CN106563458A - 生物质高压液化催化剂的制法及应用 - Google Patents

生物质高压液化催化剂的制法及应用 Download PDF

Info

Publication number
CN106563458A
CN106563458A CN201610959876.8A CN201610959876A CN106563458A CN 106563458 A CN106563458 A CN 106563458A CN 201610959876 A CN201610959876 A CN 201610959876A CN 106563458 A CN106563458 A CN 106563458A
Authority
CN
China
Prior art keywords
catalyst
pressure
biomass
biomass high
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610959876.8A
Other languages
English (en)
Other versions
CN106563458B (zh
Inventor
李凝
滕俊江
马浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201610959876.8A priority Critical patent/CN106563458B/zh
Publication of CN106563458A publication Critical patent/CN106563458A/zh
Application granted granted Critical
Publication of CN106563458B publication Critical patent/CN106563458B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种生物质高压液化催化剂的制法及应用,属于生物质高压液化催化剂技术领域,其特征是,采用共沉淀法制备介孔La0.6Pr0.4FeO3钙钛矿型催化剂,包括如下步骤:将硝酸镧、硝酸镨和硝酸铁按物质的量为(0.5‑0.6):(0.4‑0.5):1的摩尔比配制混合溶液,缓慢滴加氨水溶液至pH=8‑9,共沉淀开始就加入CTAB,抽滤,沉淀物干燥后,在550‑600℃下预烧6‑8h以除去有机模板剂,然后750‑800℃煅烧3‑5h,得催化剂,其中,CTAB用量按照硝酸镧与CTAB物质的量之比为(8‑9):1。本发明的催化剂应用于生物质高压液化反应,其液化率为59.68‑64.76%,残渣率为11.62‑13.41%,酯类物质收率50.65‑56.94%。

Description

生物质高压液化催化剂的制法及应用
技术领域
本发明涉及一种生物质高压液化催化剂的制法及应用,属于生物质高压液化催化剂技术领域。
背景技术
生物质能源利用转化技术主要集中在经不同转化途径的生物质固化、生物质气化和液化技术的研究开发,其中生物质液化制备生物柴油、乙醇和二甲醚等,可以替代石油能源产品,有望成为车用替代燃料。生物质直接液化技术包超临界液化、常压催化液化和高温高压液化三种,而高压液化取决于温度、压力、溶剂、催化剂等因素,特别是催化剂直接影响液化产物的分布。生物质液化催化剂主要有均相催化剂和多相催化剂,均相催化剂有酸和碱催化剂。均相催化剂由于难以回收和腐蚀性强,对设备要求高而受到限制,多相催化剂有金属催化剂和分子筛等,该类催化剂易回收,但在生物质裂解过程中形成的烯烃或小分子进入催化剂内部而形成结焦而失活。钙钛矿复合氧化物具有高的结构稳定性,催化活性主要取决于B位阳离子,同时其表面的吸附氧也是催化反应中的活性物质。B位离子经过不同金属离子掺杂后,其晶格氧含量会有所增加,催化剂性能提高,对消除催化剂表面结焦具有重要意义。
发明内容
本发明一种生物质高压液化催化剂的制法和应用,本发明制备的催化剂用于生物乙醇重整制氢反应,其收率高。
本发明具体采用的技术方案是:
一种生物质高压液化催化剂的制法,其特征是,采用共沉淀法制备介孔La0.6Pr0.4FeO3钙钛矿型催化剂,包括如下步骤:
将硝酸镧、硝酸镨和硝酸铁按物质的量为(0.5-0.6):(0.4-0.5):1的摩尔比配制混合溶液,缓慢滴加氨水溶液至pH=8-9,共沉淀开始加入CTAB,抽滤,沉淀物干燥后,在550-600℃下预烧6-8h以除去有机模板剂,然后750-800℃煅烧3-5h,得催化剂,其中,CTAB用量按照硝酸镧与CTAB物质的量之比为(8-9):1。
其中,所述的干燥温度为80-120℃。
其中,本发明所添加的有机模板剂的材质和添加量采用现有技术。
其中,本发明制备的催化剂La0.6Pr0.4FeO3的比表面积为22.64-26.13m2/g;平均孔径为21.36-30.23nm。
一种一种生物质高压液化催化剂的应用,其特征是,包括如下步骤,
1)称量10.00g经粉碎的生物质原料和1-1.5g所述La0.6Pr0.4FeO3催化剂加入到250mL不锈钢圆柱形高压反应釜内,并加入150mL蒸馏水作为液化反应介质;
2)用N2置换(连续操作2-4次)余留在高压反应釜内的空气,置换结束后,在N2气氛下将反应体系密闭,开启机械搅拌器以300-340r·min-1恒速搅拌,加热至300-350℃恒温反应时间20-30min后,冷至室温,分离油相。
其中,步骤1)的生物质原料粒径不大于0.28μm。
其中,步骤2)高压反应釜内N2气压力为0.1Mpa。
其中,液化率为59.68-64.76%,残渣率为11.62-13.41%,酯类物质收率50.65-56.94%。
与现有技术相比,本发明的有益效果在于:液化率比同类催化剂提高;产物的选择性提高,酯类物质总收率达56.94%。
具体实施方式
一、介孔La0.6Pr0.4Fe O3双钙钛矿催化剂的制备:
采用共沉淀法制备介孔La0.6Pr0.4FeO3钙钛矿型催化剂。将硝酸镧、硝酸镨和硝酸铁按物质的量为0.6:0.4:1的摩尔比配制混合溶液,缓慢滴加氨水溶液至pH=8~9,共沉淀开始就加入定量的CTAB(硝酸镧:CTAB=9:1),抽滤,沉淀物在80℃下干燥,550℃预烧6h以除去有机模板剂,然后750℃煅烧3h。
二、催化剂的应用
称量10.00g经粉碎的生物质原料(粒径不大于0.28μm)和1g权利要求1所述的La0.6Pr0.4FeO3催化剂加入到250mL不锈钢圆柱形高压反应釜内,并加入150mL蒸馏水作为液化反应介质。用N2置换(连续操作3次)余留在高压反应釜内的空气,置换结束后,在N2(0.1Mpa)气氛下将反应体系密闭。开启机械搅拌器以300r·min-1恒速搅拌,加热至350℃恒温反应时间30min后,冷至室温,分离油相。

Claims (6)

1.一种生物质高压液化催化剂的制法,其特征是,采用共沉淀法制备介孔La0.6Pr0.4FeO3钙钛矿型催化剂,包括如下步骤:
将硝酸镧、硝酸镨和硝酸铁按物质的量为(0.5-0.6):(0.4-0.5):1的摩尔比配制混合溶液,缓慢滴加氨水溶液至pH=8-9,共沉淀开始就加入CTAB,抽滤,沉淀物干燥后,在550-600℃下预烧6-8h以除去有机模板剂,然后750-800℃煅烧3-5h,得催化剂,其中,CTAB用量按照硝酸镧与CTAB物质的量之比为(8-9):1。
2.根据权利要求1所述的生物质高压液化催化剂的制法,其特征是,所述的干燥温度为80-120℃。
3.根据权利要求1所述的生物质高压液化催化剂的制法,其特征是,所述La0.6Pr0.4FeO3催化剂的比表面积为22.64-26.13m2/g;平均孔径为21.36-30.23nm。
4.一种生物质高压液化催化剂的应用,其特征是,包括如下步骤,
1)称量10.00g经粉碎的生物质原料和1-1.5g所述La0.6Pr0.4FeO3催化剂加入到250mL不锈钢圆柱形高压反应釜内,并加入150mL蒸馏水作为液化反应介质;
2)用N2置换(连续操作2-4次)余留在高压反应釜内的空气,置换结束后,在N2气氛下将反应体系密闭,开启机械搅拌器以300-340r·min-1恒速搅拌,加热至300-350℃恒温反应时间20-30min后,冷至室温,分离油相。
5.根据权利要求4所述的生物质高压液化催化剂的应用,其特征是,步骤1)的生物质原料粒径不大于0.28μm;步骤2)高压反应釜内N2气压力为0.1Mpa。
6.根据权利要求4所述的生物质高压液化催化剂的应用,其特征是,液化率为59.68-64.76%,残渣率为11.62-13.41%,酯类物质收率50.65-56.94%。
CN201610959876.8A 2016-10-26 2016-10-26 生物质高压液化催化剂的制法及应用 Expired - Fee Related CN106563458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610959876.8A CN106563458B (zh) 2016-10-26 2016-10-26 生物质高压液化催化剂的制法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610959876.8A CN106563458B (zh) 2016-10-26 2016-10-26 生物质高压液化催化剂的制法及应用

Publications (2)

Publication Number Publication Date
CN106563458A true CN106563458A (zh) 2017-04-19
CN106563458B CN106563458B (zh) 2019-07-12

Family

ID=58535883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610959876.8A Expired - Fee Related CN106563458B (zh) 2016-10-26 2016-10-26 生物质高压液化催化剂的制法及应用

Country Status (1)

Country Link
CN (1) CN106563458B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904507A (zh) * 2022-06-15 2022-08-16 济南大学 一种用于柴油车尾气催化净化的多功能型镨氧化物纳米棒催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032437A (zh) * 2015-06-05 2015-11-11 广东石油化工学院 钙钛矿型复合氧化物催化剂及其制备方法和应用
CN105126901A (zh) * 2015-09-14 2015-12-09 青岛大学 一种应用在海藻液化反应的分子筛催化剂及其制备方法
CN105797736A (zh) * 2015-10-14 2016-07-27 北京林业大学 一种新型介孔钙钛矿型氧化物/二氧化硅的制备方法及其在水处理中的应用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032437A (zh) * 2015-06-05 2015-11-11 广东石油化工学院 钙钛矿型复合氧化物催化剂及其制备方法和应用
CN105126901A (zh) * 2015-09-14 2015-12-09 青岛大学 一种应用在海藻液化反应的分子筛催化剂及其制备方法
CN105797736A (zh) * 2015-10-14 2016-07-27 北京林业大学 一种新型介孔钙钛矿型氧化物/二氧化硅的制备方法及其在水处理中的应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904507A (zh) * 2022-06-15 2022-08-16 济南大学 一种用于柴油车尾气催化净化的多功能型镨氧化物纳米棒催化剂

Also Published As

Publication number Publication date
CN106563458B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
Wang et al. Catalytic transfer hydrogenation of oleic acid to octadecanol over magnetic recoverable cobalt catalysts
CN106179421B (zh) 硫化物催化剂的制备及其在木质素转化中的应用
CN103977796B (zh) 一种生物质催化加氢脱氧制备长链烷烃的催化剂
CN102850157B (zh) 一种由多功能催化剂一步法高效制备长链烷烃的新技术
CN101579637B (zh) 用于乙醇脱水制乙烯的分子筛型固体酸催化剂的制备方法
CN107841332B (zh) 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法
CN102658131A (zh) 用于乙酰丙酸制γ-戊内酯的钌基催化剂及其制备方法
Gu et al. Efficient transfer hydrogenation of biomass derived furfural and levulinic acid via magnetic zirconium nanoparticles: Experimental and kinetic study
CN112194577A (zh) 一种糠醛及其衍生物水相加氢重排制备环戊酮类化合物的方法
Tang et al. Improved hydrodeoxygenation of bio-oil model compounds with polymethylhydrosiloxane by Brønsted acidic zeolites
Dziugan et al. Continuous catalytic coupling of raw bioethanol into butanol and higher homologues
Zheng et al. Direct production of ethanol from glycerol over Ni-substituted stichtite derived catalysts
CN112657557A (zh) 一种用于苯酚催化加氢提质的Pd/MOF催化剂的制备方法
CN114177930A (zh) 一种分子筛负载钌镍催化剂催化木质素加氢解聚的方法
CN102744102A (zh) 金属改性sapo-34分子筛催化剂及制备方法和使用方法
Rawat et al. Value addition of lignin to zingerone using recyclable AlPO4 and Ni/LRC catalysts
Yi et al. Synergistic effect of surface Cu0 and Cu+ species over hydrotalcite-derived CuxCo3-xAlOy mixed-metal oxides toward efficient hydrogenation of furfural to furfuryl alcohol
Li et al. Tandem conversion xylose to 2-methylfuran with NiCu/C catalyst
CN106563458A (zh) 生物质高压液化催化剂的制法及应用
Mao et al. Co-Cr composite oxides efficiently catalyzed transfer hydrogenation of α, β-unsaturated aldehydes via N-doped carbon and interfacial electron migration
CN105602612B (zh) 一种利用高温气冷堆对生物原油进行加氢精制的方法
Huang et al. Efficient hydrogenolysis of lignin over CeO2/AC catalyst prepared by a simple impregnation method
Xu et al. Catalytic Transfer Hydrogenation of Biomass-derived Levulinates to γ-valerolactone Using Alcohols as H-donors
CN109294614A (zh) 一种离子液体体系中木质素衍生物制备烷烃的方法
Shao et al. Synthesis of jet fuel from biomass-derived carbonyls via aldol condensation and hydrogenation in the one-pot: Effect of solvent and catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190712

Termination date: 20211026