及金属溶剂,水热法500~550℃制备中空碳纳米球的方法。该方法虽然反应时间短,粉体纯度高,但所需温度较高。CN 101024496A选取二茂铁和氯化铵为原料,管式炉300~500℃热处理1~4h制备得到了磁性碳空心球。该方法成本低、产量高,但操作步骤复杂,且反应温度较高。Liu Boyang[Bull Mater Sci, 2008, 31: 771-774]利用二茂铁与碳酸铵在管式炉中500℃反应30min合成空心碳纳米球,该方法操作简单,反应时间较短,但反应温度较高,且产物形貌不规整,球形度较差。
因此,研发一种工艺流程简单、反应时间短、温度低、产物形貌好的中空碳纳米球制备方法是非常必要的。
发明内容
本发明的目的是解决现有磁性中空碳纳米球制备操作复杂、耗能较大的问题,提供一种简单的具有高吸附性能的磁性中空碳纳米球的制备方法。
本发明所述磁性中空碳纳米球的制备方法是以1,5-二羟基萘为碳源,在氧化剂双氧水和表面活性剂P123存在下的甲苯溶剂体系中,添加二茂铁为铁源,微波加热至200~220℃进行溶剂热反应,制备所述磁性中空碳纳米球。
进一步地,本发明所述制备方法中,表面活性剂P123的作用是充当模板剂,以促进中空结构的形成。所述P123的用量是碳源质量的3~5倍。
所述铁源二茂铁的作用是赋予碳纳米球一定的磁性,其用量是碳源质量的2~3倍。
所述双氧水的作用是充当氧化剂,在密闭体系下提供更高的压力。所述双氧水的加入量满足H2O2与二茂铁的摩尔比为(5~6)∶1。
进一步地,本发明优选使用质量分数30%的双氧水。
更具体地,本发明将反应体系被微波加热至200~220℃的时间控制在60~90s,并在达到所述设定反应温度后停止微波加热,进行冷却。
本发明将所述制备的磁性中空碳纳米球离心分离,依次以无水乙醇和去离子水多次洗涤,干燥得到终产物。
本发明经上述方法制备得到的磁性中空碳纳米球粒径约为40nm,具有明显的中空结构,壳层厚度为10nm,且具有磁性。
本发明制备的磁性中空碳纳米球同时具有纳米Fe3O4和中空碳纳米球的优良特性,可以作为一种具有高吸附容量且容易回收再利用的吸附剂,作为吸附材料、催化剂载体、药物中间体等应用于污水处理、油品脱硫、靶向给药等领域,特别是用于油品中噻吩类硫化物和焦化废水中喹啉、苯酚、吡啶等有机污染物的吸附。
本发明以1,5-二羟基萘为碳源,在表面活性剂P123、二茂铁和氧化剂双氧水的共同作用下,微波加热溶剂热法一步快速简便地制备得到了磁性中空碳纳米球。碳纳米球粒径约为40nm,壳层厚度10nm,具有明显的中空结构。
本发明制备方法成本低廉,反应温度较低,反应时间短,制备的磁性中空碳纳米球纯度高,化学稳定性好。
本发明制备的磁性中空碳纳米球具有高的吸附性能,对水溶液中喹啉的去除率达到85.19 %,且具有磁性,在吸附后易于回收再利用。
附图说明
图1是磁性中空碳纳米球的场发射扫描电镜形貌图。
图2是磁性中空碳纳米球的透射电镜形貌图。
图3是磁性中空碳纳米球的X射线衍射强度图。
图4是磁性中空碳纳米球的红外光谱图。
图5是磁性中空碳纳米球的热失重曲线图。
图6是磁性中空碳纳米球在水溶液中及施加磁场作用下的溶解性照片。
图7是磁性中空碳纳米球与比较例碳纳米球在喹啉水溶液中的静态吸附曲线。
具体实施方式
下述实施例仅为本发明的优选技术方案,并不用于对本发明进行任何限制。对于本领域技术人员而言,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1。
称取1,5-二羟基萘0.1g加入20mL溶剂甲苯中,依次加入二茂铁0.3g、P123 0.5g,质量分数30%的双氧水1mL配制成混合溶液,加入规格30mL的微波反应管中。
在盛有混合溶液的微波反应管中加入磁子,将微波反应管置于微波反应器内,控制在搅拌下75s加热至210℃,停止加热,冷却至室温。将混合溶液转移到离心管内,8000r/min离心5min,收集沉淀物。
在沉淀物中加入无水乙醇40mL,以8000r/min离心5min,收集沉淀物,再以无水乙醇进行洗涤,重复洗涤3次。
向沉淀物中加入去离子水40mL,以8000r/min离心5min,洗涤沉淀物,重复上述洗涤过程,直至离心上清液无色为止。
将洗涤后的沉淀置于真空干燥箱中,50℃干燥,得到磁性中空碳纳米球黑色粉体颗粒终产物。
图1给出了磁性中空碳纳米球的场发射扫描电镜形貌图。从图中可以看出所制备的磁性中空碳纳米球形貌规整,球形度较好,粒径分布范围较窄,粒径约为40nm。
从图2的磁性中空碳纳米球透射电镜图像可以看出,制备的碳纳米球有着明显的中空结构,壳层厚度约为10nm,且在碳层内部夹杂有Fe3O4纳米颗粒,从而赋予碳纳米球额外的磁性能。
图3的磁性中空碳纳米球X射线衍射强度图中,在10~30°之间出现了一个宽和弱的衍射峰,对应碳的(002)晶面,表明制备的碳纳米球中碳的石墨化程度较低,产物为无定形碳结构。
图4为磁性中空碳纳米球的红外光谱图。1373cm-1和2922cm-1处的振动峰归因于C-H的弯曲振动,在1635cm-1处的振动峰归因于C=O的不对称振动,而3413cm-1处的振动峰归因于O-H的伸缩振动。这说明制备得到的磁性中空碳纳米球表面活性含氧官能团-COOH和-OH的存在,从而有助于碳纳米球的亲水性。
氮气气氛下测得磁性中空碳纳米球的热失重曲线如图5所示。由图可知,产物总的失重率为41%,100℃到400℃之间的失重主要来自于碳纳米球表面水分的蒸发和一些稳定性差的官能团的受热分解,400℃到780℃的失重考虑为碳层上的低聚物在高温下的分解,当温度达到800℃时,发生碳热还原反应,从而导致失重量快速增加。
图6所示为磁性中空碳纳米球在水溶液中和施加磁场作用下的照片。左图为磁性中空碳纳米球在水溶液中的溶解情况,水溶液呈黑色,说明样品具有较好的亲水性。右图是在左图基础上,又在样品瓶右侧放置一块磁铁即施加外力磁场作用下,磁性中空碳纳米球在水溶液中的溶解情况,可以看出碳纳米球逐渐被吸向磁铁所在位置,从而证明该磁性中空碳纳米球在用于吸附目标分子后,可以通过磁场实现对吸附剂的定位和分离回收,很大程度上解决了吸附剂材料回收利用方面的难题。
实施例2。
称取1,5-二羟基萘0.08g,加入15mL溶剂甲苯,依次加入二茂铁0.2g、P123 0.3g,30%双氧水0.8mL配制成混合溶液,加入30mL微波反应管中,并加入磁子,置于微波反应器内进行加热搅拌,83s加热至215℃时,停止加热,冷却至室温。之后按照实施例1方法进行,制备得到粒径约为40nm的磁性中空碳纳米球,形貌规整。
实施例3。
称取1,5-二羟基萘0.12g,加入20mL溶剂甲苯中,依次加入二茂铁0.25g、P1230.4g,30%双氧水0.9mL配制成混合溶液,加入30mL微波反应管中,并加入磁子,置于微波反应器内进行加热搅拌,90s加热至220℃时,停止加热,冷却至室温。之后按照实施例1方法进行,制备得到粒径约为40nm的磁性中空碳纳米球,粒径均一。
实施例4。
将1,5-二羟基萘0.09g加入20mL溶剂甲苯中,依次加入二茂铁0.3g、P123 0.4g,30%双氧水1mL配制成混合溶液,加入30mL微波反应管中,并加入磁子,置于微波反应器内进行加热搅拌,68s加热至205℃时,停止加热,冷却至室温。之后按照实施例1方法进行,制备得到粒径约为40nm的磁性中空碳纳米球。
对比例1。
称取1,5-二羟基萘0.1g加入20mL溶剂甲苯中,依次加入二茂铁0.3g、P123 0.5g,30%双氧水1mL配制成混合溶液,加入30mL微波反应管中,并加入磁子,置于微波反应器内,设定加热温度为115℃进行加热搅拌,35s升温至设定温度,停止加热,冷却至室温。之后按照实施例1方法进行,制备得到粒径约为20nm的碳纳米球,团聚较严重。
对比例2。
称取1,5-二羟基萘0.1g加入15mL溶剂无水乙醇中,依次加入二茂铁0.3g、P1230.5g,30%双氧水0.7mL配制成混合溶液,加入30mL微波反应管中,向微波反应管中加入磁子,置于微波反应器内,设定加热温度为150℃进行加热搅拌,45s升温至设定温度后,保持5min,再降温至室温。之后按照实施例1方法进行,制备得到粒径约为200nm的碳纳米球,球形度略差。
应用例1。
取50mg实施例1制备的磁性中空碳纳米球置于100mL锥形瓶中,加入浓度50mg/L的喹啉水溶液100mL,放入磁子,25℃下水浴磁力搅拌。在5min、10min、15min、20min、25min、35min、45min、65min、85min、115min、145min、180min分别取样,以紫外分光光度计在312nm处检测取样的吸光度值,结合喹啉吸光度与浓度的标准曲线,换算得到不同时间点磁性中空碳纳米球对喹啉的吸附容量,绘制出针对喹啉的静态吸附曲线。
取实施例2制备的磁性中空碳纳米球,及对比例1和对比例2制备的碳纳米球,分别按照上述方法进行测定并绘制出各自的喹啉静态吸附曲线。
根据图7的静态吸附曲线可以看出,随着吸附时间的延长,各样品的喹啉吸附量逐渐增加。实施例1和实施例2样品在85min时吸附量趋于平衡,50mg的磁性中空碳纳米球可以将初始浓度为50ppm的喹啉水溶液降至8.8~9ppm,平衡吸附量分别为85.19mg/g和83.28mg/g,对水溶液中喹啉分子的去除率达到了85.19%和83.28%。
同时测得对比例1和对比例2样品的吸附平衡时间为115min,平衡吸附量分别为37.87mg/g和42.83mg/g,对水溶液中喹啉分子的去除率为37.87%和42.83%,明显低于实施例制备的磁性中空碳纳米球的吸附效果。
活性炭纤维结合了碳纤维和活性炭的双重优势,具有更大的比表面积和吸附容量,目前被广泛应用于焦化废水中有机污染物的吸附。然而文献报道其在50mg/L喹啉水溶液中的去除率仅为46.7%,且活性炭纤维存在成本高、不易脱附再生等问题。相比较而言,本发明制备的磁性中空碳纳米球具有较高的吸附性能,且易于回收再利用。

Claims (10)

1.一种具有高吸附性能的磁性中空碳纳米球的制备方法,其特征是以1,5-二羟基萘为碳源,在氧化剂双氧水和表面活性剂P123存在下的甲苯溶剂体系中,添加二茂铁作为铁源,微波加热至200~220℃进行溶剂热反应,制备所述磁性中空碳纳米球。
2.根据权利要求1所述的制备方法,其特征是所述P123的用量是碳源质量的3~5倍。
3.根据权利要求1所述的制备方法,其特征是所述二茂铁的用量是碳源质量的2~3倍。
4.根据权利要求1所述的制备方法,其特征是所述双氧水的加入量满足H2O2与二茂铁的摩尔比为(5~6)∶1。
5.根据权利要求1所述的制备方法,其特征是控制反应体系微波加热至200~220℃的时间为60~90s。
6.根据权利要求1所述的制备方法,其特征是将所述制备的磁性中空碳纳米球以无水乙醇和去离子水洗涤、干燥。
7.权利要求1所述制备方法制备得到的磁性中空碳纳米球,具有磁性和中空结构。
8.权利要求7所述磁性中空碳纳米球作为吸附剂的应用。
9.权利要求7所述磁性中空碳纳米球作为污水处理用吸附剂的应用。
10.权利要求7所述磁性中空碳纳米球作为焦化废水中喹啉、苯酚、吡啶吸附用吸附剂的应用。
CN201910030312.XA 2019-01-14 2019-01-14 一种具有高吸附性能的磁性中空碳纳米球的制备方法 Expired - Fee Related CN109589922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910030312.XA CN109589922B (zh) 2019-01-14 2019-01-14 一种具有高吸附性能的磁性中空碳纳米球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910030312.XA CN109589922B (zh) 2019-01-14 2019-01-14 一种具有高吸附性能的磁性中空碳纳米球的制备方法

Publications (2)

Publication Number Publication Date
CN109589922A CN109589922A (zh) 2019-04-09
CN109589922B true CN109589922B (zh) 2021-09-14

Family

ID=65966089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910030312.XA Expired - Fee Related CN109589922B (zh) 2019-01-14 2019-01-14 一种具有高吸附性能的磁性中空碳纳米球的制备方法

Country Status (1)

Country Link
CN (1) CN109589922B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794652A (zh) * 2010-03-10 2010-08-04 中国科学技术大学 碳包覆超顺磁性四氧化三铁胶体球的制备方法
CN104117329A (zh) * 2014-07-21 2014-10-29 太原理工大学 一种碳包覆四氧化三铁磁性微球的制备方法
WO2016141559A1 (en) * 2015-03-11 2016-09-15 Xi'an Jiaotong University Porous carbon hollow spheres and methods for their preparation and use
CN106082160A (zh) * 2016-06-02 2016-11-09 浙江大学 中空炭材料的制备方法及其产品
CN106563483A (zh) * 2016-11-03 2017-04-19 太原理工大学 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法
CN107127335A (zh) * 2017-05-18 2017-09-05 山东大学 一种核壳型碳包覆铁纳米复合材料的制备方法
CN107352525A (zh) * 2016-05-09 2017-11-17 北京化工大学 一种简单制备纳米空心炭球的方法
CN107774232A (zh) * 2017-10-27 2018-03-09 东莞市联洲知识产权运营管理有限公司 一种含炭球的磁性活性炭混合物及其制备方法
CN107814374A (zh) * 2017-11-07 2018-03-20 北京化工大学 一种调控碳材料形貌的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527075A (ja) * 2013-06-21 2016-09-08 テクニカル ユニバーシティ オブ デンマークTechnical University Of Denmark 新規な非白金金属触媒材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794652A (zh) * 2010-03-10 2010-08-04 中国科学技术大学 碳包覆超顺磁性四氧化三铁胶体球的制备方法
CN104117329A (zh) * 2014-07-21 2014-10-29 太原理工大学 一种碳包覆四氧化三铁磁性微球的制备方法
WO2016141559A1 (en) * 2015-03-11 2016-09-15 Xi'an Jiaotong University Porous carbon hollow spheres and methods for their preparation and use
CN107352525A (zh) * 2016-05-09 2017-11-17 北京化工大学 一种简单制备纳米空心炭球的方法
CN106082160A (zh) * 2016-06-02 2016-11-09 浙江大学 中空炭材料的制备方法及其产品
CN106563483A (zh) * 2016-11-03 2017-04-19 太原理工大学 一种双层中空掺氮碳球包覆铜纳米催化剂的制备方法
CN107127335A (zh) * 2017-05-18 2017-09-05 山东大学 一种核壳型碳包覆铁纳米复合材料的制备方法
CN107774232A (zh) * 2017-10-27 2018-03-09 东莞市联洲知识产权运营管理有限公司 一种含炭球的磁性活性炭混合物及其制备方法
CN107814374A (zh) * 2017-11-07 2018-03-20 北京化工大学 一种调控碳材料形貌的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Magnetic hollow carbon nanospheres for removal of chromium ions";Lu-Hua Zhang et al.;《J. Mater. Chem. A》;20130731;第9477-9483页 *
"浅谈空心炭球的制备方法";郭明聪 等;《碳素》;20150826(第2期);第1.3节 *
"空心炭球应用研究进展";郭明聪 等;《碳素技术》;20160628;第35卷(第3期);第8页右栏第1段 *

Also Published As

Publication number Publication date
CN109589922A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
Guo et al. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B: Role of sulfur and mesoporous structure
Guo et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline
Li et al. Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation
Xie et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism
Ito et al. Tuning the magnetic properties of carbon by nitrogen doping of its graphene domains
Yuan et al. Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B
Zhu et al. Enhanced photocatalytic activity of magnetic core–shell Fe 3 O 4@ Bi 2 O 3–RGO heterojunctions for quinolone antibiotics degradation under visible light
Lei et al. Three-dimensional magnetic graphene oxide foam/Fe 3 O 4 nanocomposite as an efficient absorbent for Cr (VI) removal
Ren et al. A grape-like N-doped carbon/CuO-Fe2O3 nanocomposite as a highly active heterogeneous Fenton-like catalyst in methylene blue degradation
Zhu et al. Surface imprinting of a gC 3 N 4 photocatalyst for enhanced photocatalytic activity and selectivity towards photodegradation of 2-mercaptobenzothiazole
Wang et al. Surface modification of graphene oxides by plasma techniques and their application for environmental pollution cleanup
Cho et al. Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar
CN105032375B (zh) 一种磁性石墨基重金属吸附材料的制备方法
Livani et al. Preparation of an activated carbon from hazelnut shells and its hybrids with magnetic NiFe2O4 nanoparticles
Wang et al. Vacancies-rich MOFs-derived magnetic CoFe encapsulated in N-doped carbon nanotubes as peroxymonosulfate activator for p-arsanilic acid removal
US20220048786A1 (en) Graphite composition based on pet pyrolysis product
Qi et al. Graphene nanocluster decorated niobium oxide nanofibers for visible light photocatalytic applications
CN106430327A (zh) 一种多孔海胆状Fe3O4@C复合材料及其制备方法
CN108404867B (zh) 一种木质素基碳磁性纳米材料及制备方法和在吸附甲基橙中的应用
Zhou et al. Facile synthesis of reusable magnetic Fe/Fe3C/C composites from renewable resources for super-fast removal of organic dyes: characterization, mechanism and kinetics
CN104117339A (zh) 用于吸附染料的吸附剂的制备方法及其应用方法
Muhmood et al. Erection of duct-like graphitic carbon nitride with enhanced photocatalytic activity for ACB photodegradation
Yu et al. Hierarchical carbon‐encapsulated iron nanoparticles as a magnetically separable adsorbent for removing thiophene in liquid fuel
Qin et al. Synthesis and properties of magnetic carbon nanocages particles for dye removal
Qu et al. One-step synthesis of Fe 3 O 4/carboxylate-rich carbon composite and its application for Cu (ii) removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210914

CF01 Termination of patent right due to non-payment of annual fee