CN106509916A - 人乳寡糖在婴儿营养物中的用途 - Google Patents

人乳寡糖在婴儿营养物中的用途 Download PDF

Info

Publication number
CN106509916A
CN106509916A CN201610818346.1A CN201610818346A CN106509916A CN 106509916 A CN106509916 A CN 106509916A CN 201610818346 A CN201610818346 A CN 201610818346A CN 106509916 A CN106509916 A CN 106509916A
Authority
CN
China
Prior art keywords
baby
lewis
blood group
oligosaccharides
lewis blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610818346.1A
Other languages
English (en)
Inventor
B·斯塔尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nutricia NV
Original Assignee
Nutricia NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44114363&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN106509916(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/NL2010/050240 external-priority patent/WO2011136637A1/en
Application filed by Nutricia NV filed Critical Nutricia NV
Publication of CN106509916A publication Critical patent/CN106509916A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/20Dietetic milk products not covered by groups A23C9/12 - A23C9/18
    • A23C9/203Dietetic milk products not covered by groups A23C9/12 - A23C9/18 containing bifidus-active substances, e.g. lactulose; containing oligosaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/20Dietetic milk products not covered by groups A23C9/12 - A23C9/18
    • A23C9/206Colostrum; Human milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Abstract

提供了一种喂食婴儿的方法,其中所述婴儿的所述饮食依赖于所述婴儿的血型并优选结合所述婴儿母亲的血型补充有2‑岩藻糖基化寡糖。

Description

人乳寡糖在婴儿营养物中的用途
本申请是2011年4月27日提交的申请号为PCT/NL2010/050286、发明名称为“人乳寡糖在婴儿营养物中的用途”的国际申请的分案申请,所述国际申请于2012年12月26日进入中国国家阶段,其申请号为201180031701.6。
技术领域
本发明属于依赖母亲和婴儿的血型定制婴幼儿营养物的领域。
背景技术
Lewis血型系统可区分为抗原Lewis a和Lewis b(Le a和Le b),以及Lewis x和Lewis y(Le x和Le y)。Lewis x和y的核心结构的构成与Lewis a和b是不同的,但是就碳水化合物单元而言,Le a对应于Le x,Le b对应于Le y。这些抗原为可溶性抗原,可以存在于包括人乳的体液中。有三种表型:Le(a-/b-);Le(a+/b-)和Le(a-/b+)。岩藻糖基转移酶的存在可将Lewis a抗原转变为Lewis b。该酶还可将Lewis x转变为Lewis y。有Lewis a抗原的个体通常是非分泌者,Lewis b抗原的存在使人成为分泌者。Lewis阴性(Le a-,Le b-)可以是分泌者或非分泌者。
所述分泌者和非分泌者亚群之间表型不同的基础源于遗传多态性现象,所述遗传多态性现象在分泌者情况中导致特异的功能性α-1,2-岩藻糖基转移酶的表达,而非分泌者不表达这种功能性α-1,2-岩藻糖基转移酶。从而,可溶性2-岩藻糖基化基团的抗原没有被合成,因此不会分泌到非分泌者的生物液中。但是,他们的上皮和其他表面可以含有这些结构,也作为包括病原体的微生物丛的附着点。因此,非分泌者母亲的乳中缺少根据婴儿(作为所述乳的接受者)各自的受体结构需要或不需要的物质。
WO 2009/033011涉及通过测量分泌者唾液中抗原尤其是H抗原和Lewis抗原的水平,鉴别具有坏死性小肠结肠炎和相关紊乱风险的个体的诊断方法。
目前为止已经提出了人乳寡糖的几种生物学功能。人乳寡糖被认为在感染的初始阶段,可通过作为防止病原体与上皮细胞相互作用的可溶性受体类似物起作用,保护母乳喂食的婴儿免受病原性细菌、病毒、毒素、原生动物和真菌的伤害。此外,所述寡糖可以作为益生元起作用,因此可促进两岐双岐杆菌(Bifidobacterium bifidum)的生长,同时藉此抑制不希望的细菌的生长。
依赖于血型,人乳中存在寡糖的变种和不同模式(Thurl et al.1997,Glycoconjugate J.14:795-799)。关于这些重要人乳成分的更详细的事实将有助于开发更适合的配方奶。
WO 98/43494涉及对大量人乳样本的分析,以确定9种重要乳寡糖的适合的平均水平,并且以实现合成或制造的/人工的婴儿制品的制备,所述婴儿制品含有接近人乳中发现的天然存在水平的这些寡糖。
发明内容
现在已经发现,通过将婴儿的血型考虑在内,可以更适当地改造婴儿营养物。本发明人发现,非分泌者婴儿仅能有限地或不能从补充有人乳寡糖的其营养物受益,在所述婴儿中不表达针对所述寡糖的基于遗传性的表面类似物(表位)。但是,在另一方面,分泌者婴儿具有对应的表位,尤其在他们的分泌物中。这些分泌者婴儿的营养物都含有这些受体的可溶性对应物是重要的,尤其因为这些受体例如被病原体例如大肠杆菌(E.coli)靶向。因此,如果没有足够地喂食,分泌者婴儿具有增加的细菌感染风险。
此外,所述分泌型乳可为所述有益微生物丛例如双歧杆菌提供更多特异性底物,所述双歧杆菌专门发酵来自上皮的和溶液中的这些化合物。
所以,本发明因此提供定制或个体化的婴儿营养物,特别是与所述婴儿的血型有关并且有利地将母亲的血型考虑在内。
具体实施方式
分泌型婴儿的特征在于,具有根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-)。为了清楚起见,注意到具有Lewis血型Le(a-/b-)的分泌型婴儿具有活性的分泌者酶(FucT II)。
在一个实施方案中,分泌型婴儿的特征在于,具有根据ABO血型系统的血型A、B或AB。
非分泌型母亲的特征在于,具有根据Lewis血型系统的Lewis血型Le(a+/b-)。
在一个实施方案中,非分泌型母亲的特征在于,具有ABO血型系统的血型O。
本发明因此涉及一种喂食婴儿的方法,所述婴儿具有:a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-),所述方法包括给予包括2-岩藻糖基化寡糖的营养组合物。
在一个实施方案中,本发明涉及一种喂食具有根据ABO血型系统的血型A、B或AB的婴儿的方法,所述方法包括给予包括2-岩藻糖基化寡糖的营养组合物。
换句话说,本发明涉及包括2-岩藻糖基化寡糖的组合物在制备用于喂食婴儿的营养组合物中的用途,所述婴儿具有:a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)。
在一个实施方案中,本发明涉及包括2-岩藻糖基化寡糖的组合物在制备用于喂食婴儿的营养组合物中的用途,所述婴儿具有根据ABO血型系统的血型A、B或AB。
所述营养组合物可以是上述的完全婴儿配方物。在一个实施方案中,所述营养组合物还可以是营养补充物或可以是补充过的人乳。在该实施方案中,营养补充物包括2-岩藻糖基化寡糖,或所述人乳补充有包括2-岩藻糖基化寡糖的组合物。根据本发明,补充非分泌型母亲的人乳是特别有利的。
在一个实施方案中,本发明涉及2-岩藻糖基化寡糖在制备营养补充物中的用途,所述营养补充物用于补充喂食婴儿的人乳,所述婴儿具有:a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)。
在一个实施方案中,本发明涉及2-岩藻糖基化寡糖在制备营养补充物中的用途,所述营养补充物用于补充喂食婴儿的人乳,所述婴儿具有根据ABO血型系统的血型A、B或AB。
优选地,所述需要补充的人乳或被补充的人乳是,具有a)根据Lewis血型系统的Lewis血型Le(a+/b-)和/或b)根据Lewis血型系统的Lewis血型Le(x+/y-)的母亲的人乳。
在一个实施方案中,所述需要补充的人乳或被补充的人乳是,具有根据ABO血型系统的血型O的母亲的人乳。
本发明还涉及一种用于补充婴儿配方物或人乳的包括2-岩藻糖基化寡糖的营养补充物,所述婴儿配方物或人乳用于喂食婴儿,其中所述婴儿具有a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)。优选地,所述营养补充物用于补充,具有a)根据Lewis血型系统的Lewis血型Le(a+/b-)和/或b)根据Lewis血型系统的Lewis血型Le(x+/y-)的母亲的人乳。
在一个实施方案中,本发明还涉及一种用于补充婴儿配方物或人乳的包括2-岩藻糖基化寡糖的营养补充物,所述婴儿配方物或人乳用于喂食婴儿,其中所述婴儿具有根据ABO血型系统的血型A、B或AB。优选地,所述营养补充物用于补充具有根据ABO血型系统的血型O的母亲的人乳。
本发明还涉及一种制备营养组合物的方法,其包括用包括2-岩藻糖基化寡糖的组合物补充来自母亲的人乳,所述母亲具有a)根据Lewis血型系统的Lewis血型Le(a+/b-)和/或b)根据Lewis血型系统的Lewis血型Le(x+/y-)。优选地,在该方法中,所述营养组合物用于具有a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)的婴儿。
在一个实施方案中,本发明还涉及一种制备营养组合物的方法,其包括用包括2-岩藻糖基化寡糖的组合物补充来自母亲的人乳,所述母亲具有根据ABO血型系统的血型O。优选地,在该方法中,所述营养组合物用于,具有根据ABO血型系统的血型A、B或AB的婴儿。
优选地,所述2-岩藻糖基化寡糖包括α-1,2-岩藻糖寡糖,优选2′-岩藻糖乳糖和/或乳糖-N-岩藻糖戊糖I(lacto-N-fucopentaose I)。2′-岩藻糖乳糖还缩写为2′-FL,并且还可以由Fuc-α-(1→2)Gal-β-(1→4)-Glc表示。乳糖-N-岩藻糖戊糖I还缩写为LNFP I,并且还可以由Fuc-α-(1→2)Gal-β-(1→3)-GlcNAc-β-(1→3)-Gal-β-(1→4)-Glc表示。所述两种物质可以市购得到,例如自Sigma-Aldrich。或者,它们可以从人乳中分离,例如如Andersson&Donald,1981,J Chromatogr.211:170-1744中所述,或者通过遗传修饰的微生物产生,例如如Albermann et al,2001,Carbohydrate Res.334:97-103中所述。
优选地,所述喂食婴儿的营养组合物每100ml包括100mg到2g的2-岩藻糖基化寡糖,更优选每100ml中包含150mg到1.8g,甚至更优选200mg到1.5g,甚至更优选400mg到1g,甚至更优选500mg到1g的2-岩藻糖基化寡糖。以干重计,所述组合物优选包括0.6wt%到15wt%的2-岩藻糖基化寡糖,更优选1wt%到12wt%,甚至更优选1.3wt%到10wt%,甚至更优选2.5wt%到6.5wt%,甚至更优选3.3wt%到6.5wt%。较低量的2-岩藻糖基化寡糖在预防病原体感染方面不太有效,然而太高的量会导致所述产品不必要的高成本。
基于所述营养补充物的干重,所述营养补充物优选包括至少10wt%的2-岩藻糖基化寡糖。其他化合物不是必要的,但是可以允许存在。在营养补充物中,所述2-岩藻糖基化寡糖优选与惰性载体或填充剂例如麦芽糖糊精混合。优选地,所述营养补充物包括10wt%到90wt%的2-岩藻糖基化寡糖,优选15wt%到80wt%,优选25wt%到75wt%,优选30wt%到65wt%,优选40wt%到55wt%。优选地,所述营养补充物为粉状物形式。优选地,如上所述量的所述营养补充物的粉状物被加入人乳,以得到补充过的人乳,所述补充过的人乳每100ml含有100mg到2g的2-岩藻糖基化寡糖,更优选每100ml中含有150mg到1.8g,甚至更优选200mg到1.5g,甚至更优选400mg到1g,甚至更优选500mg到1g的2-岩藻糖基化寡糖。例如,所述营养补充物被填入囊中,优选每个囊约2g。优选地,每100ml人乳中加入1、2、3或4个囊。
除2-岩藻糖甚化寡糖之外的非消化性寡糖
所述营养组合物优选包括除2-岩藻糖基化寡糖之外的非消化性寡糖(NDO)。优选地,所述除2-岩藻糖基化寡糖之外的NDO可刺激双歧杆菌和/或乳酸杆菌的生长,更优选刺激双歧杆菌的生长。双歧杆菌和/或乳酸杆菌含量的增加可刺激健康肠道微生物丛的形成。所述NDO优选在肠中不被消化,或者仅被部分地消化,所述消化是通过存在于人上消化道(特别是小肠和胃中)的酸或消化酶的作用而进行,所述NDO主要通过人肠道微生物丛发酵。例如,蔗糖、乳糖、麦芽糖和常见的麦芽糖糊精被认为是可消化的。
优选地,本发明的组合物包括DP在2到250范围内,更优选2到60,的非消化性寡糖。所述非消化性寡糖优选为选自以下的至少一种,更优选至少两种,优选至少三种:低聚果糖、低聚半乳糖、低聚木糖、低聚阿拉伯糖、低聚阿拉伯糖半乳糖、低聚葡萄糖、低聚壳糖、低聚葡萄糖甘露糖、低聚半乳糖甘露糖、低聚甘露糖、含唾液酸的寡糖以及糖醛酸寡糖。低聚果糖的组包括菊粉,低聚半乳糖的组包括反式低聚半乳糖或β-低聚半乳糖,低聚葡萄糖的组包括环糊精、低聚龙胆糖和低聚黑曲霉糖以及非消化性聚葡萄糖,低聚半乳糖甘露糖的组包括部分水解的瓜尔胶,糖醛酸寡糖的组包括半乳糖醛酸寡糖和果胶降解产物。
更优选地,本发明的组合物包括选自低聚果糖、β-低聚半乳糖和糖醛酸寡糖中的至少一种,更优选至少两种,最优选三种。更优选地,所述组合物包括β-低聚半乳糖。
在一个优选的实施方案中,所述组合物包括菊粉和短链低聚果糖的混合物。在一个优选的实施方案中,所述组合物包括低聚半乳糖和低聚果糖的混合物,其中所述低聚果糖选自短链低聚果糖和菊粉,优选菊粉。至少两种不同的非消化性寡糖的混合物可有利地刺激肠道微生物丛中的有益细菌达到更大的程度。优选地,在所述两种不同的非消化性寡糖(优选低聚半乳糖和低聚果糖)的混合物中,两者的重量比在25到0.05之间,更优选在20到1之间。低聚半乳糖(优选β-低聚半乳糖)更能够刺激双歧杆菌。优选地,本发明的组合物包括聚合度(DP)为2到10的低聚半乳糖(优选β-低聚半乳糖)和/或DP为2到60的低聚果糖。
所述低聚半乳糖优选为β-低聚半乳糖。在一个特别优选的实施方案中,本发明的组合物包括β-低聚半乳糖([半乳糖]n-葡萄糖;其中n为从2到60的整数,即2、3、4、5、6、....、59、60;优选地,n选自2、3、4、5、6、7、8、9和10),其中所述半乳糖单元主要通过β键连接在一起。β-低聚半乳糖也称为反式低聚半乳糖(TOS)。例如,β-低聚半乳糖以商标Vivinal(TM)(Borculo Domo Ingredients,Netherlands)销售。另一个合适来源是Bi2Munno(Classado)。优选地,所述TOS包括基于总键数计至少80%的β-1,4和β-1,6键,更优选至少90%。
低聚果糖为包括具有DP或平均DP为2到250,优选2到100,甚至更优选10到60的β-连接的果糖单元链的NDO。低聚果糖包括菊粉、果聚糖和/或混合型多聚果糖。一种特别优选的低聚果糖是菊粉。适合用于所述组合物的低聚果糖也是市售可得的,例如HP(Orafti)。优选地,所述低聚果糖的平均聚DP大于20。
糖醛酸寡糖优选地从果胶降解产物中获得。因此,本发明的组合物优选包括DP为2到100的果胶降解产物。优选地,所述果胶降解产物从苹果果胶、甜菜果胶和/或柑橘果胶中制备。优选地,所述糖醛酸寡糖为半乳糖醛酸寡糖。优选地,所述组合物包括FL以及选自低聚半乳糖和糖醛酸寡糖中的一种。
除了2-岩藻糖基化寡糖,最优选地,所述组合物包括β-低聚半乳糖、低聚果糖和糖醛酸寡糖。已发现,所述结合物与岩藻糖乳糖尤其是2′-岩藻糖乳糖协同作用。β-低聚半乳糖:低聚果糖:糖醛酸寡糖的重量比优选为(20到2)∶1∶(1到20),更优选(20到2)∶1∶(1到10),甚至更优选(20到2)∶1∶(1到3),甚至更优选(12到7)∶1∶(1到2)。最优选地,所述重量比为约9∶1∶1.1。
优选地,所述营养组合物每100ml包括200mg到4g的非消化性寡糖(包括2-岩藻糖基化寡糖),更优选每100ml包括400mg到3.5g,甚至更优选500mg到3g,甚至更优选800mg到2.5g,甚至更优选1g到2g的非消化性寡糖。以干重计,所述组合物优选包括1wt%到25wt%的非消化性寡糖(包括2-岩藻糖基化寡糖),更优选2.5wt%到20wt%,甚至更优选3.3wt%到18wt%,甚至更优选5wt%到15wt%,甚至更优选6.5wt%到13wt%。较低量的非消化性寡糖在刺激微生物丛中的有益细菌方面不太有效,然而太高的量将导致胃气胀和腹部不适的副作用。
营养组合物
本发明的营养组合物不是人乳。本发明的营养组合物优选经肠内给予,更优选口服给予。
本发明的营养组合物优选为婴儿配方物或幼儿配方物,优选在出生后直到6岁之间,更优选在出生后直到36月龄给予。本发明的营养组合物可以有利地用作婴儿的完全营养物。本发明的组合物优选包括脂质组分、蛋白质组分和碳水化合物组分,并优选以液体形式给予。本发明包括干食物,优选粉状物,其附有关于将所述干食物混合物与适合的液体(优选与水)混合的说明书。
本发明的营养组合物优选包括脂质、蛋白质和消化性碳水化合物,其中所述脂质组分提供总热量的5%到50%,所述蛋白质组分提供总热量的5%到50%,所述消化性碳水化合物组分提供总热量的15%到85%。有利地,所述脂质组分提供总热量的20%到50%,所述蛋白质组分提供总热量的5%到30%,所述消化性碳水化合物组分提供总热量的30%到70%。优选地,所述脂质组分提供总热量的35%到50%,所述蛋白质组分提供总热量的7.5%到12.5%,所述消化性碳水化合物组分提供总热量的40%到55%。为计算所述蛋白质组分占总热量的%,需要考虑由所述蛋白质、肽和氨基酸所提供的总能量。
所述营养组合物优选包括选自动物脂质(人脂质除外)和植物脂质的至少一种脂质。优选地,本发明的组合物包括植物脂质与选自鱼油、动物油、藻油、真菌油和细菌油的至少一种油的结合物。本发明的组合物优选包括长链多不饱和脂肪酸(LC-PUFA)。LC-PUFA是长度为20-24个碳原子,优选20或22个碳原子,的含有两个或更多个不饱和键的脂肪酸或脂肪酰链。更优选地,本发明的组合物包括二十碳五烯酸(EPA,n-3),二十二碳六烯酸(DHA,n-3)和/或花生四烯酸(ARA,n-6)。
优选地,本发明的组合物包括基于总脂质含量计至少0.1wt%,优选至少0.25wt%,更优选至少0.6wt%,甚至更优选至少0.75wt%的具有20-22个碳原子的LC-PUFA。
因为需要尽可能地模拟人乳,LC-PUFA(特别是具有20-22个碳原子的LC-PUFA)的含量,优选不超过总脂质含量的6wt%,更优选不超过总脂肪含量的3wt%。所述LC-PUFA可以作为游离脂肪酸提供,以甘油三酯形式、以甘油二酯形式、以甘油一酯形式、以磷脂形式或作为以上一种或多种的混合物来提供。本发明的组合物优选包括以总脂肪计5wt%-75wt%,优选10wt%-50wt%,的多不饱和脂肪酸。
所述营养组合物中的蛋白质优选选自:非人的动物蛋白质(优选乳蛋白)、植物蛋白质(优选为大豆蛋白和/或稻蛋白)、其水解产物、其游离氨基酸及其混合物。所述营养组合物优选含有酪蛋白、乳清、水解的酪蛋白和/或水解的乳清蛋白。优选地,所述蛋白质包括完整蛋白质,更优选完整的牛乳清蛋白和/或完整的牛酪蛋白蛋白质。
所述营养组合物优选含有选自蔗糖、乳糖、葡萄糖、果糖、玉米糖浆固体、淀粉和麦芽糖糊精的消化性碳水化合物,更优选乳糖。
考虑到如上所述,还重要的是,所述液体食物不具有过度的热量密度,但是仍然提供足够的热量以喂食婴儿。因此,所述液体食物优选具有0.1到2.5kcal/ml之间的热量密度,甚至更优选0.5到1.5kcal/ml之间的热量密度,最优选0.6到0.8kcal/ml之间的热量密度。
优选地,所述营养组合物包括核苷酸和/或核苷,更优选核苷酸。优选地,所述组合物包括5’-单磷酸胞苷、5’-单磷酸尿苷、5’-单磷酸腺苷、5’-单磷酸鸟苷和/或5’-单磷酸肌苷,更优选5’-单磷酸胞苷、5’-单磷酸尿苷、5’-单磷酸腺苷、5’-单磷酸鸟苷和5’-单磷酸肌苷。优选地,所述组合物每100克所述组合物干重包括5到100mg,更优选5到50mg,最优选10到50mg的核苷酸和/或核苷。
婴儿
本发明的方法可以有利地应用于0-36个月的人类婴儿,更优选0-18个月的人类婴儿,更优选0-12个月的人类婴儿,甚至更优选0-6个月的人类婴儿。0-36个月的婴儿包括幼儿。在一个实施方案中,幼儿年龄为大于12个月到36个月,或大于18个月到36个月。为了将病原体引起感染的风险降至最小,尽早用2-岩藻糖基化寡糖补充所述营养物是有利的。
优选地,基于Lewis a和Lewis b抗原确定所述婴儿的血型。当基于Lewis x和Lewis y抗原确定所述婴儿的血型时,优选所述婴儿具有Lewis血型Le(x-/y+)。
附图说明
图1示出了乳组1-3中中性和酸性寡糖的变化。所有的数据点表示产后几个时间点对应的寡糖浓度的均值。但是,统计计算是基于个体的值。直线指示显著性趋势(p<5%);虚线趋势线指示时期内不显著的变化。
图2示出了α1,2-、α1,4-和α1,3-连接的果糖部分的变化。所有数据点表示产后几个时间点相应寡糖浓度的均值。但是,统计计算是基于个体的值。在乳组1或3中检测到Fucα1-2Gal:α1,2-连接的岩藻糖部分;在乳组1或2中检测到Fucα1-4GlcNAc:α1,4-连接的岩藻糖部分;在乳组1、2、3中检测到连接到次末端葡萄糖的Fuca1-3Glc:α1,3-岩藻糖部分;在乳组1、2、3中检测到连接到GlcNAc的Fucα1-3GlcNAc:α1,3-岩藻糖部分;对于Fucα1-4GlcNAc:乳组1和2、Fucα1-3Glc:乳组3、Fuca1-3GlcNAc:乳组1和3都没有发现显著性趋势(p>5%)。
图3-9示出了实施例中提到的表1-7。
实施例
实施例1
材料和方法
血清学试验
产后3天内,在血液取样的当天通过血细胞凝集管试验确定女性的Lewis血型。使用相应的红细胞悬浮液(3%-5%红细胞悬浮于0.9%NaCl)和单克隆Lea抗体和Leb抗体(Immucor,Germany and BAG,Lich,Germany)检查了血细胞凝集。孵育在室温下进行15分钟。由于血清学试验和色谱图之间的差异,在产后18-25个月重复了某些血细胞凝集试验。所述女性在那时没有怀孕。
收集样本
所有母亲都签订了书面意见同意参与这项研究,德国德累斯顿大学医院(university hospital of Dresden,Germany)伦理委员会批准了本研究设计。这30名高加索女性生活在德累斯顿地区,她们年龄在20到35岁并已生下健康婴儿,所述婴儿在研究期间为纯母乳喂食。全部的175个母乳样本主要在如下时间间隔(包括7个主要日期)进行采集:第3天,产后第2-5天;第8天,第6-9天;第15天,第13-18天;第22天,第20-26天;第30天,第28-33天;第60天,第57-65天;第90天,第88-96天。如果母亲们收集了对应于上述时间间隔的不止一个乳样本,那么对所有样本以寡糖浓度的算术平均值进行分析。在对来自德国法兰克福(Frankfurt/Main)地区的6名高加索女性(Lewis血型Le(a-b+))的预检查中,在产后第7天和第60天的两个24小时周期内,发明人没有发现任何显著的寡糖变化(数据未示出)。然而,为了排除即使是很小的白昼效应,本研究中的采样时间固定在上午喂食时。所述乳样本通常在上午6-10点的上午时间使用喂食中期采样技术收集,该技术以前被证实是用于碳水化合物分析的合适采样技术。在喂食的中期将大约5-10ml的小份样品手工挤到塑料容器里。将乳样本立即冷冻并储存在-20℃下直到分析。
寡糖的色谱分析
样本制备包括凝胶渗透色谱纯化,以及按照已有的描述进行HPAEC分析。简单来说,将人乳样本在70℃下加热30分钟。在1ml人乳中加入0.1ml含有内标物水苏糖和半乳糖醛酸的水溶液。然后,将所述样本离心并超滤(Millipore Centrifree,30kDa截留)。使用Toyopearl HW 40(S)柱(1.6×80cm TosoHaas,Stuttgart,Germany)通过凝胶渗透色谱将所述蛋白质和脂质减少的样本分级成乳糖、中性寡糖和酸性寡糖。将碳水化合物级分用水洗脱(流速1ml/min)并通过折射率检测进行监测。将乳糖级分丢弃;中性和酸性级分用HPAEC-PED分析。中性寡糖分析所用的洗脱条件为0-20min,30mM NaOH;20-34min,30-100mMNaOH;34-48min,100mM NaOH/0-28mM NaOAc;48-55min,100mM NaOH/28-200mM NaOAc;55-60min,100mM NaOH/200mM NaOAc。酸性寡糖的洗脱条件为0-8min,100mM NaOH/20mMNaOAc;8-30min,100mM NaOH/20-80mM NaOAc;30-55min,100mM NaOH/80-200mM NaOAc;55-60min,100mM NaOH/200mM NaOAc。
另外,对大多数中性寡糖级分以不同的梯度(0-12min,60mM NaOH;12-16min,60-100mM NaOH;16-30min,100mM NaOH/0-28mM NaOAc;30-35min,100mM NaOH/28-200mMNaOAc;35-40min,100mM NaOH/200mM NaOAc)进行第二次分析,以使得对共洗脱的中性寡糖3′FL和LNDFH I进行分离和定量。与以上提到的出版物不同,由于在本研究过程中使用的CarboPac PA-100柱(Dionex,Idstein,Gemany)性能改变,因此必需其他步骤。
为了监测对特别敏感的唾液酸化寡糖的可能人工水解降解,将游离的N-乙酰神经氨酸(Neu5Ac)与酸性寡糖一起定量。Neu5Ac浓度相对恒定(在乳组1中平均浓度为0.019g/L;数据未示出)。游离NeuAc的量与已经报告的在同一数量级上,并且在哺乳开始时和三个月后分别对应于大约2%和4%的寡糖结合的NeuAc。因此,可以排除由唾液酸酶作用或加热处理导致的对酸性寡糖的明显降解。
乳糖的确定
将250微升的人乳与去离子水和1mL Carrez-I溶液(85mmol/L的亚铁氰化钾)和1mL Carrez-II溶液(250mmol/L的硫酸锌)在25mL容量瓶中混合。在过滤后,使用来自R-Biopharm,Darmstadt,Germany的乳糖/D-半乳糖试验组合确定了稀释的(因子100)、蛋白和脂质减少的乳样本中的乳糖浓度。被β-半乳糖苷酶释放的半乳糖随后被半乳糖脱氢酶氧化。乳糖浓度可以用被还原的辅因子烟酰胺腺嘌呤二核苷酸在340nm处下的紫外吸光度来计算。
统计分析
通过统计学方法分析的数据由个体寡糖浓度组成或者由不同碳水化合物的总和的浓度组成。除了总的中性寡糖和总的酸性寡糖(表1和表2),如下总的核心结构和岩藻糖基化碳水化合物被分别合计:核心Lac=Lac+3-FL+2'-FL+LDFT+3’-SL+6’-SL;核心LNT=LNT+LNFP I+LNFP II+LNDFH I+LNDFH II+LSTa+LSTb+DSLNT;核心LNnT=LNnT+LNFP III+LSTc;核心LNH=LNH+2'-F-LNH+3'-F-LNH+2’,3'-DF-LNH;Fucα1-2Gal=2'-FL+LDFT+LNFPI+LNDFH I+2'-F-LNH+2’,3'-DF-LNH;Fucα1-4GlcNAc=LNFP II+LNDFH I+LNDFH II;Fucα1-3Glc=3-FL+LDFT+LNDFH II;Fucα1-3GlcNAc=LNFP III+3'-F-LNH+2’,3'-DF-LNH。
数据集按二阶乘组织,分别为三个乳组和七个哺乳时间。另外,由于不同的样本数量,数据集非常不平衡。在乳组1中,将总共109个样本分配到10到21个样本范围的时间中,而在组2中(28个样本),哺乳时间由3-5个样本代表,在组3中(17个样本),由2-3个样本代表。因此,应用了分析寡糖浓度平均值的数种方法。在乳组1情况中,使用单因素方差分析(ANOVA)和后续Student-Newman-Keuls检验来比较所用哺乳时间的平均值。使用以III型平方和的二因素ANOVA来比较三个乳组的平均值,然后计算最小平方均值。因此,所述组平均值没有偏差,完全可以一起进行比较。平均值之间的差异用Tukey-Kramer方法在5%的显著性水平上检验。在全部两个变量模型中,从每组和每个时间的参与女性的样本浓度之间差异得到实验误差。通常,来自给定哺乳时间的同一乳组女性的乳的寡糖浓度是高度可变的。由于这些大的个体间差异,在同一情况中,尽管表面上有显著差异,但均值之间没有显著差异(P>5%)。
通过回归分析模拟了哺乳过程中的寡糖浓度趋势。对显著回归系数进行了简单线性回归以及二次和三次多项式回归的拟合和检验。如果回归系数显著(P<5%)则接受该模型。所有回归分析用个体的值进行,但在所述图中,为了更清楚只画出了哺乳时间的均值。所有计算使用SAS系统(SAS Institute Inc.2002-2003SAS/STAT release 9.1SASInstitute Inc.,Cary,NC,USA)完成。
结果
Lewis血型和寡糖谱
根据血细胞凝集试验,22名供体(73%)呈现Lewis血型Le(a-b+),5名供体(17%)被确定为Lewis血型Le(a+b-),而三名女性(10%)为Le(a-b-)供体。这些比例与欧洲人群中Lewis血型的频率有相似区间内。
应用HPAEC方法确定了表1列出的14种中性寡糖。根据其Lewis血型组Le(a-b+),22名供体的乳样本呈现了包括α1,2-、α1,4-和α1,3-岩藻糖基寡糖在内的所有所述14种结构。呈现这种寡糖模式的乳样本已经被分配到乳组1。所述5名非分泌型女性(Lewis血型Le(a+b-))的乳样本缺少2′-FL、LDFT、LNFP I、LNDFH I、2′-F-LNH和2′,3'-DF-LNH,可以被分配到第二乳组,因为没有检测到α1,2-岩藻糖基寡糖(表1)。在三名具有Lewis血型Le(a-b-)的母亲的乳样本中发现了α1,2-和α1,3-岩藻糖基寡糖,而具有α1,4岩藻糖残基的LNFP II、LNDFH I和LNDFH II缺失。这些女性中的一名(B.A.)还缺少LDFT(该乳组的特有岩藻糖基化组分)和3-F-LNH,其通常在所有乳样本中被检测到。虽然有这些小的偏差,但将所有这三名母亲都分配到乳组3(表1)。本研究中30名女性都未呈现无α1,2-连接的和α1,4-连接的岩藻糖基寡糖的寡糖谱,对应于乳组4。这与高加索女性中基因型se/se和le/le的低流行率(1%)相一致。
碳水化合物级分
表3示出了主要碳水化合物级分的平均浓度。酶法确定的乳糖浓度在所有三个乳组的乳样本中是相似的。在本研究过程中,成熟乳中浓度保持恒定(乳组1:57-60g/L;数据未示出),而产后3天的初乳含有显著更低量的乳糖(在乳组1中平均浓度为50.3g/L)。
通过色谱分析确定的所述14种主要中性寡糖的总和近似代表了人乳的中性寡糖级分(表1)。这种碳水化合物级分在分泌者乳中相对丰富,特别是在乳组3中,而非分泌者只产生大约一半的量。图1示出了在哺乳过程中中性寡糖的变化。如同通过回归分析计算的两条显著下降的直线指示的那样,在产后最初90天过程中分泌者乳中中性寡糖的浓度稳定地下降。相反,在本研究过程中非分泌者乳中中性寡糖似乎保持相对恒定。与非分泌者乳中中性糖几乎恒定的水平不同,在产后最初3个月过程中分泌者稳定地产生更低量的所述糖。
除中性寡糖之外,表2示出的6种主要非岩藻糖基化酸性寡糖——3’-SL、6’-SL、LSTa、LSTb、LSTc、DSLNT,可以用色谱法测定。这些碳水化合物总和近似代表了人乳中的酸性寡糖级分。由于Lewis血型系统的重要性,这些糖也被按照所述三个乳组分别地进行检查。所有三种乳类型的乳样本显示出如上所述的六种酸性寡糖。所述酸性寡糖级分的量在所述三个乳组(表3)中没有显著差别。另外,在研究过程中所有乳组显示了相似的酸性糖浓度下降大约三倍。
核心结构
表4示出了所有三个乳组样本中检测到的核心结构(乳糖、LNT、LNnT和LNH)的摩尔浓度。将包括未改变的、岩藻糖基化的或唾液酸化的寡糖的总核心结构与对应的未修饰的核心结构进行了比较。乳糖(其可以被解释为2型链的葡萄糖类似物)是目前为止最丰富的核心结构,超过LNT(1型结构)均34倍(表4)。LNnT(典型的2型结构)和LNH被检测到量甚至更低。乳糖被发现是所述核心结构乳糖的主要形式(约95%)。相反,未改变的LNT、LNnT和LNH在相应总核心结构的17%到31%之间变化。明显地,岩藻糖基化和唾液酸化的糖是这三种基本组分的主要形式。
非分泌者乳中发现的LNT以比分泌者样本中更高的量表达,但是当比较总核心LNT时,反而是非分泌者母亲合成了显著更低量的这种核心结构(表4)。非分泌者女性还产生了显著更低浓度的核心结构LNnT和LNH,为分泌者乳中检测到的量的约80%到60%。相反,核心乳糖在所述三个乳组中没有显著差异。乳组1中核心LNT、核心LNnT和核心LNH的浓度在本研究过程中显著下降。但是,当与产后第8天的过渡乳相比,初乳显示了显著更低量的核心LNT和核心LNH。由于清楚的原因,表4仅示出了乳组1的时间效应。在哺乳过程中乳组2和3显现了相似的趋势。由于样本数少,这些改变不总被判断为显著(数据未示出)。
岩藻糖基化的中性寡糖
表5示出了本研究定量的11种岩藻糖基化的中性寡糖的平均浓度。乳组1和3的样本(它们是分泌者乳)中主要的岩藻糖基化碳水化合物是2′-FL、LNFP I,在乳组1中还有LNDFH I。非分泌者主要生物合成3-FL和LNFP II。与分泌者乳相比,这些碳水化合物以及LNDFH II和3′-F-LNH显著更高地表达。在本研究过程中,分泌者乳中特有的糖(2′-FL、LNFPI、2′-F-LNH和2′,3′-DFLNH)的浓度下降了大约2倍,其中LDFT和LNDFH I除外,LDFT没有显著改变。3-FL是在哺乳最初三个月过程中所有乳组中稳定增加约2倍的唯一寡糖。在分泌者乳中LNFP III似乎也增加了,但这种变化在统计学上不显著。在乳组1样本中,LNFP II、LNDFH I、LNDFH II和3'-F-LNH的浓度似乎在产后第一个月过程中增加到最大水平。3个月后的成熟乳含有与初乳相似的较低量的这些糖。
表6和图2总结了在哺乳过程中所述三个乳组中岩藻糖基化寡糖的变化。寡糖根据4种不同连接类型以摩尔总计:连接到末端半乳糖的α1,2-岩藻糖(Fucα1-2Gal)、连接到次末端N-乙酰葡萄糖胺的α1,4-岩藻糖(Fucα1-4GlcNAc)、连接到还原性葡萄糖的α1,3-岩藻糖(Fucα1-3Glc)、连接到次末端GlcNAc的α1,3-岩藻糖(Fucα1-3GlcNAc)。分泌者乳典型的前一α1,2-岩藻糖部分在乳组3中的表达浓度显著高于乳组1。如图2中显著的回归直线所指示的,在本研究过程中这两个乳组中这些浓度都下降了。含α1,4-键的岩藻糖部分(Lewis基因的产物)在组1和2中相等地表达(表6)。其浓度在分娩后2到3周似乎达到最大水平,其在初乳中的浓度与产后2和3个月的成熟乳中浓度相似。但是,这些趋势不显著,因此没有在图2示出。以α1,3-连接到还原性葡萄糖的岩藻糖部分在所有三个乳组中都被检测到,特别是在代表岩藻糖优势形式的非分泌者的乳样本中。在本研究过程中发现这种岩藻糖部分的量有增加,在乳组1和2的情况中是显著的(图2)。在所有乳组中检测到了相等低水平的连接到GlcNAc的α1,3-岩藻糖残基,其在哺乳期的最初90天过程中保持相对恒定。
酸性唾液酸化寡糖
表7示出了本研究中确定的六种酸性寡糖的平均浓度。在数量上6’-SL是目前所有乳中最重要的酸性碳水化合物。检测到了中等量的3’-SL、LSTc和DSLNT,而LSTa和LSTb的浓度水平不超过0.1g/L。个体酸性糖的平均浓度,虽然在一些情况下在统计学上有差异,但在所述三个乳组之间没有在大程度上变化,因而证实了整个碳水化合物级分的结果(表3)。
类似地,显示在表7中乳组1的时间效应与其他乳组(数据未示出及图1)的趋势相似。6’-SL的浓度在第8天的过渡乳中达到峰值,直至分娩后第90天下降了至少3倍。LSTc,也含有Neu5Aca2-6Gal-键,在本研究过程中以类似的方式下降了大约5倍。在哺乳第1阶段显著下降后,3’-SL在成熟乳中以相对恒定的水平表达。LSTa(具有Neu5Aca2-3Gal-键的次要酸性糖)的浓度在产后一周下降,使得在一个月后的几个乳样本中不能被检测到。相反,呈现Neu5Acα2-6GlcNAc-键的LSTb的浓度在第一个月过程中增加并在之后保持相对恒定。DSLNT(所分析的唯一二唾液酸化的碳水化合物,介于LSTa和LSTb之间的混合结构)显示出最大时间曲线。
讨论
除乳糖之外,6种酸性唾液酸化寡糖、3种中性核心结构和11种中性岩藻糖基化碳水化合物可以应用高pH阴离子交换色谱在哺乳过程中被确定。在本研究中,发明人发现了个体寡糖相对于所述三个主要的Lewis血型依赖的乳组和哺乳期的差异。目前为止,只进行了两个乳组中的数种寡糖的少量比较。
岩藻糖甚寡糖
分泌者母亲的乳样本中主要的个体寡糖是2′-FL和LNFP I,与更早报告的定性和定量结果相一致。在乳组3(Le(a-b-))样本中发现了α1,2-连接的岩藻糖基寡糖,尤其是2'-FL、LNFP I和2,3-DF-LNH,的最高浓度(表5和图2)。普遍认为这些碳水化合物是由优先接受1型结构的分泌者酶(FucT II)合成的。LNT(1型结构)表示LNFP I的前体,乳糖(可以被定义为2型链的葡萄糖类似物)是2′-FL的前体。虽然在乳组1中受体核心乳糖的摩尔浓度是受体核心LNT的大约34倍,但是2'-FL和LDFT(来自乳糖的分泌者酶产物)的量仅为LNFP I和LNDFH I(来自LNT的相应产物)的量2、3倍(数据未示出);因此可以推断对于1型链有至少10倍的偏好。另外,发明人发现,乳糖-N-己糖的岩藻糖基化程度与LNT相同,这意味着其被所述Lewis酶相等地接受(数据未示出)。明显地,普通2型链在乳汁糖的末端半乳糖处根本未被α1,2-岩藻糖基化,因为目前没有检测到含有H-2抗原的游离碳水化合物,例如2′-岩藻糖乳糖-N-新四糖。与之前的报告一致,总α1,2-岩藻糖基寡糖的浓度在哺乳期最初三个月内显著下降(图2)。因此,可以得出这样的结论,所述分泌者酶的活性在哺乳过程中通常下降。但是,因为在本研究过程中除乳糖外的受体核心结构LNT和LNH以相似的方式下降(表4),因此仍不确定FucT II是否真正对1型结构上变得活性更低。
与乳组1相比,非分泌者样本(乳组2)中检测到的总α1,4-岩藻糖基寡糖(LNFP II、LNDFH I和LNDFH II)似乎稍微更高,但不显著(表6)。这些碳水化合物是所述Lewis酶(FucTIII)的主要产物,所述Lewis酶优先接受1型链而形成Lea或Leb抗原。发明人认为,与分泌者相比,非分泌者女性显现更高的Lewis酶活性,因为虽然所述前体核心LNT以显著更低的量(约80%,表3)存在,但是所述Lewis产物趋向于甚至更高的浓度。所述Lewis酶被发现对H-1型底物的效率是对H-2型底物的约100倍。因此,发明人得出这样的结论,Lex抗原(连接到2型链的次末端GlcNAc的α1,3-岩藻糖部分,如在LNFP III、3'-F-LNH和2’,3'-DF-LNH中发现的)不是或仅小部分是所述Lewis酶(FucT III)的产物。这些α1,3-岩藻糖基寡糖在不表达FucT III的Le(a-b-)女性的样本(表6)中有相似浓度的结果强有力地支持该论点。可以设想,这些糖是通过第三种岩藻糖基转移酶生物合成的,例如已经在人乳中检测到的所谓血浆酶(plasma-enzyme,FucT VI)(Mollicone et al.1990)。甚至可能涉及其他岩藻糖基转移酶,因为已知人FucTs IV、V、VII、VIII、IX也作为a1,3-岩藻糖基转移酶起作用。
3-FL、LDFT和LNDFH II(呈现α1,3-连接到还原性葡萄糖的岩藻糖部分)被发现在乳组1样本中的量是乳组3的大约3倍(表5和6)。明显地,具有无活性Lewis酶的女性仅产生少量的这些碳水化合物。从人乳中分离的Lewis酶以及重组FucT III的可溶形式已经被报告还将岩藻糖以合理的量连接到人乳寡糖中还原性葡萄糖的3-O位置。因此,发明人设想,这些a1,3-岩藻糖基寡糖的大部分也是Lewis酶的产物。小部分应该归因于其他岩藻糖基转移酶。由大量3-FL和LNDFH II导致的乳组2中特别大量的Fucα1-3Glc基序仅能部分地用Lewis酶活性增加来解释。假设在Fucα1-4GlcNAc-基序和Fuca1-3Glc-基序的生物合成中涉及共同的酶,则可以预计哺乳过程中的相似变化。但是,a4-岩藻糖基寡糖似乎在分娩后第一个月呈现最大值,而含有Fucα1-3Glc-键的糖在本研究过程中显著增加。Lewis酶的受体特异性是否可以在哺乳过程中向着非分泌者母亲的2型链的葡萄糖类似物偏移,是未知的。
酸性寡糖
与中性糖不同,本研究测定的六种酸性寡糖在三个乳组中没有显示出重大的差异。这并不意外,因为这些糖缺少岩藻糖部分。已经在人乳中检测到的数种α1,2-和α1,4-岩藻糖基化的酸性寡糖在所述各个乳组中应相当不同,但是本研究中没有定量这些组分。本研究中主要的酸性糖6’-SL的浓度是其他组报告的量的至少两倍,而DSLNT的浓度相对较低。虽然来自不同研究(包括本研究)的定量结果显现了很大差异,但是在哺乳第一个月过程中通常都发现了酸性糖级分整体及大多数个体糖的显著下降。
6’-SL和LSTc以相似的方式下降,这个事实支持如下假说:排他地接受2型结构的个体唾液酸转移酶(可能是ST6Gall)参与这些碳水化合物的生物合成。LSTc的更显著的下降可以用核心LNnT(LSTc的前体)的下降来解释(表4),而乳糖(6’-SL的前体)的量在产后一周后保持恒定。本研究过程中小程度下降的3’-SL可以由ST3Gal IV或还由ST3Gal VI(两种α2,3-唾液酸转移酶,优先对2型结构起作用)合成,并且本发明人发现次要酸性糖LSTa下降非常多,在2和3个月后不能或只能部分地被检测到。本发明人猜测,优先对1型结构起作用的2,3-唾液酸转移酶ST3Gall III参与LSTa以及DSLNT的生物合成。LSTb是在产后第一个月内增加的唯一酸性碳水化合物,这证实了之前的结果。所谓的ST6GlcNAc可以转移唾液酸部分至次末端的GlcNAc,产生LSTb和DSLNT(呈现α2,6-连接的和α2,3-连接的神经氨酸的寡糖)。
生物含意
人乳寡糖,尤其是那些含有乳糖-N-二糖(1型结构)或GlcNAc的化合物,被认为在新生儿中促进有益的肠道菌群的生长。所述总的核心结构LNT和LNH(呈现乳糖-N-二糖单元并代表人乳中主要的含有GlcNAc的寡糖)在产后大约一周达到最大水平,其后下降,到产后三个月至几乎2分之一。因此,可以得出这样的结论,新生儿在哺乳的前几周过程中从人乳寡糖获得最好的保护。另外,本发明人发现,对应乳组1和3的分泌者女性显著比乳组2的非分泌者产生更大量的这些核心结构,可能的结果是非分泌者母亲的肠道菌群类似地不同,保护性物种例如双歧杆菌、乳酸菌出现更少。
数项体外研究加上临床研究表明特别是α1,2-岩藻糖基寡糖通过抑制病原体粘附到表皮表面而减少感染性疾病(包括腹泻)的功能,因为其作为宿主细胞表面配体以及病原体受体相互作用的可溶性竞争抑制剂起作用。已经报告,用呈现高比例α1,2-岩藻糖基寡糖的乳组3(Le(a-b-))的人乳喂食的婴儿,比用Le(a-b+)母亲的乳(乳组1)喂食的婴儿显著更少被稳定毒素大肠杆菌(stable toxin-E.coli)感染。可以猜测,用缺少α1,2-岩藻糖基化的糖和H-抗原的非分泌者母亲的乳喂食的新生儿,更易感染稳定毒素大肠杆菌。在该背景下,必须要讨论一下,相比例如墨西哥的混血人口中非分泌者的低出现率(1%),欧洲非分泌者(se/se)有相对较高频率(20%)。墨西哥人口中分泌者的高发生率可能也是由于这种致病大肠杆菌种的进化结果。在有不同的病原体进化压力的其他地区,非分泌者可以更好地适于成功喂食婴儿,这导致这种Lewis血型的更高出现率。除上文提到的H-抗原外,人乳寡糖还呈现如表1示出的依赖于母亲的Lewis血型的多种其他抗原决定簇,例如Lea、Leb、Lex
实施例2婴儿配方物
用于喂养具有Lewis血型Le(a-/b+)或Le(a-/b-)或者Le(x-/y+)或Le(x-/y-)的婴儿的婴儿配方物,每100ml(66kcal)包括:
1.3g蛋白质(乳清和酪蛋白)
7.3g消化性碳水化合物(包括乳糖)
3.5g脂肪(植物脂肪、鱼油)
1.0g非消化性寡糖,其中有200mg 2′-岩藻糖基乳糖、720mg低聚β-半乳糖和80mg低聚果糖。
还包括:胆碱、肌醇、牛磺酸、矿物质、微量元素和本领域已知的维生素。
实施例3幼儿乳组合物
用于喂食具有Lewis血型Le(a-/b+)或Le(a-/b-)或者Le(x-/y+)或Le(x-/y-)的幼儿的幼儿乳组合物(为1-3步婴儿设计),每100ml(67kcal;干重15.1g)包括:
1.5g蛋白质(乳清蛋白/酪蛋白1/1w/w)
8.5g消化性碳水化合物(其中有6.0g乳糖、1.1g麦芽糖糊精)
3.0g脂肪(植物脂肪)
1.2g非消化性寡糖,其中有200mg 2′-岩藻糖基乳糖、900mg低聚β-半乳糖和100mg低聚果糖。
矿物质、微量元素、本领域已知的维生素,包括胆碱和牛磺酸。
实施例4营养补充物
被填入囊中用于补充具有Lewis血型Le(a+/b-)的母亲的乳的营养补充物,具有如下的组成:
A:
500mg 2′-岩藻糖基乳糖
1.5g麦芽糖糊精
建议剂量为每100ml乳汁中1-4个囊的补充物A。
B:
1g 2′-岩藻糖基乳糖
1g麦芽糖糊精
建议剂量为每100ml乳汁中1或2个囊的补充物B。

Claims (16)

1.包括2′-岩藻糖基化寡糖的组合物用于制备用于喂食婴儿的营养组合物的用途,所述婴儿具有
a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或
b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)。
2.包括2′-岩藻糖基化寡糖的组合物用于制备用于喂食婴儿的营养组合物的用途,所述婴儿具有根据ABO血型系统的血型A、B或AB。
3.根据权利要求1或2所述的用途,其中所述营养组合物为营养补充物。
4.根据权利要求1所述的用途,其中所述婴儿的母亲具有
a)根据Lewis血型系统的Lewis血型Le(a+/b-),和/或
b)根据Lewis血型系统具有Lewis血型Le(x+/y-)。
5.根据权利要求2所述的用途,其中所述婴儿的母亲具有根据ABO血型系统的血型O。
6.根据权利要求1或2所述的用途,其中所述营养组合物还包括选自低聚果糖和低聚半乳糖的非消化性寡糖。
7.根据权利要求1或2所述的用途,其中所述营养组合物还包括选自半乳糖醛酸寡糖和果胶降解产物的糖醛酸寡糖。
8.根据权利要求1或2所述的用途,其中喂食所述婴儿的所述营养组合物每100ml包括100mg-2g的2-岩藻糖基化寡糖。
9.根据权利要求1或2所述的用途,其中所述组合物包括提供总热量的35%到50%的脂质、提供总热量的7.5%到12.5%的蛋白质和提供总热量的40%到55%的消化性碳水化合物。
10.根据权利要求1或2所述的用途,其中所述2-岩藻糖基化寡糖包括α-1,2-岩藻糖寡糖,优选2′-岩藻糖乳糖和/或乳糖-N-岩藻糖戊糖I。
11.包括2-岩藻糖基化寡糖的营养补充物,其用于补充用于喂食婴儿的婴儿配方物或人乳,所述婴儿具有
a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或
b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)。
12.包括2-岩藻糖基化寡糖的营养补充物,其用于补充用于喂食婴儿的婴儿配方物或人乳,所述婴儿具有根据ABO血型系统的血型A、B或AB。
13.制备营养组合物的方法,包括用2-岩藻糖基化寡糖补充母亲的乳,其中所述母亲具有
a)根据Lewis血型系统的Lewis血型Le(a+/b-),
b)根据Lewis血型系统具有Lewis血型Le(x+/y-)。
14.制备营养组合物的方法,包括用2-岩藻糖基化寡糖补充母亲的乳,其中所述母亲具有根据ABO血型系统的血型O。
15.根据权利要求13或14的方法,其中所述营养组合物用于喂食婴儿,所述婴儿具有
a)根据Lewis血型系统的Lewis血型Le(a-/b+)或Le(a-/b-),和/或
b)根据Lewis血型系统的Lewis血型Le(x-/y+)或Le(x-/y-)。
16.根据权利要求13或14的方法,其中所述营养组合物用于喂食婴儿,所述婴儿具有根据ABO血型系统的血型A、B或AB。
CN201610818346.1A 2010-04-27 2011-04-27 人乳寡糖在婴儿营养物中的用途 Pending CN106509916A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
NLPCT/NL2010/050240 2010-04-27
PCT/NL2010/050240 WO2011136637A1 (en) 2010-04-27 2010-04-27 Use of human milk oligosaccharides in infant nutrition
EP10162530.9 2010-05-11
EP10162530 2010-05-11
CN2011800317016A CN102946742A (zh) 2010-04-27 2011-04-27 人乳寡糖在婴儿营养物中的用途

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2011800317016A Division CN102946742A (zh) 2010-04-27 2011-04-27 人乳寡糖在婴儿营养物中的用途

Publications (1)

Publication Number Publication Date
CN106509916A true CN106509916A (zh) 2017-03-22

Family

ID=44114363

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610818346.1A Pending CN106509916A (zh) 2010-04-27 2011-04-27 人乳寡糖在婴儿营养物中的用途
CN2011800317016A Pending CN102946742A (zh) 2010-04-27 2011-04-27 人乳寡糖在婴儿营养物中的用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011800317016A Pending CN102946742A (zh) 2010-04-27 2011-04-27 人乳寡糖在婴儿营养物中的用途

Country Status (5)

Country Link
EP (2) EP2767173A1 (zh)
CN (2) CN106509916A (zh)
ES (1) ES2490269T3 (zh)
PL (1) PL2563166T3 (zh)
WO (1) WO2011136648A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699745A (zh) * 2019-02-28 2019-05-03 福建农林大学 一种岩藻糖基化寡糖婴幼儿配方奶粉及其制备方法
CN110074188A (zh) * 2019-05-16 2019-08-02 福建农林大学 一种添加人乳寡糖的婴幼儿配方奶粉及其制备方法
CN110074189A (zh) * 2019-05-17 2019-08-02 福建农林大学 一种添加人乳寡糖的婴幼儿辅食及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2007268C2 (en) * 2011-08-16 2013-02-19 Friesland Brands Bv Nutritional compositions comprising human milk oligosaccharides and uses thereof.
RU2707570C1 (ru) 2013-11-15 2019-11-28 Сосьете Де Продюи Нестле С.А. Композиции для применения в профилактике или лечении инфекций вдп у подверженных риску детей грудного возраста или детей младшего возраста
AU2014350419B2 (en) * 2013-11-15 2019-10-24 Société des Produits Nestlé S.A. Compositions for preventing or treating allergies in infants from or fed by non secretor mothers by providing fucosylated-oligosaccharides in particular among infants at risk or born by C-section
CN107105741A (zh) 2014-10-31 2017-08-29 雀巢产品技术援助有限公司 用于促进脑发育和认知的包含fut2‑依赖性低聚糖和乳糖‑n‑新四糖的组合物
MX2017010923A (es) 2015-03-05 2018-01-16 Nestec Sa Composiciones para usar en el mejoramiento de la consistencia o la frecuencia de las heces en infantes o niños pequeños.
MX2017014297A (es) * 2015-05-19 2018-03-07 Nestec Sa Kit de partes para identificar leche materna carente de glicanos dependientes de fucosiltransferasa-2 y dosis para la alimentacion con dichos glicanos.
CN107373674A (zh) * 2017-08-25 2017-11-24 西宝生物科技(上海)股份有限公司 一种肿瘤治疗后的营养组合物及其应用
CN114072013A (zh) * 2019-05-29 2022-02-18 N·V·努特里奇亚 用于降低结肠蛋白发酵的非消化性寡糖

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336108A (zh) * 2005-12-06 2008-12-31 纽崔西亚公司 用于治疗/预防感染的包含寡糖的组合物
WO2009077352A1 (en) * 2007-12-17 2009-06-25 Nestec S.A. Prevention of opportunistic infections in immune-compromised subjects

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045854A (en) * 1997-03-31 2000-04-04 Abbott Laboraties Nutritional formulations containing oligosaccharides
EP1689348B1 (en) * 2003-12-05 2013-05-15 Children's Hospital Medical Center Oligosaccharide compositions and use thereof in the treatment of infection
EP2185931B1 (en) 2007-09-07 2013-07-10 Children's Hospital Medical Center Use of secretor, lewis and sialyl antigen levels as predictors for disease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336108A (zh) * 2005-12-06 2008-12-31 纽崔西亚公司 用于治疗/预防感染的包含寡糖的组合物
WO2009077352A1 (en) * 2007-12-17 2009-06-25 Nestec S.A. Prevention of opportunistic infections in immune-compromised subjects

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID S.NEWBURG等: "Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants", 《GLYCOBIOLOGY》 *
胡丽华: "《临床输血检验》", 31 August 2004, 中国医药科技出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699745A (zh) * 2019-02-28 2019-05-03 福建农林大学 一种岩藻糖基化寡糖婴幼儿配方奶粉及其制备方法
CN110074188A (zh) * 2019-05-16 2019-08-02 福建农林大学 一种添加人乳寡糖的婴幼儿配方奶粉及其制备方法
CN110074189A (zh) * 2019-05-17 2019-08-02 福建农林大学 一种添加人乳寡糖的婴幼儿辅食及其制备方法

Also Published As

Publication number Publication date
CN102946742A (zh) 2013-02-27
EP2563166A1 (en) 2013-03-06
ES2490269T3 (es) 2014-09-03
WO2011136648A1 (en) 2011-11-03
PL2563166T3 (pl) 2014-10-31
EP2767173A1 (en) 2014-08-20
EP2563166B1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
CN106509916A (zh) 人乳寡糖在婴儿营养物中的用途
Walsh et al. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health
Thurl et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods
Musilova et al. Beneficial effects of human milk oligosaccharides on gut microbiota
Thomson et al. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization
EP3197295B1 (en) Infant formula system with adaptive levels of human milk oligosaccharides (hmos)
JP4863236B2 (ja) オリゴ糖を含有する栄養学的処方物
Jantscher-Krenn et al. Human milk oligosaccharides and their potential benefits for the breast-fed neonate
Oliveira et al. Milk oligosaccharides: A review
CN106072654A (zh) 6’‑唾液酸化乳糖在婴儿和幼儿营养物中的用途
CN101951794B (zh) 鞘髓磷脂和非消化性碳水化合物改善肠道微生物群的用途
EP2453901B1 (en) Fucosyllactose as breast milk identical non-digestible oligosaccharide for treating and/or preventing viral infections
EP2453902B1 (en) Mixture of non-digestible oligosaccharides for stimulating the immune system
EP2497478A2 (en) Oligosaccaride compositions and use thereof in the treatment of infection
TW201225852A (en) Oligosaccharide mixture and food product comprising this mixture, especially infant formula
CN107920579A (zh) 用于诱导与母乳喂养的婴幼儿的肠道微生物群接近的肠道微生物群的包含动物双歧杆菌乳酸亚种(Bifidobacterium animalis ssp.lactis)以及任选的低聚糖的混合物的营养组合物和婴儿配方食品
TW201824998A (zh) 具有人乳寡醣之個人化兒童營養產品
WO2011136636A1 (en) Use of 6'-sialyl lactose in infant nutrition
Urashima et al. Oligosaccharides in milk: Their benefits and future utilization
WO2011136637A1 (en) Use of human milk oligosaccharides in infant nutrition
CN1871015B (zh) 免疫调节性寡糖
Matsui-Yatsuhashi et al. Qualitative and quantitative analyses of glycogen in human milk
RU2784624C2 (ru) Олигосахариды грудного молока против избыточного накопления массы жировой ткани в дальнейшей жизни и связанных расстройств здоровья
Hickey Harnessing milk oligosaccharides for nutraceutical applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170322