CN106537770A - 宽带低功率放大器 - Google Patents

宽带低功率放大器 Download PDF

Info

Publication number
CN106537770A
CN106537770A CN201580038871.5A CN201580038871A CN106537770A CN 106537770 A CN106537770 A CN 106537770A CN 201580038871 A CN201580038871 A CN 201580038871A CN 106537770 A CN106537770 A CN 106537770A
Authority
CN
China
Prior art keywords
transistor
pair
differential
coupled
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580038871.5A
Other languages
English (en)
Other versions
CN106537770B (zh
Inventor
K·L·阿卡迪亚
Z·陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN106537770A publication Critical patent/CN106537770A/zh
Application granted granted Critical
Publication of CN106537770B publication Critical patent/CN106537770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45654Controlling the active amplifying circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/24Automatic control in frequency-selective amplifiers
    • H03G5/28Automatic control in frequency-selective amplifiers having semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45332Indexing scheme relating to differential amplifiers the AAC comprising one or more capacitors as feedback circuit elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45488Indexing scheme relating to differential amplifiers the CSC being a pi circuit and a capacitor being used at the place of the resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45494Indexing scheme relating to differential amplifiers the CSC comprising one or more potentiometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45644Indexing scheme relating to differential amplifiers the LC comprising a cross coupling circuit, e.g. comprising two cross-coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45691Indexing scheme relating to differential amplifiers the LC comprising one or more transistors as active loading resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

提供了包括配置成响应于差分输入电压(输入p、输入m)而引导尾电流的一对差分晶体管(M1、M2)的放大器(200)。该放大器(200)还包括将差分输出电压(输出p、输出m)中的高频变化跨导为通过该对差分晶体管(M1、M2)来传导的差分偏置电流的跨导体(P4、P6)。

Description

宽带低功率放大器
相关申请
本申请要求于2014年7月18提交的美国专利申请序列号14/335,421的权益,其通过引用整体纳入于此。
技术领域
本申请涉及放大器,尤其涉及宽带低功率放大器。
背景
现代微处理器在宽位字上操作。例如,对于一些微处理器而言处理64位字是常规的。随着处理器时钟速率增大得越来越高,在宽位总线上路由此类相对较宽位字变得有问题。在高传输速率下,关于在宽位总线中的单独迹线上的传播的不可避免的偏斜可能导致不可接受的误比特率。此外,此类总线需求大量功率且设计起来是昂贵的。
为了在没有与高速宽位总线相关联的偏斜和失真问题的情况下实现数据字的高速传输,已经开发了串行器-解串行器(SERDES)系统。SERDES发射机将数据字串行化到高速串行数据流中。SERDES接收机接收高速串行数据流并且将其解串行化回到并行数据字中。串行传输通常是差分的并且包括嵌入式时钟。由此减轻了与高速宽位数据总线相关联的偏斜和失真问题。
尽管SERDES系统实现了甚高速数据传输(诸如10吉比特每秒或者甚至更高的速率),但是发射机与接收机之间的差分串行数据信道的传输特性在跨对应的5Ghz的奈奎斯特带宽上是非线性的。相反,该信道具有减小数据带宽的较高频率部分的振幅的频率相关响应。为了抵消结果得到的失真,SERDES接收机包括跨频谱是非线性的、但是取而代之增强所接收到的数据频谱的较高频带的放大器。
为了提供如图1中所示的这一取决于频率的放大,常规的SERDES接收机放大器可包括驱动第二级跨阻放大器级110的第一级跨导放大器级105。在第一级105内,一对差分晶体管M1和M2由电流源I1和I2来偏置。这些电流源结合地创建一偏置电流,该偏置电流响应于从分别驱动晶体管M1和M2的栅极的输入电压IN和INX形成的差分输入电压而在晶体管M1与M2之间被引导。由晶体管M1和M2传导的电流中结果得到的差值在它们的漏极处产生电压差,这些漏极是通过负载电阻RL耦合至电源的。第二级110中的跨阻放大器115将跨晶体管的漏极的差分电压放大到从输出电压OUT和OUTX形成的差分输出电压中。第二级110包括由一对差分晶体管M3和M4形成的负反馈环路,该对差分晶体管M3和M4由电流源I3来偏置。例如,假设晶体管M3的漏极电压VM3比晶体管M4的漏极电压VM4高。跨阻放大器115将随后摆动比输出电压OUT更高的输出电压OUTX。如果漏极电压中的这一变化是相对较低的频率,则输出电压OUTX的高值将穿过低通滤波器(LPF)以导通晶体管M4。晶体管M4随后将使它的漏极电压VM4放电,这减小了漏极电压VM3和VM4之间的差值。相反,如果漏极电压中的该变化是相对较高的频率,则漏极电压VM3将保持比漏极电压VM4更高。通过低通滤波器以及该对差分晶体管M3和M4的负反馈由此减小了较低频率处的第二级放大器110的增益。但是,该增益的减小要求漏极电压VM3和VM4的放电,并且由此增大功耗。此外,将两级用于放大需求大量的管芯面积。
相应地,在本领域中需要在宽带带宽上提供高频增强,而同时具有更大的密度和降低的功率需求的改进的放大器。
概述
提供了具有一对差分晶体管的放大器,该对差分晶体管由跨其栅极的差分输入电压驱动以产生跨该对差分晶体管的一对输出端子的差分输出电压。第一负载电阻器以及第一跨导体耦合至第一输出端子。类似地,第二负载电阻器以及第二跨导体耦合至剩余的第二输出端子。放大器还包括将差分输出电压滤波以产生经滤波的差分电压的高通滤波器。
在经滤波的差分电压为零时,诸跨导体被偏置以各自驱动偏置电流通过对应的差分晶体管对。因为每个跨导体将随后传导相同的偏置电流,所以由偏置电流之间的差值定义的差分偏置电流将等于零。随着经滤波的差分电压从零增大,差分偏置电流从零增大。放大器的带宽和高频增益随后相应地通过跨导体从该正反馈增大。相反,增大带宽和增益的常规解决方案是简单地用减小电阻的负载电阻器来替换负载电阻器,但是这种增大造成跨所有频率通过负载电阻器的增大的电流损耗。本文中所公开的放大器在较高的频率处获得该增大的增益以及增大的宽度,但是节省功率,因为负载电阻器可相应地保留相对较高的电阻以减小功耗。可通过以下详细描述更好地领会这些以及其他有利特征。
附图简述
图1是现有技术放大器的示意图。
图2是根据本公开的实施例的放大器的示意图。
图3是解说具有和不具有正反馈的图2的放大器的频率响应。
图4解说了可各自纳入图2的放大器的三个接收机放大器的串行安排。
图5示出了跨导体晶体管的多个实例化以及图2的放大器中的对应的启用晶体管。
图6是根据本公开的实施例的示例放大方法的流程图。
详细描述
提供了包括各自具有耦合至对应的负载电阻器的第一端子的一对差分晶体管的单级放大器。该对差分晶体管的栅极形成放大器的一对差分输入节点。该对差分晶体管基于跨它们的栅极的差分输入电压来引导尾电流。该差分对中的第一晶体管具有耦合至第一负载电阻器的第一端子。类似地,该差分对中剩余的第二晶体管具有耦合至第二负载电阻器的第一端子。第一晶体管的第二端子耦合至第一电流源。类似地,第二晶体管的第二端子耦合至第二电流源。两个电流源都被偏置以传导相同的偏置电流,该偏置电流组合地形成在差分晶体管之间引导的尾电流。可变电容器和可变电阻器可被耦合在第二端子之间。
取决于跨它们的栅极施加的差分输入电压,与该差分对中剩余的晶体管相比,来自电流源的尾电流中的较多尾电流将通过差分对中的第一和第二晶体管之一来引导。通过该差分对来引导的此电流也通过相应的负载电阻器来引导尾电流。取决于通过每一个负载电阻器来引导的电流量,在差分对中的晶体管的第一端子处产生相应的欧姆电压变化。以此方式,通过该对差分晶体管来引导的电流产生跨它们的第一端子的差分输出电压。
该对差分晶体管的第一端子还耦合至诸如跨导体晶体管之类的跨导体。例如,第一跨导体晶体管可耦合至第一晶体管的第一端子。类似地,第二跨导体晶体管可耦合至第二晶体管的第一端子。高通滤波器将跨差分对中的晶体管的第一端子的差分输出电压进行滤波以产生经高通滤波的差分电压。在经高通滤波的差分电压为零(DC)时,每一个跨导体晶体管都被偏置以传导DC偏置电流。在DC时,差分偏置电流(通过每一个跨导体来传导的电流之间的差值)也将等于零。跨导体晶体管通过增大差分偏置电流来响应经高通滤波的差分电压的增大。例如,高通滤波器可包括第一高通滤波器和第二高通滤波器。第一高通滤波器耦合在差分对中的第一晶体管的第一端子与第二跨导体晶体管的栅极之间。以此方式,由第二跨导体晶体管传导的电流响应于差分输入电压中的高频变化而交替地从其DC偏置值增大和减小。类似地,第二高通滤波器耦合在差分对中的第二晶体管的第一端子与第一跨导体晶体管的栅极之间。通过第一跨导体晶体管传导的电流将由此响应于差分输入电压中的高频变化而交替地从其DC偏置值增大和减小。
注意,通过跨导体晶体管来传导的差分偏置电流的增大会增大放大器的增益,该增益由差分输出电压与差分输入电压的比值来定义。由此,跨导体晶体管响应于差分输入电压中的相对较高频率的变化而提供正反馈,这增大了放大器的带宽。在现有技术中,通过减小负载电阻器的负载电阻来增大带宽和高频增益。通过所公开的放大器中的跨导体晶体管的正反馈由此类似于在差分输入电压的高频区间期间提供减小它们的电阻的自适应负载电阻器。这是相当有利的,因为在没有电流损耗的情况下获得了宽的带宽,该电流损耗原本将由于具有跨所有频率减小的电阻的负载电阻器的常规使用而引起。
一般而言,差分输入电压将取决于数据内容而具有不同数量的高频和低频区间或周期。例如,要被传送的数据可以使得差分输入电压每一比特周期都改变状态。在此时间期间,差分输入电压中的变化将是相对较高频的。相反,要被传送的数据可以使得差分输入电压不是每一比特周期都改变状态。在此周期期间的差分输入电压中的变化将是相对较低频的。在差分输入电压中的高频变化期间通过跨导体晶体管的正反馈增大了放大器的增益和带宽,而没有关于图1的常规两级放大器所讨论的功率惩罚。具体而言,在没有来自所需要的附加放大级的管芯面积需求以及没有来自使用负反馈以减小低频增益的过量电流需求和功耗的情况下,增大了带宽。
该对差分晶体管可包括一对NMOS晶体管或一对PMOS晶体管。在PMOS实施例中,该对差分晶体管的第一端子将通过负载电阻器来耦合至接地。相反,在NMOS实施例中,第一端子通过负载电阻器来耦合至供电节点。以下讨论不失一般性地涉及NMOS差分对实施例。
图2中示出了示例放大器200。NMOS晶体管M1和M2形成引导由来自电流源NMOS晶体管M3和M4的偏置电流形成的尾电流的一对差分晶体管,该电流源NMOS晶体管M3和M4使其源极耦合至接地。差分对晶体管M1的源极耦合至电流源晶体管M3的漏极。差分对晶体管M2的源极耦合至电流源晶体管M4的漏极。偏置电压n偏置(nbias)驱动电流源晶体管M3和M4的栅极以建立在差分对晶体管M1与M2之间被引导的尾电流。引导尾电流的差分输入电压包括驱动差分对晶体管M1的栅极的输入电压“输入p”(inp)和驱动差分对晶体管M2的栅极的互补输入电压“输入m”(inm)。随着输入电压“输入p”循环高于互补输入电压“输入m”,与通过差分对晶体管M2引导的剩余电流相比,越来越多的由电流源晶体管M3和M4建立的尾电流通过差分对晶体管M1来引导。相反,随着互补电压“输入m”循环高于输入电压“输入p”,与通过差分对晶体管M1引导的剩余电流相比,越来越多的尾电流通过差分对晶体管M2来引导。
对尾电流的这一引导产生跨分别耦合至差分对晶体管M1和M2的漏极的一对负载晶体管RL的欧姆电压降。每一个负载电阻器RL还耦合至提供电源电压VDD的供电节点。如果差分输入电压使得所有的偏置电流通过差分对晶体管M1来引导,则基本上没有电流流过差分对晶体管M2。由此,不存在跨耦合至差分对晶体管M2的漏极的负载电阻器RL的欧姆电压降,以使得差分对晶体管M2的漏极电压“输出p”(outp)被充电至VDD。相反,取决于对应的负载电阻器RL中的欧姆损耗,差分对晶体管M1的漏极电压“输出n”(outn)随后将朝接地放电。为了减小驱动差分对晶体管M1和M2的栅极中的米勒效应,电容器C1耦合在差分对晶体管M1的栅极与差分对晶体管M2的漏极之间。类似地,电容器C2耦合在差分对晶体管M2的栅极与差分对晶体管M1的漏极之间。
对应的跨导体晶体管耦合至每一个差分对晶体管的漏极。例如,跨导体PMOS晶体管P4耦合至差分对晶体管M1的漏极。对应的跨导体PMOS晶体管P6耦合至差分对晶体管M2的漏极。如果不存在这些跨导体晶体管,则将仅由耦合至差分对晶体管M1和M2的源极的RC网络来产生由输出电压“输出p”和“输出m”定义的差分输出电压的高频增强。鉴于此,RC网络中的一对可变电阻器Rs耦合在差分对晶体管M1与M2的源极之间。另外,RC网络中的剩余的一对可变电容器Cs耦合在差分对晶体管M1与M2的源极之间。将领会,单个可变电阻器可被用来替代该对可变电阻器Rs。类似地,单个可变电容器可被用来替代该对可变电容器Cs。
在一个实施例中,PMOS跨导体晶体管可被认为包括用于响应于经高通滤波的差分电压而增大增益的装置,其中该增益是由差分输出电压与差分输入电压的比值来定义的。
在没有来自跨导体晶体管P4和P6的正反馈的情况下,来自可变电阻器Rs的电阻量和来自可变电容器Cs的电容量确定关于由输入电压“输入p”和“输入m”所定义的差分输入电压到由输出电压“输出p”和“输出m”所定义的差分输出电压中的放大的高频增强。图3示出放大器200的示例频率响应300,其中如本文中进一步讨论的,跨导体晶体管P4和P6被禁用。在此种情形中,高频增强仅由耦合至差分对晶体管M1和M2的源极的RC网络来建立。对于具有频率响应300的实施例而言,被放大的数据信号的带宽为约5GHz。与频率响应300相反,图3中示出的频率响应305对应于启用跨导体晶体管P4和P6。作为此启用的结果,与频率响应300相比,频率响应305具有增大的带宽以及高频响应的附加增强。
由可变电阻器Rs和可变电容器Cs形成的RC网络可在替换实施例中被改变。例如,如果可变电容器Cs被消除,则频率响应将是平的,因为它将不具有如频率响应300和305所示的高频尖峰。可由此形成放大器200的串联链,其中一些放大器200包括可变电容器Rs而其他的将不包括。例如,图4解说了可变增益放大器(VGA)、连续时间线性均衡器(CTLE)放大器、以及求和放大器的串联链。每一个放大器可以类似地如关于图2的放大器200讨论的那样来构建。然而,在VGA放大器中,可变电容器Cs被消除以使得对于较高频率而言不存在尖峰。VGA放大器的VGA增益设置将取而代之控制可变电阻器Rs的可变电阻量。相反,CTLE放大器可包括可变电容器Cs以使得CTLE放大器的线性均衡器增益设置确定高频尖峰的量,诸如图3中的频率响应305所示。最终,求和放大器可排除可变电容器Cs并且将可变电阻器Rs替换为固定电阻。由此对于求和放大器而言将没有增益设置。
一般而言,对于将由差分输出电压驱动的任何端点而言,放大器200所期望的频率响应的类型取决于负载电容CL(未解说)。该负载电容结合负载电阻器RL的电阻影响放大器200的频率响应的极点。放大器200包括一对高通滤波器205和210,它们结合跨导体晶体管P4和P6来增大该极点的值,以便扩展频率响应305的带宽。具体而言,高通滤波器205包括从差分对晶体管M1的漏极耦合至跨导体晶体管P6的栅极的电容器Cf。高通滤波器205还包括耦合在携带偏置电压“p偏置”(pbias)的节点与跨导体晶体管P6的栅极之间的电阻器Rf。替代输出电压“输出m”中的高频变化,偏置电压“p偏置”驱动跨导体晶体管P6的栅极以建立其DC偏置电流。高通滤波器210类似于高通滤波器205,因为高通滤波器210也包含从差分对晶体管M2的漏极耦合至跨导体晶体管P4的栅极的电容器Cf。另外,高通滤波器210包括从“p偏置”电压节点耦合至跨导体晶体管P6的栅极的电阻器Rf。
如果输入电压“输入p”足够高于互补输入电压“输入m”,则输出电压“输出m”将朝接地放电,而输出电压“输出p”将朝VDD充电。如果差分输入电压中的该特定变化是高频变化,则高通滤波器205将向跨导体晶体管P6的栅极传导输出电压“输出m”的降低的电压。跨导体晶体管P6随后传导更多的电流(与由偏置电压“p偏置”建立的任何DC偏置值相比),这使得输出电压“输出p”朝VDD推升得甚至更高。进而,输出电压“输出p”的该突然增大通过高通滤波器210来滤波以截止跨导体晶体管P4,以使得输出电压“输出m”可甚至更低地朝接地放电。通过跨导体晶体管P4和P6来传导的差分偏置电流中的该增大也通过差分对晶体管M1和M2来传导。响应于差分输入电压中的高频变化的正反馈会增大放大器200的带宽和高频增益。这是非常有利的,因为负载电阻器RL的负载电阻可随后维持在相对较高的值以降低功耗。相反,减小负载电阻以增大带宽的现有技术实践会增大功耗。
在互补输入电压“输入m”足够高于输入电压“输入p”时发生类似效应。对于此类变化,输出电压“输出m”将朝VDD充电,而输出电压“输出p”将朝接地放电。如果差分输入电压中的该变化足够突然(高频),则高通滤波器210将向跨导体晶体管P4的栅极传递输出电压“输出p”的低电压状态。与其DC偏置值(如由偏置电压p偏置建立的)相比,通过跨导体晶体管P4的电流将随后被增大,以进一步朝VDD推升输出电压“输出m”。高通滤波器205向跨导体晶体管P6的栅极传递输出电压“输出m”的这一突然较高的值,跨导体晶体管P6随后传递更少的电流以使得输出电压“输出p”可进一步朝接地放电。以此方式,高通滤波器210和205结合跨导体晶体管P4和P6提供正反馈,以响应于差分输入电压中的高频变化而跨差分对晶体管M1和M2的漏极来推升差分输出电压。
在没有该正反馈的情况下,负载电容和负载电容器RL的电阻定义放大器200的固有频率,该固有频率控制其带宽。正是该固有频率控制图3的频率响应300中高于5GHz的滚降。如果负载电容较高,则现有技术放大器将需要减小负载电阻以维持足够的带宽和增益。但是,负载电阻的此类减小会增大通过差分对晶体管M1和M2来放电的电流量,并且由此增大功耗。相反,本文中所公开的正反馈使得带宽能够被维持而无需要求负载电阻的此类减小,并且由此节省功率。可以证明,具有被启用的跨导体晶体管P4和P6的放大器200的固有频率等于负载电阻RL、负载电容CL、高通滤波器电容Cf、以及高通滤波器电阻Rf的乘积的倒数的平方根。由此,与将在没有正反馈的情况下发生的固有频率相比(该固有频率将取而代之等于负载电阻RL和负载电容CL的乘积的倒数的平方根),高通电容Cf和高通电阻Rf扩展了固有频率。
为了提供自适应地调谐正反馈量并且由此推升差分输出电压中的较高频率分量的能力,跨导体晶体管P4和P6可各自包括对应的多个晶体管,该多个晶体管中的每个晶体管由启用信号控制。具体而言,跨导体晶体管P4可包括各自通过对应的开关(诸如对应的晶体管P2)来耦合至供电节点的多个跨导体晶体管P4。每一个晶体管P2是由确定对应的跨导体晶体管P4是否将对任何正反馈作出贡献的启用信号en来控制的。类似地,每一个跨导体晶体管P6可包括各自通过对应的开关(诸如对应的晶体管P5)来耦合至供电节点的多个跨导体晶体管P6。启用信号en控制对应的跨导体晶体管P6是否将对任何正反馈作出贡献。
复数个晶体管P5和P6的示例实施例在图5中示出。存在m个晶体管P5,范围从第零晶体管P50到第(m-1)晶体管P5m-1,其中m是复数(plural)正整数。每一个P5晶体管使其源极耦合至用于提供电源电压VDD的电源节点。另外,存在m个对应的跨导体晶体管P6,范围从第零晶体管P60到第(m-1)晶体管P6m-1。每一个跨导体晶体管P6的源极耦合至对应的晶体管P5的漏极。m比特宽的启用字en<0:m-1>驱动P5晶体管的栅极。具体而言,启用比特en<0>驱动P50晶体管的栅极,启用比特en<1>驱动P51晶体管的栅极,以此类推,以使得启用比特en<m-1>驱动P5m-1晶体管的栅极。启用比特通过变为低来断言以使得对应的P5晶体管导通。如果P6晶体管对应的P5晶体管被启用以导通,则P6晶体管可提供如以上讨论的正反馈。P4和P2晶体管被类似地安排。
为了不论经断言的启用比特的数目如何皆保持输出节点的DC偏置不变化,多个PMOS跨导体晶体管(P8)对应于多个P6跨导体晶体管。类似地,多个PMOS跨导体晶体管(P3)对应于多个P4跨导体晶体管。P3和P8跨导体晶体管的栅极由偏置电压“p偏置”来偏置。P4和P6跨导体晶体管的栅极由图2的高通滤波器205和210产生的“p偏置”的HF增强版本来偏置。由此,偏置电压“p偏置”确定输出节点的DC偏置。每一个P8晶体管的源极耦合至对应的PMOS晶体管(P7)的漏极,PMOS晶体管(P7)使其源极绑定至供电节点。类似于P8和P7晶体管的安排,每一个P3晶体管的源极耦合至对应的PMOS晶体管(P1)的漏极,PMOS晶体管(P1)使其源极耦合至供电节点。互补启用字en_b<0:m-1>驱动P1和P7晶体管的栅极。具体地,第零启用比特en_b<0>驱动第零P1晶体管和第零P7晶体管的栅极。类似地,第一启用比特en_b<1>驱动第一P1晶体管和第一P7晶体管的栅极,以此类推,以使得最后启用比特en_b<m-1>驱动最后第(m-1)P1晶体管和最后第(m-1)P7晶体管的栅极。
可参考以下示例实施例更好地领会启用比特和互补启用比特的互补特性,其中P1,、P2、P3、P4、P5、P6、P7、和P8晶体管中的每一个晶体管的数目m等于8。例如,假设启用比特使得P2和P5晶体管中的六个晶体管是导通的。对应的六个P4跨导体晶体管以及对应的六个P6跨导体晶体管将由此提供如以上关于放大器200所讨论的正反馈。在此类情形中,将随后存在P7晶体管中的两个以及P1晶体管中的两个使其en_b比特被断言为低,以使得它们将是导通的。对应的两个P3跨导体晶体管以及对应的两个P8跨导体晶体管将随后根据偏置电压“p偏置”来传导。更一般地,如果启用比特中的i被断言,则互补启用比特中的m-i将被断言,其中i是大于或对于零且小于或等于m的整数。
通过改变被启用以提供正反馈的P4和P6跨导体晶体管的数目,可相应地改变对结果得到的固有频率的影响并且由此改变放大器200的带宽扩展。此外,也可以相应地改变图3的频率响应305的高频增强的程度。再次参照图4,经启用的P4和P6跨导体晶体管的数目是VGA和CTLE放大器的增益设置的一部分。在求和放大器中,此数目可以是固定的,诸如启用每一个可能的P4和P6跨导体晶体管以提供正反馈。现在将讨论一种示例操作方法。
图6中示出了用于放大器的示例操作方法的流程图。动作600包括:响应于差分输入电压而通过差分对晶体管来引导尾电流以产生差分输出电压。响应于包括输入电压“输入p”和“输入m”的差分输入电压而通过差分对晶体管M1和M2来引导偏置电流以产生包括输出电压“输出p”和“输出m”的差分输出电压是动作600的示例。动作605包括将差分输出电压进行高通滤波以产生经高通滤波的差分电压。P4和P6跨导体晶体管的栅极电压之间的差值是此类经高通滤波的差分电压的示例。最后,动作610包括将经高通滤波的差分电压跨导为通过该对差分晶体管来传导的差分偏置电流。P6和P4跨导体晶体管提供将其栅极处经高通滤波的差分电压跨导为通过该对差分晶体管M1和M2来驱动的差分偏置电流的示例。
如本领域普通技术人员至此将领会的并取决于手头的具体应用,可以在本公开的设备的材料、装置、配置和使用方法上做出许多修改、替换和变动而不会脱离本公开的精神和范围。有鉴于此,本公开的范围不应当被限定于本文所解说和描述的特定实施例(因为其仅是作为本公开的一些示例),而应当与所附权利要求及其功能等同方案完全相当。

Claims (30)

1.一种电路,包括:
配置成响应于差分输入电压而引导尾电流的一对差分晶体管;
配置成传导所述尾电流的一部分的一对负载电阻器;
配置成将差分输出电压进行滤波以产生经高通滤波的差分电压的差分高通滤波器,所述差分输出电压是跨所述一对差分晶体管的一对输出端子来定义的;以及
配置成响应于所述差分输入电压中的高频变化而通过所述一对差分晶体管来驱动差分偏置电流的跨导体。
2.如权利要求1所述的电路,其特征在于,所述一对负载电阻器包括:
耦合至所述输出端子中的第一输出端子的第一负载电阻器;以及
耦合至所述输出端子中的剩余的第二输出端子的第二负载电阻器。
3.如权利要求1所述的电路,其特征在于,所述差分对中的第一晶体管包括所述输出端子中的第一输出端子,并且所述差分对中的第二晶体管包括所述输出端子中的第二输出端子,并且其中所述跨导体包括耦合至所述第一晶体管的输出端子的第一多个跨导体晶体管以及耦合至所述第二晶体管的输出端子的第二多个跨导体晶体管。
4.如权利要求3所述的电路,其特征在于,进一步包括对应于所述第一多个跨导体晶体管的第一多个开关,其中所述第一多个跨导体晶体管中的每个跨导体晶体管通过所述第一多个开关中的对应开关来耦合至供电节点。
5.如权利要求4所述的电路,其特征在于,所述第一多个开关包括使其栅极由启用字来控制的多个开关晶体管。
6.如权利要求5所述的电路,其特征在于,进一步包括耦合至所述第一晶体管的输出端子的第三多个跨导体晶体管以及对应于所述第三多个跨导体晶体管的第二多个开关晶体管,其中所述第三多个跨导体晶体管中的每个跨导体晶体管通过所述第二多个开关晶体管中的对应的开关晶体管来耦合至所述供电节点,并且其中所述第二多个开关晶体管被配置成使其栅极由所述启用字的互补来控制。
7.如权利要求1所述的电路,其特征在于,所述差分对中的第一晶体管包括第二端子并且所述差分对中的第二晶体管包括第二端子,所述电路进一步包括:
耦合至所述第一晶体管的第二端子的第一电流源;以及
耦合至所述第二晶体管的第二端子的第二电流源。
8.如权利要求7所述的电路,其特征在于,所述第一晶体管和所述第二晶体管各自是NMOS晶体管,并且其中所述第二端子是源极端子。
9.如权利要求7所述的电路,其特征在于,进一步包括:
在所述第二端子之间耦合的可变电阻器;以及
在所述第二端子之间耦合的可变电容器。
10.如权利要求9所述的电路,其特征在于,所述可变电阻器包括一对可变电阻器,并且其中所述可变电容器包括一对可变电容器。
11.如权利要求1所述的电路,其特征在于,所述跨导体包括耦合至所述输出端子中的第一输出端子的第一多个PMOS晶体管,以及耦合至所述输出端子中的第二输出端子的第二多个PMOS晶体管。
12.如权利要求11所述的电路,其特征在于,所述差分高通滤波器包括在所述输出端子中的所述第一输出端子与所述第二多个PMOS晶体管的栅极之间耦合的第一高通滤波器。
13.如权利要求12所述的电路,其特征在于,所述差分高通滤波器进一步包括在所述输出端子中的所述第二输出端子与所述第一多个PMOS晶体管的栅极之间耦合的第二高通滤波器。
14.一种方法,包括:
响应于差分输入电压而通过一对差分晶体管来引导尾电流以产生差分输出电压,
将所述差分输出电压进行高通滤波以产生经高通滤波的差分电压;以及
将经高通滤波的差分电压跨导为通过所述一对差分晶体管来传导的差分偏置电流。
15.如权利要求14所述的方法,其特征在于,引导所述尾电流包括通过一对差分NMOS晶体管来引导所述尾电流。
16.如权利要求14所述的方法,其特征在于,进一步包括:
从多个跨导晶体管中进行选择,其中将所述经高通滤波的差分电压进行跨导包括:使用所选择的跨导晶体管来将所述经高通滤波的差分电压进行跨导。
17.如权利要求16所述的方法,其特征在于,从所述多个跨导晶体管中进行选择包括:选择足以提供所期望的带宽扩展量的跨导晶体管的数目,所述方法进一步包括
用经选择的数目的偏置跨导体晶体管来偏置所述差分对,该经选择的数目与经选择的跨导晶体管的数目互补。
18.如权利要求14所述的方法,其特征在于,进一步包括调节耦合至所述一对差分晶体管的一对第二端子的可变电阻器的可变电阻,以调节所述差分输出电压与所述差分输入电压相比的增益。
19.如权利要求14所述的方法,其特征在于,进一步包括调节耦合至所述一对差分晶体管的一对第二端子的可变电阻器的可变电容,以调节所述差分输出电压与所述差分输入电压相比的增益。
20.一种电路,包括:
一对差分晶体管,其配置成响应于差分输入电压而引导尾电流以产生跨所述一对差分晶体管的一对输出端子的差分输出电压;
耦合至所述一对输出端子的一对负载电阻器;
配置成将所述差分输出电压滤波成经高通滤波的差分电压的差分高通滤波器;以及
用于响应于所述经高通滤波的差分电压而增大增益的装置,其中所述增益是由所述差分输出电压与所述差分输入电压的比值来定义的。
21.如权利要求20所述的电路,其特征在于,所述一对差分晶体管包括一对NMOS晶体管,并且其中所述输出端子包括所述一对NMOS晶体管的漏极。
22.如权利要求21所述的电路,其特征在于,进一步包括:
耦合至所述NMOS晶体管中的第一NMOS晶体管的源极的第一电流源;以及
耦合至所述NMOS晶体管中的剩余的第二NMOS晶体管的源极的第二电流源。
23.如权利要求21所述的电路,其特征在于,所述负载电阻器中的第一负载电阻器耦合至所述第一NMOS晶体管的漏极,并且其中所述负载电阻器中的第二负载电阻器耦合至所述第二NMOS晶体管的漏极。
24.如权利要求21所述的电路,其特征在于,进一步包括:在所述NMOS晶体管中的第一NMOS晶体管的源极与所述NMOS晶体管中的剩余的第二NMOS晶体管的源极之间耦合的可变电阻器。
25.如权利要求21所述的电路,其特征在于,进一步包括:在所述NMOS晶体管中的第一NMOS晶体管的源极与所述NMOS晶体管中的剩余的第二NMOS晶体管的源极之间耦合的可变电容器。
26.一种电路,包括:
包括第一晶体管和第二晶体管的一对差分晶体管,其中所述第一晶体管和所述第二晶体管各自包括第一端子,并且其中所述一对差分晶体管被配置成响应于差分输入电压而引导尾电流;
耦合至所述第一晶体管的所述第一端子的多个第一跨导体晶体管;
耦合至所述第一晶体管的所述第一端子的第一负载电阻器;以及
对应于所述多个第一跨导体晶体管的多个第一开关,每个第一跨导体晶体管与对应的第一开关串联耦合,并且其中每个第一跨导体晶体管被配置成:在所述对应的第一开关导通时,将所述差分输入电压中的高频变化跨导为通过所述一对差分晶体管来传导的差分偏置电流。
27.如权利要求26所述的电路,其特征在于,所述第一晶体管和所述第二晶体管各自包括NMOS晶体管,并且其中所述第一端子是漏极端子。
28.如权利要求27所述的电路,其特征在于,每个第一开关耦合在供电节点与所述对应的第一跨导体晶体管之间。
29.如权利要求26所述的电路,其特征在于,进一步包括耦合至所述第二晶体管的所述第一端子的多个第二跨导体晶体管。
30.如权利要求29所述的电路,其特征在于,进一步包括:
在所述第一晶体管的所述第一端子与所述第二跨导体晶体管的栅极之间耦合的第一高通滤波器;以及
在所述第一晶体管的所述第一端子与所述第二跨导体晶体管的栅极之间耦合的第二高通滤波器。
CN201580038871.5A 2014-07-18 2015-05-22 宽带低功率放大器 Active CN106537770B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/335,421 2014-07-18
US14/335,421 US9484867B2 (en) 2014-07-18 2014-07-18 Wideband low-power amplifier
PCT/US2015/032261 WO2016010631A1 (en) 2014-07-18 2015-05-22 Wideband low-power amplifier

Publications (2)

Publication Number Publication Date
CN106537770A true CN106537770A (zh) 2017-03-22
CN106537770B CN106537770B (zh) 2018-03-23

Family

ID=53546687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580038871.5A Active CN106537770B (zh) 2014-07-18 2015-05-22 宽带低功率放大器

Country Status (6)

Country Link
US (1) US9484867B2 (zh)
EP (1) EP3170257B1 (zh)
JP (1) JP2017521013A (zh)
KR (1) KR101838559B1 (zh)
CN (1) CN106537770B (zh)
WO (1) WO2016010631A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823803B (zh) * 2023-02-20 2023-11-21 旺宏電子股份有限公司 連續時間線性均衡器電路、記憶體裝置及輸入緩衝電路

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116470B2 (en) * 2015-10-28 2018-10-30 Futurewei Technologies, Inc. Combined low and high frequency continuous-time linear equalizers
US9647618B1 (en) * 2016-03-30 2017-05-09 Qualcomm Incorporated System and method for controlling common mode voltage via replica circuit and feedback control
US10027297B2 (en) * 2016-09-16 2018-07-17 Qualcomm Incorporated Variable gain amplifier with coupled degeneration resistance and capacitance
US10608592B2 (en) * 2017-02-23 2020-03-31 Mediatek Inc. Linear amplifier having higher efficiency for envelope tracking modulator
US10177945B1 (en) 2017-07-26 2019-01-08 Apple Inc. Joint adaptation of high and low frequency gains of a linear equalizer
US10348535B1 (en) * 2018-04-16 2019-07-09 Oracle International Corporation Fast-settling voltage reference generator for serdes applications
US10547289B2 (en) 2018-04-25 2020-01-28 Qualcomm Incorporated High order miller N-path filter
US11206160B2 (en) * 2020-05-18 2021-12-21 Nxp B.V. High bandwidth continuous time linear equalization circuit
US11228470B2 (en) 2020-05-18 2022-01-18 Nxp B.V. Continuous time linear equalization circuit
US11502659B2 (en) * 2020-06-17 2022-11-15 Stmicroelectronics International N.V. Voltage gain amplifier for automotive radar
US11588458B2 (en) * 2020-12-18 2023-02-21 Qualcomm Incorporated Variable gain control system and method for an amplifier
US11817827B2 (en) * 2021-02-02 2023-11-14 Psemi Corporation Power amplifier equalizer
US11606068B2 (en) 2021-02-02 2023-03-14 Psemi Corporation Power amplifier linearizer
TWI779509B (zh) * 2021-03-08 2022-10-01 瑞昱半導體股份有限公司 通道損失補償電路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936563A (en) * 1997-03-11 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Digital-to-analog conversion circuit
CN1917362A (zh) * 2005-07-29 2007-02-21 美国博通公司 电流控制cmos宽带数据放大器/均衡器电路
CN101501984A (zh) * 2005-10-21 2009-08-05 维林克斯公司 宽带电路和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480347B2 (en) 2003-09-11 2009-01-20 Xilinx, Inc. Analog front-end having built-in equalization and applications thereof
US7212627B2 (en) * 2004-09-21 2007-05-01 Analog Devices, Inc. Line interface with analog echo cancellation
US7598811B2 (en) 2005-07-29 2009-10-06 Broadcom Corporation Current-controlled CMOS (C3MOS) fully differential integrated wideband amplifier/equalizer with adjustable gain and frequency response without additional power or loading
WO2007033305A2 (en) 2005-09-12 2007-03-22 Multigig Inc. Serializer and deserializer
JP5445458B2 (ja) * 2008-09-02 2014-03-19 日本電気株式会社 差動増幅器及びその構成方法
JP5458534B2 (ja) * 2008-09-10 2014-04-02 日本電気株式会社 低周波透過回路、通信回路、通信方法、通信回路のレイアウト方法
JP5228017B2 (ja) 2010-09-16 2013-07-03 株式会社東芝 高周波差動増幅回路
EP2512030A1 (en) * 2011-04-12 2012-10-17 Nxp B.V. Differential output stage
US8558611B2 (en) 2012-02-14 2013-10-15 International Business Machines Corporation Peaking amplifier with capacitively-coupled parallel input stages
US8872586B2 (en) * 2012-09-18 2014-10-28 Broadcom Corporation Folded-cascode amplifier
US8958501B2 (en) 2012-11-26 2015-02-17 Broadcom Corporation Quasi-digital receiver for high speed SER-DES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936563A (en) * 1997-03-11 1999-08-10 Mitsubishi Denki Kabushiki Kaisha Digital-to-analog conversion circuit
CN1917362A (zh) * 2005-07-29 2007-02-21 美国博通公司 电流控制cmos宽带数据放大器/均衡器电路
CN101501984A (zh) * 2005-10-21 2009-08-05 维林克斯公司 宽带电路和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOU ZHENGXIONG 等: "A 23-mW 30-Gb/s Digitally Programmable Limiting Amplifier for 100GbE Optical Receivers", 《2014 IEEE RADIO FREQUENCY INTERGRATED CIRCUITS SYMPOSIUM》 *
HUI DONG LEE 等: "A CMOS WIDEBAND LINEAR-IN-dB VGA FOR UWB APPLICATIONS", 《MICROWAVE AND OPTICAL TECHNOLOGY LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823803B (zh) * 2023-02-20 2023-11-21 旺宏電子股份有限公司 連續時間線性均衡器電路、記憶體裝置及輸入緩衝電路

Also Published As

Publication number Publication date
US20160020740A1 (en) 2016-01-21
EP3170257A1 (en) 2017-05-24
US9484867B2 (en) 2016-11-01
EP3170257B1 (en) 2019-12-04
WO2016010631A1 (en) 2016-01-21
JP2017521013A (ja) 2017-07-27
KR20170007860A (ko) 2017-01-20
KR101838559B1 (ko) 2018-03-14
CN106537770B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN106537770B (zh) 宽带低功率放大器
CN107094034B (zh) 用于高速接收器电路的增大增益的设备和计算系统
US8200179B1 (en) Combined variable gain amplifier and analog equalizer circuit
CN103051298B (zh) 可编程增益放大电路和可编程增益放大器
US7034606B2 (en) VGA-CTF combination cell for 10 Gb/s serial data receivers
US8558611B2 (en) Peaking amplifier with capacitively-coupled parallel input stages
EP3350921A1 (en) Amplifier with boosted peaking
CN104579235B (zh) 一种低功耗跨导电容(Gm‑C) 双二次结构滤波器
US9467106B2 (en) Wideband bias circuits and methods
US9106193B2 (en) Variable gain amplifier
JP2009212729A (ja) アクティブインダクタおよび差動アンプ回路
CN104579196B (zh) 一种射频信号放大器
US8817863B2 (en) Linear equalizer with passive network and embedded level shifter
CN106559058A (zh) 一种复数滤波器及其自动频率调谐电路
CN105897205B (zh) 一种低通滤波的可变增益仪表放大器
KR101209817B1 (ko) 병렬 등화기
CN207070022U (zh) 基于电流反馈式运放实现高频信号共模抑制的放大电路
US10348261B2 (en) Differential transimpedance amplifier
US11489705B1 (en) Integrated circuit including a continuous time linear equalizer (CTLE) circuit and method of operation
US11528003B2 (en) Circuits, equalizers and related methods
CN107425820A (zh) 基于电流反馈式运放实现高频信号共模抑制的放大电路
US8847687B2 (en) Multi-path broadband amplifier
Kong Wideband dB-linear VGA for high-speed communications
CN206164483U (zh) 高速差分放大电路
CN116155217A (zh) 一种高线性度大带宽cmos可变增益放大器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant