CN107841332B - 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法 - Google Patents

以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法 Download PDF

Info

Publication number
CN107841332B
CN107841332B CN201610827033.2A CN201610827033A CN107841332B CN 107841332 B CN107841332 B CN 107841332B CN 201610827033 A CN201610827033 A CN 201610827033A CN 107841332 B CN107841332 B CN 107841332B
Authority
CN
China
Prior art keywords
biomass
alcohol compound
catalyst
aqueous solution
biomass alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610827033.2A
Other languages
English (en)
Other versions
CN107841332A (zh
Inventor
李宁
唐浩
李广亿
张涛
王爱琴
王晓东
丛昱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201610827033.2A priority Critical patent/CN107841332B/zh
Publication of CN107841332A publication Critical patent/CN107841332A/zh
Application granted granted Critical
Publication of CN107841332B publication Critical patent/CN107841332B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • C10G3/52Hydrogen in a special composition or from a special source
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种以C1到C6的生物质醇类化合物为氢源,将这些醇类化合物的水相重整与C8到C16的呋喃类或醛酮类含氧化合物的加氢脱氧耦合起来,将这些C8到C16的呋喃类或醛酮类含氧化合物加氢脱氧为C8到C16的烷烃。完全区别于传统的在高压氢气气氛下加氢脱氧的反应条件。该方法可完全避免高压氢气的使用,比传统的工艺更加安全可靠。而得到液体燃料可以用作航空煤油的替代品或作为提高燃料的十六烷值和抗寒能力的添加剂,从而降低国家在液体燃料方面对进口石油的依赖程度。

Description

以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法
技术领域
本发明涉及一种以C1到C6的生物质醇类化合物为氢源,完全不依赖传统的高压氢气的反应条件下制备航空煤油范围的烷烃,具体步骤如下:将C1到C6的生物质醇类化合物的水溶液与C8到C16的呋喃类或醛酮类含氧化合物同时进入固定床反应器中,在反应器中C1到C6的生物质醇类化合物发生水相重整过程生成氢气和二氧化碳,C8到C16的呋喃类或醛酮类含氧化合物发生加氢脱氧反应,从而获得C8到C16生物质航空煤油范围的烷烃。
背景技术
能源是人类生存发展的重要的物质基础。近年来,由于全球经济高速发展造成对化石能源的过度消耗以及温室效应、雾霾、酸雨等环境问题。开发一种可持续绿色环保的能源就成了全世界专家学者思考的问题。
生物质能源是仅次于传统化石能源的第二大能源,以其洁净、可再生、储量大等优点受到了全世界的高度关注。据世界能源组织的不完全统计,全球生物质能源储量大约在18000亿吨左右,其中所蕴含的能量大概相当于6400亿吨石油,而全世界每年通过光合作用新增的生物质为1700亿吨,相当于5355亿桶原油,远远高于全世界一年的能源消耗量。从碳排放上看,由于生物质能源在使用过程中产生的二氧化碳可以被其生产过程中通过光合作用所消耗二氧化碳抵消,因此在生物质能源开发利用整个过程中二氧化碳是零排放的。
航空煤油是国际上需求量很大的一种液体油。近年来,随着我国航空运输业的飞速发展,对航空煤油的需求也与日俱增。尽管我国航空燃料产量以年平均增长率7.2%的速度稳定增长,仍然无法满足国民对航空燃料的巨大需求。目前,我国普通民航用的航空煤油近40%依赖进口。在未来的一段时间内航空煤油的消耗量还会继续增加,因此我国在这方面的缺口会长时间的保持。因此,通过对生物质催化转化为航空煤油范围的烃类对缓解我国在航空燃料领域对进口石油的依赖程度具有重要意义
目前,生物质液体燃料可分为第一代生物质液体燃料和第二代生物质液体燃料。第一代生物质液体燃料是以可食用的玉米、大豆和向日葵等为原料,通过发酵和转酯化等反应制取生物乙醇和生物柴油。第一代生物质液体燃料在欧洲,美洲等地区作为运输燃料已有实际应用。但是,它的燃烧性能不好,须对原发动机进行改进,方可使用。第二代生物质液体燃料是以不可食用的木质纤维素为原料,主要有三种途径生成燃料:1)热化学气化生物质到合成气,然后通过费托合成制取烷烃,该过程工艺比较成熟,但是需要高温高压的条件;2)高温热解生物质制取生物质油,该过程复杂,且制得的生物质油品质较差,无法直接用作发动机燃料,需进行进一步精炼;3)以木质纤维素为原料获得的生物质平台化合物分子,通过羟醛缩合、烷基化反等碳-碳偶联反应,然后加氢脱氧制取液态烷烃,该过程条件相对比较温和,合成路线相对更加灵活。
氢气能量密度高,燃烧无废气排放,被认为是21世纪替代化石能源的一个重要方向。目前工业上生产氢气主要通过天然气重整或电解水,其主要的缺点是消耗化石燃料和能量消耗太大。近年来,人们开发了多种技术,以生物质含氧碳氢化合物为原料重整制氢,方法包括水相重整制氢、高温气化和蒸汽重整制氢、自热重整制氢、光催化重整制氢等。相对于甲醇、乙醇等小分子一元醇容易汽化重整来说,多元醇(乙二醇、丙三醇、山梨醇等)的黏度大、难挥发,蒸汽重整需要更多的热量消耗。水相重整具有重整温度低、催化剂不容易失活、重整产物中氢气含量高等优点,受到了越来越多研究者的关注。本发明将甲醇以及生物质多元醇的水相重整制氢反应与生物质含氧有机化合物的加氢脱氧反应进行耦合,利用生物质加氢脱氧生物质,使生物燃料的合成摆脱了对外界氢源的依赖,具有重要的实用价值。
发明内容
本发明的目的在于以C1到C6的生物质醇类化合物为氢源,完全不依赖外界氢源的反应条件下实现生物质加氢脱氧制备航空煤油范围的烷烃。
本发明是通过以下技术方案实现的:
将C1到C6的生物质醇类化合物的水溶液与C8到C16的呋喃类或醛酮类含氧化合物同时进入固定床反应器中,在固定床反应器中C1到C6的生物质醇类化合物发生水相重整反应生成氢气和二氧化碳,C8到C16的呋喃类或醛酮类含氧化合物发生加氢脱氧反应生成C8至C16之间的生物质航空煤油的烷烃,体系中氮气的压力在2-7MPa之间,温度在200-300℃之间,水溶液中C1到C6的生物质醇类化合物的质量浓度为5-50%,C1到C6的生物质醇类化合物水溶液的空速0.5-5h-1之间,C1到C6的生物质醇类化合物水溶液与C8到C16的呋喃类或醛酮类含氧化合物的空速比为5:1。采用金属-固体酸双功能催化剂来催化这个耦合过程,从而获得C8至C16之间的生物质航空煤油的烷烃。
金属-固体酸催化剂由活性金属A和酸性载体X两部分组成;活性组分A为Ni、Pt、Pd、Ru、Rh、Ir、Fe、Cu、Co中的一种或两种以上;载体X为酸性载体如:Al2O3、ZrO2、Al2O3-SiO2、TiO2、AC、FeOx、H-β、H-Y、H-USY、H-ZSM-5、H-MOR、H-MCM-22、H-SAPO分子筛、杂多酸、磷酸锆、钨酸锆、氧化硅、酸性粘土中一种或两种以上的混合物;催化剂中活性组分A的质量含量0.5%-20%。
负载型金属-固体酸双功能催化剂采用浸渍法制备;
浸渍法过程如下:首先将A的可溶性盐溶液按计量比加入至预先成型的载体X中等体积浸渍,室温静置2小时以上,然后干燥、并于300-600℃焙烧2-5小时,制得焙烧过的催化剂;
焙烧过的催化剂在使用前需进行还原处理:在管式炉中进行:氢气压力为常压,氢气/催化剂体积空速800-1500h-1,还原温度200-600℃,还原时间为1-10h。待温度降至室温后,需通入体积比1%-10%O2/N2钝化2小时以上。
在上述过程中,所述的C1到C6的生物质醇类化合物为:
甲醇、乙醇、丙醇、丁醇、乙二醇、甘油、木糖醇、山梨醇中的一种或两种以上;
C8到C16的呋喃类或醛酮类含氧化合物为以下一种或两种以上的混合物:
Figure BDA0001115579970000031
本发明具有如下优点:
首次将C1到C6的生物质醇类化合物的水相重整与C8到C16的呋喃类或醛酮类含氧化合物的加氢脱氧耦合起来制备航空煤油范围的烷烃。该路线具有整个过程可以不使用氢气,操作工艺简单、安全可靠,反应条件温和、航空煤油选择性好等特点,是一种不使用氢气将C8到C16的呋喃类或醛酮类含氧化合物制备航空煤油范围烷烃类燃料的理想过程。
本发明完全区别于传统的在高压氢气气氛下加氢脱氧的反应条件。该方法可完全避免高压氢气的使用,比传统的工艺更加安全可靠。而得到液体燃料可以用作航空煤油的替代品或作为提高燃料的十六烷值和抗寒能力的添加剂,从而降低国家在液体燃料方面对进口石油的依赖程度。
附图说明
图1-(a)为实施例25-68中水相重整耦合加氢脱氧产物GC-MS总离子流谱图;
图1-(b)为实施例25-68中水相重整耦合加氢脱氧主产物GC-MS谱图。
具体实施方式
下面将以具体的实施例来对本发明加以说明,但本发明的保护范围不局限于这些实例。
从图1-b中可以看出,产物为1,1,3-三甲基环戊烷。
实施例
1.催化剂的制备:
浸渍法:配制质量比10%的氯铂酸溶液,按照载体的饱和吸水量进行相应的稀释,加入Al2O3、ZrO2、Al2O3-SiO2、TiO2、AC、FeOx、H-β、H-Y、H-USY、H-ZSM-5、H-MOR、H-MCM-22、H-SAPO分子筛等,然后静置12小时,在110℃下干燥过夜,在260℃空气焙烧2小时,260℃下用氢气还原2小时,待温度降低至室温后通入体积百分比1%O2钝化,可制备不同载体负载的铂催化剂(见表1,实施例1-13)。
配制质量比10%的氯化钯、氯化钌、氯铂酸、氯铱酸、氯化铑、硝酸铁、硝酸铜、硝酸钴、硝酸镍溶液,将其中的一种或多种按照一定计量比加入Al2O3中,然后静置12小时,在110℃下干燥过夜,在500℃空气焙烧2小时,500℃下用氢气还原2小时,待温度降低至室温后通入体积百分比1%O2钝化,可制备负载型单金属或合金催化剂(见表1,实施例14-21)。
配制质量比10%的氯铂酸溶液,加Al2O3中,然后静置12小时,在110℃下干燥过夜,在260℃空气焙烧2小时,260℃下用氢气还原2小时,待温度降低至室温后通入体积百分比1%O2钝化,可制备各负载型催化剂(见表1,实施例22-24)。
表1负载型金属催化剂
Figure BDA0001115579970000041
Figure BDA0001115579970000051
2.在固定床反应器中考察温度对耦合反应的影响。装填入2.0g催化剂,由氮气将体系背压在6MPa,C1到C6的生物质醇类化合物水溶液以及C8到C16的呋喃类或醛酮类含氧化合物(A-K)经高效液相色谱泵由下向上泵入催化剂床层。其中C1到C6的生物质醇类化合物水溶液的质量浓度为20%,水溶液的空速为2h-1,C8到C16的呋喃类或醛酮类含氧化合物的空速为0.4h-1,不同温度下的结果见表2。
表2反应温度对此耦合过程的影响
Figure BDA0001115579970000052
从表2可以看出,温度在100到260度范围内,C8到C16烷烃的产率先升高后降低。
3.在固定床反应器中,C1到C6的生物质醇类化合物(甘油为例)水溶液、C8到C16的呋喃类或醛酮类含氧化合物(异佛尔酮为例)的空速对此耦合过程的影响,其中甘油水溶液的质量浓度为20%,催化剂质量为2g,金属负载量为3%,氮气背压至6MPa,结果见表3。
表3不同空速对耦合过程的影响
Figure BDA0001115579970000061
从表3可以看出当C1到C6的生物质醇类化合物(甘油为例)水溶液空速在2h-1以下,C8到C16的呋喃类或醛酮类含氧化合物(异佛尔酮为例)空速在0.3h-1以下,C8至C16烷烃产率可达75%以上。
4C1到C6的生物质醇类化合物(甘油为例)水溶液中的浓度对此耦合过程的影响,其中催化剂质量为2g,氮气背压至6MPa,,C1到C6的生物质醇类化合物(甘油为例)水溶液的空速为2h-1,C8到C16的呋喃类或醛酮类含氧化合物的空速为0.4h-1见表4。
表4水溶液中浓度的影响
Figure BDA0001115579970000062
从表4可以看出当C1到C6的生物质醇类化合物(甘油为例)质量百分比浓度在20%以下时,随着浓度低增加,C8至C16烷烃产率逐渐增加,当质量百分比浓度超过20%后,C8至C16烷烃产率逐渐降低。5.不同C1到C6的生物质醇类化合物、C8到C16的呋喃类或醛酮类含氧化合物、载体、活性金属、活性金属的负载量对此耦合过程的影响,其中催化剂质量为2g,氮气背压至6MPa,,C1到C6的生物质醇类化合物水溶液的空速为2h-1,C1到C6的生物质醇类化合物水溶液的质量浓度为20%,C8到C16的呋喃类或醛酮类含氧化合物的空速为0.4h-1,详细见表5。
表5载体、活性金属、活性金属的负载量、对耦合反应的影响
Figure BDA0001115579970000063
Figure BDA0001115579970000071
Figure BDA0001115579970000081
Figure BDA0001115579970000091
Figure BDA0001115579970000101
Figure BDA0001115579970000111
由表5可以看出,当不同的金属、载体对此耦合过程影响很大,金属的负载量对此过程也有影响;提高金属负载量可以获得更高的产率。
实施例25-232的产物,即为碳数为C8到C16的液态混合烷烃燃料,它们可以作为航空煤油直接使用,或者作为提高十六烷值的添加剂,以一定比例加入现有的航空煤油中使用。
通过气相色谱-质谱联用确认:
其中实施例25-68中的产物为
Figure BDA0001115579970000112
实施例69-90中的产物为
Figure BDA0001115579970000113
其中实施例91-108中的产物为
Figure BDA0001115579970000114
实施例109-146中的产物为
Figure BDA0001115579970000115
实施例147-165中的产物为
Figure BDA0001115579970000116
实施例166-184中的产物为
Figure BDA0001115579970000117
实施例185-196中的产物为
Figure BDA0001115579970000121
实施例197-208中的产物为
Figure BDA0001115579970000122
实施例209-220中的产物为
Figure BDA0001115579970000123
实施例221-232中的产物为
Figure BDA0001115579970000124

Claims (9)

1.以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法,其特征在于:
将C1到C6的生物质醇类化合物的水溶液与C8到C16的呋喃类和/或醛酮类含氧化合物同时进入固定床反应器中,在反应器中这些醇类化合物发生水相重整反应生成氢气和二氧化碳,C8到C16的呋喃类和/或醛酮类含氧化合物发生加氢脱氧反应生成C8到C16生物质航空煤油的烷烃,采用氮气氛围、金属-固体酸双功能催化剂来催化这个耦合过程。
2.按照权利要求1所述的方法,其特征在于:
金属-固体酸催化剂由活性金属A和酸性载体X两部分组成;活性组分A为Ni、Pt、Pd、Ru、Rh、Ir、Fe、Cu、Co中的一种或两种以上; 酸性载体X为:Al2O3、ZrO2、Al2O3-SiO2、TiO2、AC、FeOx、H-β、H-Y、H-USY、H-ZSM-5、H-MOR、H-MCM-22、H-SAPO分子筛、杂多酸、磷酸锆、钨酸锆、氧化硅、酸性粘土中的一种或两种以上的混合物;催化剂中活性组分A的质量含量0.1%-80%。
3.按照权利要求2所述的方法,其特征在于:
催化剂中活性组分A 的质量含量在0.5%-20% 。
4.按照权利要求2所述的方法,其特征在于:
负载型金属-固体酸双功能催化剂采用浸渍法制备;
浸渍法过程如下:首先将A的可溶性盐溶液按计量比加入至预先成型的载体X中等体积浸渍,室温静置2小时以上,然后干燥、并于300-600℃焙烧2-5小时,制得焙烧过的催化剂。
5.按照权利要求1、2、3或4所述的方法,其特征在于:
焙烧过的催化剂在使用前需进行还原处理:在管式炉中进行:氢气压力为常压,氢气/催化剂体积空速800-1500h-1,还原温度200-600℃,还原时间为1-10h;待温度降至室温后,需通入体积比1% -10%O2/N2钝化2小时以上。
6.按照权利要求1所述的方法,其特征在于:
C1到C6的生物质醇类化合物为:
甲醇、乙醇、丙醇、丁醇、乙二醇、甘油、木糖醇、山梨醇中的一种或两种以上;
C8到C16的呋喃类和/或醛酮类含氧化合物为以下一种或两种以上的混合物:
Figure 300396DEST_PATH_IMAGE001
7.按照权利要求1或6所述的方法,其特征在于:
在固定床反应器中,C1到C6的生物质醇类化合物水溶液的空速与C8到C16的呋喃类和/或醛酮类含氧化合物的空速比为10:1至1:20;
反应温度在100-500℃间;
体系在氮气氛围下维持一定的压力,氮气压力在0.1-10MPa之间,C1到C6的生物质醇类化合物水溶液的空速在0.1-10 h-1
反应在液态条件下进行,水溶液中C1到C6的生物质醇类化合物的质量浓度为0.5-90%。
8.按照权利要求7所述的方法,其特征在于:
在固定床反应器中,C1到C6的生物质醇类化合物水溶液的空速与C8到C16的呋喃类和/或醛酮类含氧化合物的空速比为5:1,C1到C6的生物质醇类化合物水溶液的空速0.5-5 h-1之间,温度为200-300℃,压力在2-7 MPa,C1到C6的生物质醇类化合物水溶液的质量百分比浓度为5-50% 。
9.按照权利要求7所述的方法,其特征在于:未反应的原料可通过蒸馏或精馏从反应体系中移除,可循环使用。
CN201610827033.2A 2016-09-18 2016-09-18 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法 Expired - Fee Related CN107841332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610827033.2A CN107841332B (zh) 2016-09-18 2016-09-18 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610827033.2A CN107841332B (zh) 2016-09-18 2016-09-18 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法

Publications (2)

Publication Number Publication Date
CN107841332A CN107841332A (zh) 2018-03-27
CN107841332B true CN107841332B (zh) 2020-05-05

Family

ID=61656866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610827033.2A Expired - Fee Related CN107841332B (zh) 2016-09-18 2016-09-18 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法

Country Status (1)

Country Link
CN (1) CN107841332B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690039A (zh) * 2018-06-26 2018-10-23 大连理工大学 一种山梨醇脱水制备异山梨醇的方法
CN111004647A (zh) * 2019-12-03 2020-04-14 沈阳化工大学 一种耦合裂解及重整制氢的重质油加氢提质工艺
CN114181726B (zh) * 2020-09-15 2022-11-08 中国科学院大连化学物理研究所 一种以废弃聚碳酸酯塑料合成航空煤油环烷烃和芳烃的方法
US11555153B1 (en) * 2022-04-19 2023-01-17 Chevron U.S.A. Inc. Conversion of glycerol to fuel-range organic compounds
CN114669323B (zh) * 2022-04-21 2023-03-24 中国科学院广州能源研究所 一种生物基航空燃油加氢精制催化剂的制备方法
CN115970696B (zh) * 2022-11-30 2024-10-15 中国科学院山西煤炭化学研究所 一种镍基催化剂的前处理方法、镍基催化剂催化水合肼制氢-炔类加氢串联反应的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870881A (zh) * 2010-06-21 2010-10-27 中国科学院广州能源研究所 一种生物油水相催化提质制取液体烷烃燃料方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870881A (zh) * 2010-06-21 2010-10-27 中国科学院广州能源研究所 一种生物油水相催化提质制取液体烷烃燃料方法

Also Published As

Publication number Publication date
CN107841332A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN107841332B (zh) 以生物质醇类化合物为氢源制备航空煤油范围烷烃的方法
Sun et al. Glycerol hydrogenolysis into useful C3 chemicals
Mohanty et al. Hydrogen generation from biomass materials: challenges and opportunities
Simonetti et al. Catalytic production of liquid fuels from biomass‐derived oxygenated hydrocarbons: catalytic coupling at multiple length scales
Zhang et al. Recent advances in the catalytic upgrading of biomass platform chemicals via hydrotalcite-derived metal catalysts
CN105132003B (zh) 一种生物基航空燃料的制备方法
Zhang et al. Interface–Promoted Dehydrogenation and Water–Gas Shift toward High-Efficient H2 Production from Aqueous Phase Reforming of Cellulose
CN101870881A (zh) 一种生物油水相催化提质制取液体烷烃燃料方法
Weng et al. Optimization of renewable C5 and C6 alkane production from acidic biomass hydrolysate over Ru/C catalyst
EP3789373A1 (en) Method for producing methylbenzyl alcohol by catalytic conversion of ethanol and catalyst therefor
CN111250156A (zh) 一种脂肪酸甲酯加氢脱氧-异构制备烷烃的催化剂及制备方法和用途
Fridrich et al. Selective coupling of bioderived aliphatic alcohols with acetone using hydrotalcite derived mg–al porous metal oxide and raney nickel
Wei et al. Renewable hydrogen produced from different renewable feedstock by aqueous-phase reforming process
Wang et al. Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural
Tian et al. Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
Yu et al. Aqueous phase hydrogenolysis of sugar alcohol to higher alcohols over Ru-Mo/CMK-3 catalyst
Justicia et al. Aqueous-phase reforming of water-soluble compounds from pyrolysis bio-oils
Lin et al. NiCo/SiO2 nanospheres for efficient synergetic decarboxylation of fatty acids and upgrading of municipal sludge HTL bio-crude to biofuels
Musso et al. Hydrogen production via steam reforming of small organic compounds present in the aqueous fraction of bio-oil over Ni-La-Me catalysts (Me= Ce, Ti, Zr)
EP2565175B1 (en) Catalytic process for the production of 1,2-propanediol from crude glycerol stream
Joshi et al. Recent studies on aqueous-phase reforming: Catalysts, reactors, hybrid processes and techno-economic analysis
KR101857187B1 (ko) 함산소 화합물의 수첨탈산소 반응용 촉매 및 이를 이용한 탈산소 연료 제조 방법
KR101900444B1 (ko) 리그닌 분해 반응용 촉매 및 이를 이용한 탄화수소 화합물의 제조방법
Fajín et al. Glycerol conversion into added-value products on Ni-Cu based catalysts: Investigating mechanistic variations via catalyst modulation
EP3023479A1 (en) Process for the deoxygenation of alcohols and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505

CF01 Termination of patent right due to non-payment of annual fee