CN106549557B - 用于同步整流器开关的驱动器电路、对应转换器和方法 - Google Patents

用于同步整流器开关的驱动器电路、对应转换器和方法 Download PDF

Info

Publication number
CN106549557B
CN106549557B CN201610184577.1A CN201610184577A CN106549557B CN 106549557 B CN106549557 B CN 106549557B CN 201610184577 A CN201610184577 A CN 201610184577A CN 106549557 B CN106549557 B CN 106549557B
Authority
CN
China
Prior art keywords
synchronous rectifier
electronic switch
converter
drive circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610184577.1A
Other languages
English (en)
Other versions
CN106549557A (zh
Inventor
M·弗瑞斯塔
A·伊奥里奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Publication of CN106549557A publication Critical patent/CN106549557A/zh
Application granted granted Critical
Publication of CN106549557B publication Critical patent/CN106549557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • H02M3/3378Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及用于同步整流器开关的驱动器电路、对应转换器和方法。在一个实施例中,用于同步整流器电子开关、诸如谐振转换器中的SR MOSFET的驱动器电路被适配成耦合到一对同步整流器电子开关的控制端子以向其施加驱动电压从而将同步整流器电子开关与转换器电流同步地接通和关断。驱动器电路包括编程模块和可选的电流感测模块,编程模块用于产生表示同步整流器电子开关的品质因数的第一信号,电流感测模块用于产生表示同步整流器电子开关的输出电流的第二信号。包括用于生成驱动电压的值的输出模块,驱动电压的值是表示品质因数的第一信号的函数并且可选地是表示同步整流器电子开关的输出电流的第二信号的函数。

Description

用于同步整流器开关的驱动器电路、对应转换器和方法
技术领域
本描述涉及谐振转换器。
一个或多个实施例可以应用于用于谐振转换器(诸如LLC谐振转换器)中的同步整流器开关(例如MOSFET)的驱动器电路。
背景技术
虽然同步整流器开关当前用在各种谐振转换器拓扑中,然而仍然感觉需要能够通过选择合适的同步整流器驱动电压来改进转换器效率的布置,这些布置可以独立于例如相关联的外部部件和温度用在各种应用中。
发明内容
一个或多个实施例的目的在于满足这样的需要。
根据一个或多个实施例,这样的目的借助于具有后面的权利要求中给出的特征的驱动器电路来实现。
一个或多个实施例还可以涉及对应的转换器和对应的方法。
权利要求是本文中所提供的实施例的公开的组成部分。
一个或多个实施例可以提供以下优点中的一个或多个:
–增加的转换效率,
–能够独立于外部部件、寄生效应和温度适用于各种应用,
–低成本,例如由于减少的所需要的物料清单(BOM)。
一个或多个实施例可以允许利用可编程的同步整流器(SR)、例如MOSFET的栅极驱动电压来实施同步整流器驱动器。
因此,一个或多个实施例可以包括第一部分,第一部分用于通过不同的编程引脚选择同步整流器MOSFET的品质因数(FOM,例如RDSON*QGATE)以便理解使用哪个MOS。
在一个或多个实施例中,可以可选地包括第二部分以生成与FOM和输出电流成比例的受控栅极驱动电压从而改善控制。
一个或多个实施例可以通过选择例如同步整流器(SR)MOSFET的足够的栅极驱动电压来改善转换器效率。
在一个或多个实施例中,这样的栅极驱动电压可以经由可编程引脚根据所使用的同步整流器开关的品质因数或FOM来选择。
因此,一个或多个实施例适合用于驱动电压取决于输出电流的各种应用(独立于外部部件和温度)从而在各种负载情况下改善效率。
附图说明
现在将仅借助于示例通过参考附图来描述一个或多个实施例,在附图中:
图1是谐振转换器的示意性框图;
图2是一个或多个实施例的总体框图;
图3例示了可以在一个或多个实施例中出现的某些信号;以及
图4和图5是一个或多个实施例的示意性框图。
具体实施方式
在以下描述中,说明一个或多个具体细节,旨在提供对实施例的示例的深度理解。实施例可以在没有这些具体细节中的一个或多个的情况下或者使用其他方法、部件、材料等来获得。在其他情况下,已知的结构、材料或操作未详细说明或描述以防模糊实施例的某些方面。
在本描述的框架中对“实施例”或“一个实施例”的引用意图在于表示关于该实施例描述的特定配置、结构或特征被包括在至少一个实施例中。因此,诸如“在实施例中”或者“在一个实施例中”等可能存在于本描述的一个或多个地方的短语不一定指代同一个实施例。另外,在一个或多个实施例中可以按照任意合适的方式组合特定的构造、结构或特征。
本文中所使用的附图标记仅出于方便目的而提供,因此并不定义实施例的保护范围或者范围。
在图1中,附图标记10整体上表示包括转换器变压器T的谐振转换器,转换器变压器T具有初级绕组W1以及两个次级绕组W21、W22,两个次级绕组W21、W22之间具有中间点以驱动转换器负载L(用虚线示出),转换器负载L可以连接到输出端子Vout。
在一个或多个实施例中,包括电容器Co和电阻器Ro的RC低通网络通过被设置在两个次级绕组W21、W22的中间点与输出端子Vout之间可以耦合到两个次级绕组W21、W22之间的中间点。
在一个或多个实施例中,可以设置一对转换器开关(例如功率MOSFET)Q1、Q2,使其在诸如例如半桥驱动器等驱动器12的控制下交替地接通和关断(例如Q2在Q1“导通”时“关断”,并且Q1在Q2“导通”时“关断”)。
在一个或多个实施例中,转换器开关Q1、Q2之间可以具有中间点以驱动转换器变压器T的初级绕组W1。
在一个或多个实施例中,可以设置一对同步整流器电子开关SR1、SR2(例如MOSFET),每一个耦合到变压器T的次级绕组W21、W22中的相应次级绕组以取代标准整流器从而改善转换器效率。
同步整流器电子开关SR1、SR2的操作可以由同步整流器驱动器14来控制。
在操作中,当通过绕组W21、W22中的任何一个的电流开始向SR1或SR2的MOSFET体二极管中流动时,控制器驱动器14检测二极管的导通状态并且接通(也就是使其导通)MOSFET SR1或SR2。
当控制器驱动器14检测到电流接近零时,其关断(也就是使其非导通)MOSFET SR1或SR2。
在图1的示例性情况下,谐振转换器10是LLC谐振转换器,LLC谐振转换器包括耦合到转换器变压器T的初级绕组W1的串联电感Lr和并联电感Lm以及串联电容器Cr。
图1中例示的这样的转换器的基本操作原理已知,从而使得没有必要在本文中提供更详细的描述。
应当理解,LLC谐振转换器在本文中仅被考虑作为示例:一个或多个实施例通常可以应用于各种其他谐振转换器拓扑,以提供同步整流器(SR)开关的存在从而控制转换器变压器的次级侧的电流流动。
另外,虽然在本文中考虑MOSFET作为这样的同步整流器电子开关SR1、SR2的例示,然而一个或多个实施例通常可以应用于其品质因数或FOM可以定义为乘积RDSON*QGATE的同步整流器开关(SR开关),其中RDSON表示在导通时跨开关(例如漏极到源极)的“导通”电阻,QGATE表示控制端子处的电荷(例如栅极电荷)。与MOSFET一起,诸如例如IGBT等电子开关是这样的开关的例示。
如所指出的,在图1中例示的布置中,SR开关SR1、SR2的操作——也就是与转换器电流同步地接通和关断同步整流器电子开关SR1、SR2——可以涉及例如在体二极管开始导通之后SR MOSFET接通以及在电流接近零时SR MOSFET关断。
这进而可以涉及在VDVS1,2<0.7V时激活的第一阶段1,2(VDVS1,2是SR开关SR1、SR2的体二极管两端的电压),随后是在固定延迟TPD_ON之后如果VDVS1,2<VTH_ON则接通(其中VTH_ON是接通阈值)。作为结果,漏极电压信号可以跟随二极管ISR电流VDVS1,2=-RDS(on)ISR1,2,其中如果VDVS1,2>VDVS1,2_Off则关断。在SR MOSFET关断之后,体二极管将再次导通,漏极-源极电压变为正(例如>1.4V),另一驱动器电路“做好准备(armed)”。
这一操作模式可以对应于简单电路架构,也就是对应于在硅面积方面的低成本解决方案。当SR驱动器被供应有高VCC时,SRMOSFET栅极电压可以被钳位到大约11-12V。那么可以以SRMOSFET栅极驱动损耗为代价限制由于SR MOSFET RDSON所致的导通损耗,尤其是对于高频应用。
另外,转换器效率可能仅对高负载是足够的,并且可能明显依赖于所使用的SRMOSFET的FOM(RDSON*QGATE)。
那么,一个或多个实施例可以依赖于以下原理:使用足够的驱动电压(例如栅极驱动电压)驱动SR MOSFET栅极以便在所有情况下改善效率。在一个或多个实施例中,这一驱动电压可以是所使用的SR开关(例如MOSFET)的FOM以及应用输出电流的函数。
图2的框图是根据一个或多个实施例的同步整流器驱动器14的示意性部分表示,同步整流器驱动器14意图产生驱动电压VGD_OPT_CTRL。这一驱动电压然后可以应用(例如下面要讨论的图4和5中例示的)于SR开关(例如MOSFET)SR1、SR2的控制端子(例如栅极)。
虽然下面为了简化说明假定SR开关SR1、SR2二者的驱动电压具有相同的值,然而应当理解,这样的条件不是强制的,在理论上至少可以考虑不同的值。
在一个或多个实施例中,如图2中例示的同步整流器驱动器14可以包括第一部分141,第一部分141可以用于选择SR MOSFETSR1、SR2的FOM,包括一个或多个编程引脚,例如PROG1、PROG2。
在一个或多个实施例中,如图2中例示的同步整流器驱动器14可以可选地包括第二部分142,第二部分142可以用于生成与SRMOSFET的FOM成比例并且与输出电流成比例的受控SR MOSFET栅极驱动电压。
一个或多个实施例可以依赖于以下认识:对于SR开关,诸如欧姆区域中的MOSFET,总的“导通”电阻RDSON基本上可以包括两项:
–沟道电阻项RCH,其主要取决于栅极过载的量;以及
–另外的项RK,其包括所有电阻贡献(源极扩散、累积、漂移区域、衬底、键合线、金属化以及源极和漏极的接触电阻),其独立于栅极电压。
在几mΩ的RDSON的(合理)假设下,沟道电阻RCH基本上由过载(VGS-VTH)来指示。
还注意到:
–驱动电压的适当值VGD_OPT_CTRL是根据跨SR MOSFET开关的(例如栅极-源极)电压VGS降低功率损耗的值;
–这样的值通过项CGATE和β与输出电流呈线性关系,斜率与SR开关的FOM成比例,其中CGATE和β分别表示栅极电容和晶体管增益。
同步整流器驱动器14的部分141因此可以用于识别和选择SR开关SR1、SR2的FOM。
在一个或多个实施例中,耦合到部分141中的编程引脚PROG1的外部电阻R1可以用于设置SR MOSFET阈值的电压贡献V1,电压V1可以被选择为等于:
V1=R1·IK1
也就是R1=V1/IK1,其中IK1可以是来自SR驱动器14的固定电流(例如10μA)。
类似地,同步整流器驱动器14的部分142可以用于从电压引脚DVS提取电流信息,电压引脚DVS用于感测SR开关SR1、SR2的体二极管两端的电压VDVSi(其中对于SR1和SR2,分别为i=1,2),并且将这一贡献(电压V2)与和SR开关SR1、SR2的FOM成比例的贡献(电压V1)相加。V1和V2的和可以在加法器模块1420中生成,加法器模块1420产生驱动信号VGC_OPT_CTRL
在一个或多个实施例中,耦合到引脚PROG2的外部电阻R2可以用于设置SR开关由于β和CGATE所致的并且也与IOUT成比例的电压贡献V2
比如,电压V2可以被选择为等于:
V2=R2·I2=R2·(DVSAVERAGE/R3)
其中DVSAVERAGE表示DVS的平均值,R3表示恒定电阻值,例如100千欧姆。
为了从DVS电压引脚提取电流信息(例如I2),部分142可以包括采样保持(S&H)模块1422。
在一个或多个实施例中,S&H模块1422可以如图3中示意性地表示的那样操作,其中:
–ISR1和ISR2分别表示穿过SR1和SR2的电流(其中ISR1和ISR2对应于图1的总体图中的IS1和IS2),以及
–DVS1和DVS2表示DVSi信号(对于SR1和SR2,分别为i=1,2),其可以与相应控制信号GD1和GD2复用和采样。
平均电压DVSAVERAGE因此可以可选地在一对SR MOSFET SR1、SR2上来检测。
图3中的底部图表示采样的DVS信号的可能的时间行为,其表示为DVSS,通过下式可以根据其得到平均值DVSAVERAGE
DVSAVERAGE=RDSON·IOUT
V2=R2·I2=R2·(DVSAVERAGE/R3)=R2·(RDSON/R3)·IOUT
这一电压因此与输出电流成比例,并且在一个或多个实施例中,可以将外部电阻R2的值选择为,例如
R2=π/4·(1/CGATE·VCC·2fSW·β)1/2·(R3/RDSON)
其中
CGATE=SR1、SR2的栅极电容
VCC=同步整流器驱动器的馈送电压(参见例如下面要描述的图4中的VCC引脚以及图5中的线路VCC)
fSW=转换器10的开关频率
β=晶体管增益(β=μ·(Cox/2)·(W/L))
以产生控制(驱动)电压VGD_OPT_CTRL,其等于:
VGD_OPT_CTRL=V1+V2=R1·IK1+R2(RDSON/R3)IOUT
或者,简言之,通过如先前详述地选择R1和R2的值:
VGD_OPT_CTRL=VGD=VTH1+m·IOUT
其中m=R2(RDSON/R3)。
图4和5的框图例示了使用电压VGD_OPT_CTRL的各种方式。
图4和5作为示例涉及同步整流器驱动器14,其包括(以本身已知的方式)高压侧开关HS和低压侧开关LS以产生用于SR开关SR1、SR2的相应驱动电流IHS DRV和ILS DRV,其控制端子(栅极)连接到每个SR MOSFET SR1、SR2的栅极驱动引脚GD PIN(也参见图1)。
在图4和5中例示的一个或多个实施例中,高压侧开关HS和低压侧开关LS可以是MOSFET。
在图4和5中,GND表示接地端子(接地平面),并且SR MOSFETSR1、SR2的表示也包括体二极管BD以及栅极-漏极电容CGD、栅极-源极电容CGS和与源极相关联的杂散电感LSTRAY(寄生效应)。
在图4中例示的一个或多个实施例中,在P沟道驱动器的情况下,电压VGD_OPT_CTRL可以连同驱动信号VDRV(从接收“导通”信号GDON的电平移位器1428经由例如放大器链1426导出)被馈送到(线性)电压调节器1424,以便选择用于驱动器级HS、LS的驱动电压。
在图4中例示的布置中,驱动电压VGD_OPT_CTRL因此可以用作LDO(电压调节器)1424的电压参考,使得VDRV电压可以等于驱动电压VGD_OPT_CTRL
如图5中例示的一个或多个实施例在具有自举的N沟道驱动器的情况下可以向接收VBOOT输入信号以及GD ON信号的高压侧驱动器1430提供自举操作。GD ON信号也可以在1432处的逻辑逆之后被馈送给低压侧开关LS的驱动器级1434。
在如图5中例示的布置中,高压侧(HS)驱动器1430可以具有可控栅极电压钳位,并且驱动电压VGD_OPT_CTRL可以用作这样的HS驱动器电路的电压参考,例如以选择用于该驱动器的电压钳位。这一框生成受控栅极电压以便将GD信号钳位到期望的驱动电压。
在图4和5二者的示例性实施例中,以及在其他可能的实施例中,信号VGD_OPT_CTRL,不管怎么产生(例如单独地根据信号V1,或者根据信号V1和V2二者),可能不直接地经由例如引脚GD PIN施加到开关SR1、SR2的驱动端子,而是可以用于控制根据值VGD_OPT_CTRL(例如在其控制下)接通和关断的开关HS和LS的操作。
在一个或多个实施例中,根据表示品质因数的第一信号V1以及可选地根据表示输出电流I2的第二信号V2计算的值VGD_OPT_CTRL本身可以不表示要向SR1、SR2施加的驱动电压。更一般地,在一个或多个实施例中,VGD_OPT_CTRL将表示用于上述驱动电压的值,也就是,可以用于控制驱动电压(例如经由开关HS、LS、调节器1424或HS驱动器1430)的值。
本文中所例示的一个或多个实施例因此可以提供谐振转换器中的同步整流器电子开关的驱动器电路,驱动器电路可耦合到同步整流器电子开关的控制端子以向其施加驱动电压从而将上述同步整流器电子开关与转换器电流同步地接通和关断。
在一个或多个实施例中,驱动器电路14可以包括:
-编程模块141,用于产生表示同步整流器电子开关SR1、SR2的品质因数的第一信号V1,以及
-输出模块1420,用于生成作为表示品质因数的第一信号V1的函数的驱动电压的值VGD_OPT_CTRL
在一个或多个实施例中,驱动器电路14可以可选地包括:电流感测模块142,用于产生表示同步整流器电子开关SR1、SR2的输出电流I2的第二信号V2,其中输出模块1420被配置用于生成驱动电压的值VGD_OPT_CTRL,其为表示品质因数的第一信号(例如V1)以及表示同步整流器电子开关SR1、SR2的输出电流I2的第二信号(例如V2)的函数。
在一个或多个实施例中,驱动电压的值VGD_OPT_CTRL因此可以根据品质因数以及同步整流器电子开关SR1、SR2的输出电流(二者)来生成。
在一个或多个实施例中,满意的操作可以通过仅根据品质因数生成驱动电压的值VGD_OPT_CTRL来实现。
在对潜在原理没有偏见的情况下,细节和实施例可以关于已经仅作为示例描述的内容发生变化,甚至明显变化,而没有偏离保护范围。
保护范围由所附权利要求来限定。

Claims (15)

1.一种用于谐振转换器(10)中的同步整流器电子开关(SR1,SR2)的驱动器电路,所述驱动器电路(14)可耦合(GD PIN)到同步整流器电子开关(SR1,SR2)的控制端子以向所述控制端子施加驱动电压,以与转换器电流同步地接通和关断所述同步整流器电子开关(SR1,SR2),所述驱动器电路(14)包括:
-编程模块(141),用于产生表示所述同步整流器电子开关(SR1,SR2)的品质因数的第一信号(V1),
-电流感测模块(142),用于产生表示所述同步整流器电子开关(SR1,SR2)的输出电流(I2)的第二信号(V2),以及
-输出模块(1420),用于生成所述驱动电压的值(VGD_OPT_CTRL),所述驱动电压的值是表示所述品质因数的所述第一信号(V1)与表示所述同步整流器电子开关(SR1,SR2)的输出电流(I2)的所述第二信号(V2)的函数。
2.根据权利要求1所述的驱动器电路,其中所述输出模块包括加法器(1420),所述加法器(1420)用于生成所述值(VGD_OPT_CTRL)作为所述第一信号(V1)和所述第二信号(V2)之和。
3.根据权利要求2所述的驱动器电路,其中所述第二信号与所述输出电流(I2)成比例。
4.根据权利要求1-3中任一项所述的驱动器电路,其中所述电流感测模块(142)包括平均电路,用于根据所述同步整流器电子开关(SR1,SR2)两端的平均电压(DVSAVERAGE)感测所述输出电流(I2)。
5.根据权利要求4所述的驱动器电路,其中所述平均电路为采样保持电路(1422)。
6.根据权利要求4所述的驱动器电路,其中所述平均电压(DVSAVERAGE)在一对所述同步整流器电子开关(SR1,SR2)上检测。
7.根据权利要求1-3中任一项所述的驱动器电路,包括根据所述驱动电压的所述值(VGD_OPT_CTRL)能够交替地接通和关断的一对驱动器开关(HS,LS),所述一对驱动器开关(HS,LS)之间具有可耦合到同步整流器电子开关(SR1,SR2)的所述控制端子的中间点(GD PIN)。
8.根据权利要求7所述的驱动器电路,其中所述驱动器开关(HS,LS)中的一个(HS)是被馈送有所述驱动电压的值(VGD_OPT_CTRL)作为参考电压的P沟道MOSFET。
9.根据权利要求8所述的驱动器电路,其中所述P沟道MOSFET经由电流调节器(1424)而被馈送有所述驱动电压的值(VGD_OPT_CTRL)作为所述参考电压。
10.根据权利要求7所述的驱动器电路,其中所述驱动器开关(HS,LS)中的一个(HS)是被馈送有所述驱动电压的所述值(VGD_OPT_CTRL)作为栅极电压钳位的自举N沟道MOSFET。
11.一种谐振转换器(10),包括与根据权利要求1到10中的任一项所述的驱动器电路(14)耦合的至少一个同步整流器电子开关(SR1,SR2)。
12.根据权利要求11所述的谐振转换器(10),其中所述至少一个同步整流器电子开关(SR1,SR2)包括至少一个同步整流器MOSFET(SR1,SR2)。
13.根据权利要求11或权利要求12所述的谐振转换器(10),包括:
-转换器变压器(T),具有:
-初级绕组(W1),以及
-之间具有中间点以驱动转换器负载的两个次级绕组(W21,W22),
-能够交替地接通和关断的一对转换器开关(Q1,Q2),所述一对转换器开关(Q1,Q2)之间具有中间点以驱动所述转换器变压器(T)的所述初级绕组(W1),以及
-一对同步整流器电子开关(SR1,SR2),每一个耦合到所述转换器变压器(T)的所述次级绕组(W21,W22)中的相应次级绕组,所述同步整流器电子开关(SR1,SR2)与所述驱动器电路(14)耦合。
14.根据权利要求13所述的谐振转换器,其中所述转换器(10)是LLC转换器,所述LLC转换器包括耦合到所述转换器变压器(T)的所述初级绕组(W1)的串联电感(Lr)和并联电感(Lm)以及串联电容器(Cr)。
15.一种驱动谐振转换器(10)中的同步整流器电子开关(SR1,SR2)的方法,所述方法包括通过向同步整流器电子开关(SR1,SR2)的控制端子施加驱动电压来与转换器电流同步地接通和关断所述同步整流器电子开关(SR1,SR2),所述方法包括根据所述同步整流器电子开关(SR1,SR2)的品质因数以及所述同步整流器电子开关(SR1,SR2)的输出电流(I2)生成所述驱动电压的值(VGD_OPT_CTRL)。
CN201610184577.1A 2015-09-23 2016-03-28 用于同步整流器开关的驱动器电路、对应转换器和方法 Active CN106549557B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102015000054574 2015-09-23
ITUB2015A003819A ITUB20153819A1 (it) 2015-09-23 2015-09-23 Circuito di pilotaggio per switch raddrizzatori sincroni in convertitori risonanti, convertitore e procedimento corrispondenti

Publications (2)

Publication Number Publication Date
CN106549557A CN106549557A (zh) 2017-03-29
CN106549557B true CN106549557B (zh) 2019-08-13

Family

ID=54780430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610184577.1A Active CN106549557B (zh) 2015-09-23 2016-03-28 用于同步整流器开关的驱动器电路、对应转换器和方法

Country Status (3)

Country Link
US (1) US9929659B2 (zh)
CN (1) CN106549557B (zh)
IT (1) ITUB20153819A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966837B1 (en) 2016-07-08 2018-05-08 Vpt, Inc. Power converter with circuits for providing gate driving
US9893639B1 (en) * 2017-04-06 2018-02-13 Gem-Micro Semiconductor Inc. Synchronous rectifier control circuit and method using volt-second balancing
KR102435979B1 (ko) * 2017-06-07 2022-08-26 현대자동차주식회사 직류-직류 컨버터 시스템
US10523110B2 (en) 2017-09-28 2019-12-31 Semiconductor Components Industries, Llc Synchronous rectifier controller for offline power converter and method therefor
US11592911B2 (en) 2020-03-13 2023-02-28 Stmicroelectronics S.R.L. Predictive data-reconstruction system and method for a pointing electronic device
US11817791B2 (en) 2020-10-06 2023-11-14 Stmicroelectronics S.R.L. Synchronous rectifier driver circuit, related integrated circuit, electronic resonant converter and method
US20230402932A1 (en) * 2020-11-06 2023-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Circuit and Method for Controlling Rectifier, and Circuit Including the Rectifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540600A (zh) * 2009-04-09 2009-09-23 复旦大学 一种应用于开关电容电路的双自举开关
CN104124874A (zh) * 2014-07-16 2014-10-29 广州金升阳科技有限公司 一种超高频隔离谐振变换器
CN104578772A (zh) * 2014-12-26 2015-04-29 福建联迪商用设备有限公司 一种升压电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559683A (en) * 1994-09-30 1996-09-24 Apple Computer, Inc. Flyback switching power supply with bootstrapped gate drive
CN1860669A (zh) * 2003-09-30 2006-11-08 皇家飞利浦电子股份有限公司 用于集成vrm功率场效应晶体管的集成接口电路
CN101099121A (zh) * 2004-11-12 2008-01-02 德州仪器公司 高效率dc-dc同步降压转换器
CN100424975C (zh) * 2005-02-25 2008-10-08 台达电子工业股份有限公司 Llc串联谐振变换器与其同步整流功率开关驱动方法
US7345894B2 (en) * 2005-09-27 2008-03-18 Carl Sawtell Cascode switch power supply
CN101572485B (zh) * 2008-04-30 2012-06-06 杭州茂力半导体技术有限公司 用于副边同步整流管的智能驱动控制方法及装置
CN102497104B (zh) * 2011-11-30 2014-04-30 深圳市理邦精密仪器股份有限公司 一种应用于医疗设备的具有同步整流控制的谐振变换电路
CN103683953A (zh) * 2013-12-02 2014-03-26 华南理工大学 一种反激变换器同步整流的自适应驱动方法
US9787172B2 (en) * 2014-06-19 2017-10-10 Dell Products Lp Methods and systems for implementing adaptive FET drive voltage optimization for power stages of multi-phase voltage regulator circuits
US9716439B2 (en) * 2015-01-30 2017-07-25 Infineon Technologies Austria Ag Self supply for synchronous rectifiers
CN205490106U (zh) * 2015-09-23 2016-08-17 意法半导体股份有限公司 驱动器电路和谐振转换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540600A (zh) * 2009-04-09 2009-09-23 复旦大学 一种应用于开关电容电路的双自举开关
CN104124874A (zh) * 2014-07-16 2014-10-29 广州金升阳科技有限公司 一种超高频隔离谐振变换器
CN104578772A (zh) * 2014-12-26 2015-04-29 福建联迪商用设备有限公司 一种升压电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Boris Kozacek.Analysis of Figure Of Merit – power transistor's qualitative parameter.《IEEE》.2015,

Also Published As

Publication number Publication date
ITUB20153819A1 (it) 2017-03-23
US20170085188A1 (en) 2017-03-23
CN106549557A (zh) 2017-03-29
US9929659B2 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
CN106549557B (zh) 用于同步整流器开关的驱动器电路、对应转换器和方法
US7839131B2 (en) Gate driving scheme for depletion mode devices in buck converters
CN101039067B (zh) 电源控制电路、电源及其控制方法
US9559683B2 (en) System and method for a switch having a normally-on transistor and a normally-off transistor
CN104065251B (zh) 具有受控栅极放电电流的驱动器电路
EP2779452B1 (en) Switchable current source circuit and method
US10256733B2 (en) Tapped winding flyback converter for multiple output voltages
US8076918B2 (en) Multi-phase driving circuit with phase adjusting function
TW201041301A (en) Cascoded level shifter protection
US10666137B2 (en) Method and circuitry for sensing and controlling a current
US10985748B2 (en) Drive voltage booster
US20100176657A1 (en) Four quadrant mosfet based switch
CN205490106U (zh) 驱动器电路和谐振转换器
US9515655B2 (en) Multiplexing voltages on functional input pin with pass device
US9742281B2 (en) Inductive buck-boost-converter and method for driving an inductive buck-boost-converter
US9692304B1 (en) Integrated power stage device with offset monitor current for sensing a switch node output current
US20040264217A1 (en) Level shifted drive for clamp device
CN109155588A (zh) 用于dc-dc转换器的功率级
US8395369B2 (en) Buck converter with delay circuit
US20240097675A1 (en) Reverse conduction loss reduction circuit, semiconductor device, and switching power supply
US20230299685A1 (en) Switch mode power converter with selectable power paths
US10186942B2 (en) Methods and apparatus for discharging a node of an electrical circuit
US11056973B2 (en) Voltage converter having light-load control
CN104022626B (zh) 驱动电路
KR20060070823A (ko) 멀티 피드백 스위칭 파워 서플라이 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant