CN106517184A - 超级电容器用高性能三维多级孔碳微球的制备方法 - Google Patents

超级电容器用高性能三维多级孔碳微球的制备方法 Download PDF

Info

Publication number
CN106517184A
CN106517184A CN201611005680.1A CN201611005680A CN106517184A CN 106517184 A CN106517184 A CN 106517184A CN 201611005680 A CN201611005680 A CN 201611005680A CN 106517184 A CN106517184 A CN 106517184A
Authority
CN
China
Prior art keywords
carbosphere
supercapacitor
hierarchical pore
microspheres
dimensional hierarchical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611005680.1A
Other languages
English (en)
Inventor
王丽丽
杨坤龙
逯文启
吴晓芬
李艳婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201611005680.1A priority Critical patent/CN106517184A/zh
Publication of CN106517184A publication Critical patent/CN106517184A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种利用玉米芯等生物质制备超级电容器用三维多级孔碳微球的新方法。具体涉及一种生物质酸降解液在水热下碳化成微球、再经化学活化制备高比容量的超级电容器用三维多级孔碳微球的新方法。本发明包括具体步骤如下:首先将玉米芯等生物质先通过酸降解为糖类小分子,再将小分子的水解液水热条件下合成碳微球,再将碳微球与碱性活化剂按一定质量比混合进行活化处理,制备超级电容器用高比容量三维多级孔碳微球。

Description

超级电容器用高性能三维多级孔碳微球的制备方法
技术领域
本发明涉及一种超级电容器用高性能多级孔碳微球的制备方法,具体涉及一种首先将生物质进行降解,再利用降解小分子在水热条件下合成碳微球,将碳微球进行化学活化,制备具有高性能的超级电容器用三维多级孔碳微球的新方法。
背景技术
在社会经济迅速发展,资源日渐短缺的今天,新型储能元件得到了快速发展,多孔碳由于比表面积大,化学性质稳定,孔隙结构可控,具有一定的导电性等特点在电移动通讯、动汽车、航空航天、信息技术和国防科技等领域广泛应用。目前,超级电容器由于具有充放电速率快、高能力密度和功率密度、优异的循环稳定性以及高稳定性而成为科研工作者们广泛关注的储能设备。根据能源储存机理不同超级电容器可分为双电层和赝电容两种电容器,电极材料是决定超级电容能性能的关键因素之一。包含碳纤维、活性炭、碳纳米管、石墨烯以及多孔碳球的碳材料成为超级电容器广泛应用的电极材料,其中球形多级孔碳材料具有规则形貌、良好的流动性、可调的尺寸和多级孔结构等特征,在电容器应用中能显著降低离子传输阻力,微孔可增大表面积使电容器在小电流下具有较大比电容;介孔能够促进离子传输动力学过程,使大电流下获得较大比容量;而由于碳微球堆积而产生的大孔类似于离子储存容器,有利于电解液离子的扩散和传输,因此制备具有微、介和大孔共存的多孔碳球材料对于提高电容性能十分关键。
传统制备多孔碳球的方法分为模板法和催化活化法。然而模板法制备的多孔碳球比表面积较小,不利于电容性能的提高。催化活化法需先合成碳球再经活化处理制备多级孔碳球,而制备碳球的原料多为木糖、葡萄糖、淀粉、胶质、苯等纯净物,因而合成成本较高。因此开发新的碳源合成三维多级孔结构碳微球具有一定研究意义。考虑到环境友好、可持续发展的目标,很多科研工作者将目光瞄准生物质碳源,生物质富含半纤维素、纤维素和木质素,其可有效转化为高值碳材料,然而以生物质为原料制备的多级孔碳材料无规则形貌,因此以其为原料制备规则形貌、多级孔共存的碳球对超级电容器行业的发展具有重要意义。
本专利是以玉米芯等生物质为原料,首先将其进行酸降解,再利用降解的小分子在水热条件下合成碳微球,将碳微球进行化学活化,制备具有高比容量的超级电容器用三维多级孔碳球的新方法。
发明内容
本发明目的是提供一种以玉米芯等生物质为原料制备具有高性能的超级电容器用三维多级孔碳微球的新方法。
本发明首先将粉碎后的玉米芯与一定浓度硫酸混匀,在40~60℃下水解5~25min,调整糖液中酸浓度,过滤,将滤液在140~180℃温度下水热反应8小时,固体过滤,洗涤、干燥,得到碳微球;将碳微球在400℃热处理后与活化剂按质量比1∶2~5(Kg/Kg)混合,将其在600~900℃下活化反应1小时,固体洗涤、干燥,得到的多级孔碳微球进行电化学性能测试。
本发明的特征在于:所述活化剂为氢氧化钾、氢氧化钠、氢氧化钾和氢氧化钠的混合物。
具体实施方式
实施例1:将一定量粉碎后玉米芯与65wt%硫酸按固液比1∶8(g/mL)混匀,在50℃下水解15min,调整糖液中酸浓度为30%,过滤,将滤液在160℃温度下水热反应8小时,固体过滤,洗涤、干燥,得到碳微球;将碳微球在400℃热处理后与氢氧化钾按质量比1∶4(Kg/Kg)混合,将其在800℃下活化反应1小时,固体洗涤、干燥,得到的三维多级孔碳微球进行电化学性能测试,以6mol/L的氢氧化钾为电解液,在0~1.0v电压范围内,测得比容量为263F/g,循环5000次容量保持率为96%左右。
实施例2:改变碳微球与氢氧化钾用量比为1∶3,其他条件同实施例1,得到的三维多级孔碳微球进行电化学性能测试,比电容为245F/g,循环5000次容量保持率为95%左右。
实施例3:改变碳微球与氢氧化钾用量比为1∶5,其他条件同实施例1,得到的三维多级孔碳微球进行电化学性能测试,比电容为236F/g,循环5000次容量保持率为94%左右。
实施例4:改变碳微球与氢氧化钾用量比为1∶2,其他条件同实施例1,得到的三维多级孔碳微球进行电化学性能测试,比电容为220F/g,循环5000次容量保持率为94%左右。
实施例5:改变活化剂为氢氧化钠,碳微球与NaOH按质量比1∶3(Kg/Kg)混合,将其在700℃下活化反应1小时,其他条件同实施例1,得到的三维多级孔碳微球进行电化学性能测试,比电容为225F/g,循环5000次容量保持率为95%左右。
实施例6:改变碳微球与活化剂用量比为1∶4,其他条件同实施例5,得到的三维多级孔碳微球进行电化学性能测试,比电容为201F/g,循环5000次容量保持率为94%左右。
实施例7:改变活化温度为800℃,其他条件同实施例5,得到的三维多级孔碳微球进行电化学性能测试,比电容为183F/g,循环5000次容量保持率为95%左右。
实施例8:改变活化剂为氢氧化钾和氢氧化钠的混合物,碳微球与混合活化剂比1∶4(Kg/Kg)混合,将其在800℃下活化反应1小时,其他条件同实施例1,得到的三维多级孔碳微球进行电化学性能测试,比电容为247F/g,循环5000次容量保持率为96%左右。

Claims (2)

1.一种超级电容器用高性能三维多级孔碳微球的制备方法,其具体步骤如下:
首先将粉碎后的一定量玉米芯与65wt%硫酸混匀,在40~60℃下水解5~25min,调整糖液中酸浓度,过滤,将滤液在140~180℃温度下水热反应8小时,固体过滤,洗涤、干燥,得到碳微球;将碳微球在400℃热处理后与活化剂按质量比1∶2~5(Kg/Kg)混合,将其在600~900℃下活化反应1小时,固体洗涤、干燥,得到的多级孔碳微球进行电化学性能测试。
2.一种如权利要求1所述的三维多级孔碳微球的制备方法,其特征在于:所述活化剂为氢氧化钾、氢氧化钠、氢氧化钾和氢氧化钠的混合物。
CN201611005680.1A 2016-11-14 2016-11-14 超级电容器用高性能三维多级孔碳微球的制备方法 Pending CN106517184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611005680.1A CN106517184A (zh) 2016-11-14 2016-11-14 超级电容器用高性能三维多级孔碳微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611005680.1A CN106517184A (zh) 2016-11-14 2016-11-14 超级电容器用高性能三维多级孔碳微球的制备方法

Publications (1)

Publication Number Publication Date
CN106517184A true CN106517184A (zh) 2017-03-22

Family

ID=58353208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611005680.1A Pending CN106517184A (zh) 2016-11-14 2016-11-14 超级电容器用高性能三维多级孔碳微球的制备方法

Country Status (1)

Country Link
CN (1) CN106517184A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256806A (zh) * 2017-06-23 2017-10-17 中国科学院宁波材料技术与工程研究所 一种电极材料及超级电容器
CN108689404A (zh) * 2017-04-06 2018-10-23 济南圣泉集团股份有限公司 活性炭微球、电极及超级电容器
CN111410185A (zh) * 2020-04-30 2020-07-14 厦门大学 一种在高浓度盐溶液中水热碳化制备碳微球的方法
CN112713009A (zh) * 2021-01-27 2021-04-27 安徽大学绿色产业创新研究院 一种橄榄果壳衍生的超级电容器电极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811692A (zh) * 2010-05-05 2010-08-25 吉林大学 一种秸秆资源化综合利用的新方法
CN103601185A (zh) * 2013-12-05 2014-02-26 天津工业大学 一种超级电容器用球形多孔碳的制备方法
CN103601186A (zh) * 2013-12-05 2014-02-26 天津工业大学 一种吸附水中苯酚的多孔碳材料的制备方法
CN105869912A (zh) * 2016-04-12 2016-08-17 湘潭大学 一种淀粉基均分散活性炭微球材料的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811692A (zh) * 2010-05-05 2010-08-25 吉林大学 一种秸秆资源化综合利用的新方法
CN103601185A (zh) * 2013-12-05 2014-02-26 天津工业大学 一种超级电容器用球形多孔碳的制备方法
CN103601186A (zh) * 2013-12-05 2014-02-26 天津工业大学 一种吸附水中苯酚的多孔碳材料的制备方法
CN105869912A (zh) * 2016-04-12 2016-08-17 湘潭大学 一种淀粉基均分散活性炭微球材料的制备方法及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108689404A (zh) * 2017-04-06 2018-10-23 济南圣泉集团股份有限公司 活性炭微球、电极及超级电容器
CN108689404B (zh) * 2017-04-06 2020-10-09 济南圣泉集团股份有限公司 活性炭微球、电极及超级电容器
CN107256806A (zh) * 2017-06-23 2017-10-17 中国科学院宁波材料技术与工程研究所 一种电极材料及超级电容器
CN107256806B (zh) * 2017-06-23 2019-09-24 中国科学院宁波材料技术与工程研究所 一种电极材料及超级电容器
CN111410185A (zh) * 2020-04-30 2020-07-14 厦门大学 一种在高浓度盐溶液中水热碳化制备碳微球的方法
CN111410185B (zh) * 2020-04-30 2021-11-16 厦门大学 一种在高浓度盐溶液中水热碳化制备碳微球的方法
CN112713009A (zh) * 2021-01-27 2021-04-27 安徽大学绿色产业创新研究院 一种橄榄果壳衍生的超级电容器电极材料的制备方法

Similar Documents

Publication Publication Date Title
Liu et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes
Elaiyappillai et al. Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application
Zhang et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors
Yu et al. Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application
Wu et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2
You et al. Preparation of an electric double layer capacitor (EDLC) using Miscanthus-derived biocarbon
Guo et al. Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids
Liang et al. Popcorn-derived porous carbon for energy storage and CO2 capture
Song et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors
Xu et al. Green synthesis of nitrogen-doped porous carbon derived from rice straw for high-performance supercapacitor application
Sun et al. Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors
Tian et al. Synthesis of micro-and meso-porous carbon derived from cellulose as an electrode material for supercapacitors
Hu et al. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO 2 adsorption
Thambidurai et al. Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation
Bai et al. Pumpkin‐derived porous carbon for supercapacitors with high performance
Chen et al. Natural plant template-derived cellular framework porous carbon as a high-rate and long-life electrode material for energy storage
Zhang et al. Effect of physiochemical properties in biomass-derived materials caused by different synthesis methods and their electrochemical properties in supercapacitors
Tian et al. Interlinked porous carbon nanoflakes derived from hydrolyzate residue during cellulosic bioethanol production for ultrahigh-rate supercapacitors in nonaqueous electrolytes
CN108529621A (zh) 一种氮掺杂多孔碳材料的制备及其应用
Lee et al. Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials
Yang et al. Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application
CN106517184A (zh) 超级电容器用高性能三维多级孔碳微球的制备方法
CN105600768B (zh) 一种用于超级电容器电极材料的自支撑多孔碳及其制备方法
Qiu et al. Bamboo-based hierarchical porous carbon for high-performance supercapacitors: the role of different components
Xu et al. Synthesis of Fe/N co-doped porous carbon spheres derived from corncob for supercapacitors with high performances

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170322

WD01 Invention patent application deemed withdrawn after publication