CN106496619A - 甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法 - Google Patents

甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法 Download PDF

Info

Publication number
CN106496619A
CN106496619A CN201610935739.0A CN201610935739A CN106496619A CN 106496619 A CN106496619 A CN 106496619A CN 201610935739 A CN201610935739 A CN 201610935739A CN 106496619 A CN106496619 A CN 106496619A
Authority
CN
China
Prior art keywords
chitin
carbon nano
nano fiber
tubes
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610935739.0A
Other languages
English (en)
Other versions
CN106496619B (zh
Inventor
陈楚楚
万轩
江萍
李大纲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201610935739.0A priority Critical patent/CN106496619B/zh
Publication of CN106496619A publication Critical patent/CN106496619A/zh
Application granted granted Critical
Publication of CN106496619B publication Critical patent/CN106496619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明是甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法,包括:(a)从废弃虾蟹壳中提取甲壳素并制备甲壳素纳米纤维;(b)制备甲壳素纳米纤维/多壁碳纳米管复合凝胶膜;(c)制备聚吡咯溶液;(d)制备甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。优点:1)原料甲壳素安全无毒,具有高长径比、高比表面积;2)碳纳米管导电性、稳定性好,与甲壳素纳米纤维相互交错构成互穿三维网状结构,导电聚合物包覆在甲壳素纳米纤维和碳管表面呈核壳包裹结构,进而相互连结形成多孔的导电网络;3)电子传输通路增加,传输距离减小,导电率为9.3S/cm,是未凝胶化复合薄膜导电率的两倍。扫描速率为5mV/s时,比电容达420F/g。

Description

甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法
技术领域
本发明涉及一种超级电容器复合凝胶膜的制备方法,尤其涉及一种甲壳素纳米纤维/多壁碳纳米管/聚吡咯制备超级电容器复合凝胶膜的方法,属于超级电容器领域。
背景技术
超级电容器(supercapacitors)是一种新型的储能设备,其工作原理介于电化学电池和传统静电电容器之间,性能介于物理电容器和二次电池之间。超级电容器的优点是:电容量很大,充电速度快;循环使用寿命长,可多次快速充放电;能量转换效率高;功率密度高;产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色能源。因此在清洁能源储备、航空航天、通讯设备的电源、电动汽车等领域都具有良好的应用前景。
甲壳素作为自然界中存在的唯一一种带正电荷的天然高分子高聚物,是一种直链氨基多糖,因其分子结构与纤维素非常相似,可以将甲壳素归结为是一种动物性纤维;甲壳素以厨余产品废弃虾、蟹壳为原材料,来源广、储量大,甲壳素的充分利用既节约能源、减少资源浪费、缓解环境污染,又充分发挥废弃虾、蟹壳中甲壳素的功能,变废为宝,具有可持续发展性,符合当下低碳环保理念。
如今,超级电容器的柔性导电体的基底材料逐步由聚合物橡胶、塑料薄膜向聚合物纤维发展。与橡胶塑料相比,生物质纤维不仅来源环保,可重复利用,而且生产的纤维易降解,不造成污染,还有很好的折叠性和拉伸性。碳纳米管可极大改善复合材料性能,其硬度与金刚石相当,却拥有良好的柔韧性,多孔结构还可提高材料的导电性能。聚吡咯具有较强的电荷贮存能力,加强材料的电容性,同时,它具有很高的氧化还原能力,可以满足多次充放电要求。研究这三者制成的高强度高导电性能的超级电容器对研究柔性太阳能电池、柔性触摸屏等新型电子器件都用方向性指导意义。
发明内容
本发明提出了一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,旨在制备出一种具有良好充放电循环性能的甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜。
本发明的技术解决方案:一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,包括以下工艺步骤:
(a)从废弃虾蟹壳中提取甲壳素并制备甲壳素纳米纤维;
(b)制备甲壳素纳米纤维/多壁碳纳米管复合凝胶膜;
(c)制备聚吡咯溶液;
(d)制备甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。
本发明的优点:
1)本发明的主要原料甲壳素安全无毒,来源广,比表面积大,具有高长径比,是制备高性能柔性导电薄膜优良的基底材料,应用前景良好;
2)碳纳米管导电性、稳定性好,与甲壳素纳米纤维相互交错成三维网状结构,导电聚合物包覆在甲壳素纳米纤维和碳管表面呈核壳包裹结构,进而相互连结形成多孔的导电网络;
3)制备的甲壳素纳米纤维/多壁碳纳米管复合膜经凝胶化后,纤维发生润胀,相邻纤维之间缠结,电子传输通路增加,传输距离减小,复合凝胶膜导电性进一步改善,其导电率高达9.3S/cm,是未凝胶化复合薄膜导电率的两倍。当扫描速率为5mV/s时,比电容达420F/g,具有良好储能性能。
具体实施方式
一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,该方法包括以下工艺步骤:
(a)从废弃虾蟹壳中提取甲壳素并制备甲壳素纳米纤维;
(b)制备甲壳素纳米纤维/多壁碳纳米管复合凝胶膜;
(c)制备聚吡咯溶液;
(d)制备甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。
所述的步骤(a)提取甲壳素纳米纤维,具有以下工艺步骤:
(1)筛选40-60目的废弃蟹壳粉末,浸泡于质量分数为6%的盐酸溶液中12-24小时,去除蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;
(2)加入质量分数为4% 的KOH溶液,置于95℃的水浴锅中磁力搅拌10小时,去除蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至pH为7,此过程重复四次,直至蛋白质完全去除;
(3)在质量分数为95%的乙醇溶液中浸泡一整天,以去除蟹壳粉末中的色素,过滤洗涤至中性,直至溶液变为白色;
(4)加入蒸馏水稀释,配置成浓度为0.5 wt%-1wt%的悬浮液,加醋酸,将悬浮液的 pH值调到3-4,用研磨机研磨2次,研磨机转速为1500 rpm/min,每次研磨时间为10 分钟。即可得纯化甲壳素纳米纤维悬浮液。
所述的步骤(b)制备甲壳素纳米纤维/多壁碳纳米管复合凝胶膜,具有以下工艺步骤:
(1)用烧杯称取步骤(a)中所配置的甲壳素纳米纤维悬浮液,加入适量蒸馏水,配置成浓度为0.1-0.3wt%的悬浮液,搅拌混合均匀后,置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(2)取一定量的多壁碳纳米管与十二烷基苯磺酸钠粉末以1:4的比例混合,并加入100ml蒸馏水充分搅拌,然后置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(3)将步骤(1)和步骤(2)中所得溶液进行混合,超声,时间为45分钟,功率为840W,超声完成后取出待用;
(4)将步骤(3)中所得的混合溶液真空抽滤、脱水成膜,过程如下:蒸馏水洗净砂芯过滤器后,放上一张微孔滤膜,开启真空泵,将溶液倒入滤液瓶中,混合溶液经抽滤后,形成甲壳素纳米纤维/多壁碳纳米管复合膜。将该复合膜两面依次分别覆盖不锈钢网、滤纸、玻璃板压平,部分样品真空冻干后进行四探针测试,分析样品导电性能;
(5)将步骤(4)中所得甲壳素纳米纤维/多壁碳纳米管复合膜进行凝胶化处理,过程如下:抽滤而得的甲壳素纳米纤维/多壁碳纳米管混合湿膜浸入浓度为20 wt% NaOH溶液,温度为-18℃下静置12小时,再移至预冰冻的冰乙醇(-18 ℃)中1小时,随后用大量蒸馏水冲洗。最后将制得的复合凝胶膜依次用不锈钢网、滤纸、玻璃板压平,冻干。
所述的步骤(c)制备聚吡咯溶液,具有以下工艺步骤:
(1)称取一定量的吡咯单体放入锥形瓶中,加入蒸馏水,用玻璃棒充分搅拌;
(2)称取一定量的三氯化铁置于烧杯中(吡咯单体与三氯化铁物质的量比例为1:2),加入蒸馏水,用玻璃棒充分搅拌;
(3)吡咯溶液置于水浴锅中,冰水浴条件下搅拌10分钟,将步骤(2)中配制的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴速为每秒一滴,保证其反应均匀。滴完后,进行磁力搅拌3小时,再取出锥形瓶中黑色颗粒状沉淀,即得聚吡咯;
(4)配置0.25mol/L的盐酸溶液,待用。在洗净的布氏漏斗里放置两张滤纸,开启真空泵,转移步骤(3)锥形瓶中的溶液至布氏漏斗中,将配制好的盐酸溶液分多次倒入,洗涤沉淀物,直至步骤(3)中三氯化铁溶液的黄色消失;
(5)用蒸馏水将(4)中所得沉淀物冲洗至中性,即可制得纯化聚吡咯。
所述的步骤(d)制备甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜,具有以下工艺步骤:
(1)将步骤(b)中所得甲壳素纳米纤维/多壁碳纳米管复合凝胶膜置于步骤(c)中配制的吡咯溶液中,冰水浴搅拌10分钟,将步骤(c)中所得的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴下的速度为每秒一滴,进行原位聚合反应。滴完后,即可得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜;
(2)量取2.5ml盐酸,加蒸馏水至100ml制得盐酸溶液待用。将所得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜放入配制好的盐酸溶液中浸泡30分钟,之后用蒸馏水洗涤至中性;
(3)将用蒸馏水冲洗后的甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于盛有无水乙醇的玻璃培养皿中浸泡,每小时更换一次乙醇,连续更换3次,之后置于无水乙醇中静置浸泡一夜;
(4)将甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于冷冻干燥机中,冷冻干燥12-20小时。取出,即可得到制备好的甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。
下面结合实施例对本发明作进一步说明。
实施例1
制备甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的方法,由以下工艺步骤组成:
(1)筛选60目的废弃蟹壳粉末15g,浸泡于300ml质量分数为6%的盐酸溶液中20小时,以去除蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;
(2)加入300ml质量分数为4% 的KOH溶液,置于95℃的水浴锅中磁力搅拌10小时,以去除蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至pH为7,此过程重复四次,直至蛋白质完全去除;
(3)在质量分数为95%的乙醇溶液中浸泡一整天,以去除蟹壳粉末中的色素,过滤洗涤至中性,直至溶液变为白色;
(4)加入蒸馏水稀释,配置成浓度为0.8wt%的悬浮液,加100ml醋酸,将悬浮液的 pH 值调到3,用研磨机研磨2次,研磨机转速为1500 rpm/min,每次研磨时间为10 分钟。即可得纯化甲壳素纳米纤维悬浮液;
(5)用量筒量取步骤(4)中所配置的甲壳素纳米纤维悬浮液100ml,加入蒸馏水,配置成浓度为0.1wt%的悬浮液,搅拌混合均匀后,置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(6)取0.03g多壁碳纳米管与十二烷基苯磺酸钠粉末按1:4的比例混合,并加入100 ml蒸馏水充分搅拌,然后置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(7)将步骤(5)和步骤(6)中所得溶液进行混合,超声,时间为45分钟,功率为840W,超声完成后取出待用;
(8)将步骤(7)中所得的混合溶液真空抽滤、脱水成膜,过程如下:蒸馏水洗净砂芯过滤器后,放上一张微孔滤膜,开启真空泵,将步骤(7)所制得溶液倒入滤液瓶中,混合溶液经抽滤后,形成甲壳素纳米纤维/多壁碳纳米管复合膜。将该复合膜两面依次分别覆盖不锈钢网、滤纸、玻璃板压平,冷冻干燥后待用;
(9)将步骤(8)中所得甲壳素纳米纤维/多壁碳纳米管复合膜进行凝胶化处理,过程如下:抽滤而得的甲壳素纳米纤维/多壁碳纳米管混合湿膜浸入浓度为20 wt% NaOH溶液,温度为-18 ℃下静置12小时,再移至预冰冻的冰乙醇(-18 ℃)中1小时,随后用大量蒸馏水冲洗。最后将制得的复合凝胶膜依次用不锈钢网、滤纸、玻璃板压平,冻干,得到甲壳素纳米纤维/多壁碳纳米管复合凝胶膜,待用;
(10)称取0.67g吡咯单体放入锥形瓶中,加入60ml蒸馏水,用玻璃棒充分搅拌;
(11)称取0.82g三氯化铁置于烧杯中,加入60ml蒸馏水,用玻璃棒充分搅拌;
(12)吡咯溶液置于水浴锅中,冰水浴条件下搅拌10分钟,将步骤(11)中配制的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴速为一秒一滴,保证其反应均匀。滴完后,进行磁力搅拌3小时,再取出锥形瓶中黑色颗粒状沉淀,即得聚吡咯;
(13)配置0.25mol/L的盐酸溶液,待用。在洗净的布氏漏斗里放置两张滤纸,开启真空泵,将步骤(12)所得的黑色沉淀转移至布氏漏斗中,将配制好的盐酸溶液分多次倒入,洗涤沉淀物,直至步骤(12)中三氯化铁溶液的黄色消失;
(14)用蒸馏水洗涤步骤(13)中沉淀至pH为7,即可制得纯化的聚吡咯;
(15)将步骤(9)中所得甲壳素纳米纤维/多壁碳纳米管复合凝胶膜置于步骤(10)中配制的吡咯溶液中,冰水浴搅拌10分钟,将步骤(11)中所得的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴下的速度为每秒一滴,进行原位聚合反应。滴完后,即可得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜;
(16)量取2.5ml盐酸,加蒸馏水至100ml制得盐酸溶液待用。将所得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜放入配制好的盐酸溶液中浸泡30分钟,之后用蒸馏水洗涤至中性;
(17)将用蒸馏水冲洗后的甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于盛有无水乙醇的玻璃皿中浸泡,每小时更换一次乙醇,连续更换3次,之后置于无水乙醇中静置浸泡一夜;
(18)将甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于冷冻干燥机中,冷冻干燥16小时。即可得到制备好的甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。
实施例2
制备甲壳素纳米纤维/碳纳米管/聚吡咯复合膜的方法,由以下工艺步骤组成:
(1)筛选60目的废弃蟹壳粉末15g,烘干,浸泡于300ml质量分数为6%的盐酸溶液中20小时,以去除蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;
(2)加入300ml质量分数为4% 的KOH溶液,置于95℃的水浴锅中磁力搅拌10小时,以去除蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至pH为7,此过程重复四次,直至蛋白质完全去除;
(3)在质量分数为95%的乙醇溶液中浸泡一整天,以去除蟹壳粉末中的色素,过滤洗涤至中性,直至溶液变为白色;
(4)加入蒸馏水稀释,配置成浓度为0.8wt%的悬浮液,加100ml醋酸,将悬浮液的 pH 值调到3,用研磨机研磨2次,研磨机转速为1500 rpm/min,每次研磨时间为10 分钟。即可得纯化甲壳素纳米纤维悬浮液;
(5)用量筒量取步骤(4)中所配置的甲壳素纳米纤维悬浮液100ml,加入蒸馏水,配置成浓度为0.1wt%的悬浮液,搅拌混合均匀后,置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(6)取0.03g多壁碳纳米管与十二烷基苯磺酸钠粉末按1:4的比例混合,并加入100 ml蒸馏水充分搅拌,然后置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(7)将步骤(5)和步骤(6)中所得溶液进行混合,超声,时间为45分钟,功率为840W,超声完成后取出待用;
(8)将步骤(7)中所得的混合溶液真空抽滤、脱水成膜,过程如下:蒸馏水洗净砂芯过滤器后,放上一张微孔滤膜,开启真空泵,将步骤(7)所制得溶液倒入滤液瓶中,混合溶液经抽滤后,形成甲壳素纳米纤维/多壁碳纳米管复合膜。将该复合膜两面依次分别覆盖不锈钢网、滤纸、玻璃板压平,冷冻干燥后待用;
(9)称取0.67g吡咯单体放入锥形瓶中,加入60ml蒸馏水,用玻璃棒充分搅拌;
(10)称取0.82g三氯化铁置于烧杯中,加入60ml蒸馏水,用玻璃棒充分搅拌;
(11)吡咯溶液置于水浴锅中,冰水浴条件下搅拌10分钟,将步骤(10)中配制的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴速为一秒一滴,保证其反应均匀。滴完后,进行磁力搅拌3小时,再取出锥形瓶中黑色颗粒状沉淀,即得聚吡咯;
(12)配置0.25mol/L的盐酸溶液,待用。在洗净的布氏漏斗里放置两张滤纸,开启真空泵,将步骤(11)所得的黑色沉淀转移至布氏漏斗中,将配制好的盐酸溶液分多次倒入,洗涤沉淀物,直至步骤(11)中三氯化铁溶液的黄色消失;
(13)用蒸馏水洗涤步骤(12)中沉淀至pH为7,即可制得纯化的聚吡咯;
(14)将步骤(8)中所得甲壳素纳米纤维/多壁碳纳米管复合膜置于步骤(9)中配制的吡咯溶液中,冰水浴搅拌10分钟,将步骤(10)中所得的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴下的速度为每秒一滴,进行原位聚合反应。滴完后,即可得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合膜;
(15)量取2.5ml盐酸,加蒸馏水至100ml制得盐酸溶液待用。将所得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合膜放入配制好的盐酸溶液中浸泡30分钟,之后用蒸馏水洗涤至中性;
(16)将用蒸馏水冲洗后的甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合膜置于盛有无水乙醇的玻璃皿中浸泡,每小时更换一次乙醇,连续更换3次,之后置于无水乙醇中静置浸泡一夜;
(17)将甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于冷冻干燥机中,冷冻干燥16小时。即可得到制备好的甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合膜。
结果分析:经四探针测试,实施例2中所得甲壳素纳米纤维/碳纳米管/聚吡咯复合膜导电率为4.7 S/cm;经循环伏安法电化学测试,实施例2中所得甲壳素纳米纤维/碳纳米管/聚吡咯复合膜在扫描速率为5mV/s时,比电容为340F/g。这表明,通过混合抽滤法制备而得的这种柔性导电膜能够直接作为电极材料或是集电器使用而无需添加任何的金属材料或是炭黑等添加物。
实施例1所得复合膜经凝胶化处理后的导电率为9.3 S/cm,扫描速率为5mV/s时比电容为420F/g,而实施例2所得的具有相同多壁碳纳米管含量的复合膜电导率只有4.7 S/cm,扫描速率为5mV/s时比电容仅有340F/g,经低温碱液处理而得的甲壳素纳米纤维/碳纳米管/聚吡咯凝胶膜的导电性能几乎是未经凝胶化处理复合膜的两倍。可见凝胶化处理能够改善复合材料的导电性能,结合复合膜、复合凝胶膜扫描电镜图对比得知,这是因为复合膜经凝胶化后,相邻的纤维之间发生了“并指连接”以及相互缠结的作用,同时伴随着约15%的收缩现象。这种小幅度的收缩现象不仅能够保持住甲壳素纳米纤维原有的结构,同时也使得复合材料网状结构中的多壁碳纳米管导电路径更为紧密,电子传输的距离更短,复合凝胶膜导电性得到进一步改善。
结合红外化学结构分析,说明甲壳素纳米纤维与多壁碳纳米管的结合属于物理结合,真空抽滤混合以及凝胶化处理均未改变其化学组分,因此复合凝胶的断面仍然保持着规整的层状结构,致使实施例1中所得复合凝胶膜具有良好的力学性能,能够随意弯折,且具有良好的导电性能,完全满足现今柔性电子设备的需求。

Claims (6)

1.一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,其特征是包括以下工艺步骤:
(a)从废弃虾蟹壳中提取甲壳素并制备甲壳素纳米纤维;
(b)制备甲壳素纳米纤维/多壁碳纳米管复合凝胶膜;
(c)制备聚吡咯溶液;
(d)制备甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。
2.根据权利要求1所述的一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,其特征是所述步骤(a)从废弃虾蟹壳中提取甲壳素并制备甲壳素纳米纤维,其制备方法包括以下工艺步骤:
(1)筛选40-60目的废弃蟹壳粉末,浸泡于质量分数为6%的盐酸溶液中12-24小时,以去除蟹壳粉末中的碳酸钙,之后用蒸馏水洗涤至中性;
(2)加入质量分数为4% 的KOH溶液,置于95℃的水浴锅中磁力搅拌10小时,以去除蟹壳粉末中的蛋白质,之后用蒸馏水洗涤至pH为7,此过程重复四次,直至蛋白质完全去除;
(3)在质量分数为95%的乙醇溶液中浸泡一整天,以去除蟹壳粉末中的色素,过滤洗涤至中性,直至溶液变为白色;
(4)加入蒸馏水稀释,配置成浓度为0.5 wt%-1wt%的悬浮液,加醋酸,将悬浮液的 pH值调到3-4,用研磨机研磨2次,研磨机转速为1500 rpm/min,每次研磨时间为10 分钟,即可得纯化甲壳素纳米纤维悬浮液。
3.根据权利要求1所述的一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,其特征是所述步骤(b)制备甲壳素纳米纤维/多壁碳纳米管复合凝胶膜,其制备方法包括以下工艺步骤:
(1)用烧杯称取步骤(a)中所配置的甲壳素纳米纤维悬浮液,加入适量蒸馏水,配置成浓度为0.1-0.3wt%的悬浮液,搅拌混合均匀后,置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(2)取多壁碳纳米管与十二烷基苯磺酸钠粉末以1:4的重量比例混合,并加入100 ml蒸馏水充分搅拌,然后置于超声波细胞粉碎机中超声45分钟,功率840W,完成后取出待用;
(3)将步骤(1)和步骤(2)中所得溶液进行混合,超声,时间为45分钟,功率为840W,超声完成后取出待用;
(4)将步骤(3)中所得的混合溶液真空抽滤、脱水成膜,过程如下:蒸馏水洗净砂芯过滤器后,放上一张微孔滤膜,开启真空泵,将溶液倒入滤液瓶中,混合溶液经抽滤后,形成甲壳素纳米纤维/多壁碳纳米管复合膜;将该复合膜两面依次分别覆盖不锈钢网、滤纸、玻璃板压平,部分样品真空冻干后进行四探针测试,分析样品导电性能;
(5)将步骤(4)中所得甲壳素纳米纤维/多壁碳纳米管复合膜进行凝胶化处理,过程如下:抽滤而得的甲壳素纳米纤维/多壁碳纳米管混合湿膜浸入浓度为20 wt% NaOH溶液,温度为-18℃下静置12小时,再移至预冰冻的冰乙醇(-18 ℃)中1小时,随后用大量蒸馏水冲洗;最后将制得的复合凝胶膜依次用不锈钢网、滤纸、玻璃板压平,冻干。
4.根据权利要求1所述的一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,其特征是所述步骤(c)制备聚吡咯溶液,其制备方法包括以下工艺步骤:
(1)称取吡咯单体放入锥形瓶中,加入蒸馏水,用玻璃棒充分搅拌;
(2)称取三氯化铁置于烧杯中,吡咯单体与三氯化铁物质的重量比为1:2,加入蒸馏水,用玻璃棒充分搅拌;
(3)吡咯溶液置于水浴锅中,冰水浴条件下搅拌10分钟,将步骤(2)中配制的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴速为每秒一滴,保证其反应均匀,滴完后,进行磁力搅拌3小时,再取出锥形瓶中黑色颗粒状沉淀,即得聚吡咯;
(4)配置0.25mol/L的盐酸溶液,待用;在洗净的布氏漏斗里放置两张滤纸,开启真空泵,转移步骤(3)锥形瓶中的溶液至布氏漏斗中,将配制好的盐酸溶液分多次倒入,洗涤沉淀物,直至步骤(3)中三氯化铁溶液的黄色消失;
(5)用蒸馏水将(4)中所得沉淀物冲洗至中性,即可制得纯化聚吡咯。
5.根据权利要求1所述的一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,其特征是所述步骤(d)制备甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜,其制备方法包括以下工艺步骤:
将步骤(b)中所得甲壳素纳米纤维/多壁碳纳米管复合凝胶膜置于步骤(c)中配制的吡咯溶液中,冰水浴搅拌10分钟,将步骤(c)中所得的三氯化铁溶液作为反应催化剂倒入滴定管中,调整滴定管液体滴下的速度为每秒一滴,进行原位聚合反应;滴完后,即可得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜;
(2)量取2.5ml盐酸,加蒸馏水至100ml制得盐酸溶液待用;将所得甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜放入配制好的盐酸溶液中浸泡30分钟,之后用蒸馏水洗涤至中性;
(3)将用蒸馏水冲洗后的甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于盛有无水乙醇的玻璃培养皿中浸泡,每小时更换一次乙醇,连续更换3次,之后置于无水乙醇中静置浸泡一夜;
(4)将甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合凝胶膜置于冷冻干燥机中,冷冻干燥12-20小时;取出,即可得到制备好的甲壳素纳米纤维/多壁碳纳米管/聚吡咯三相复合凝胶膜。
6.根据权利要求3所述的一种甲壳素纳米纤维/碳纳米管/聚吡咯三相复合凝胶膜的制备方法,其特征是从复合结构方面来考虑增加导电通路的交点以此来进一步改善材料的导电性能,这里采用了一种通过浓度为20 wt%氢氧化钠溶液低温处理制备高强度、高结晶度的水凝胶的方法;由于未经过溶解,这种水凝胶能够保持其原有的三维纳米网络结构;与传统凝胶膜相比,它的形成是由于在碱液中相邻的纤维之间发生了“并指连接”以及相互缠结的作用,同时伴随着15%的收缩现象;小幅度的收缩现象使得材料密度增大;所制得的三相复合凝胶膜不仅能够保持住甲壳素纳米纤维原有的结构,同时也使得复合材料网状结构中的多壁碳纳米管导电路径更为紧密,电子传输的距离更短,因此导电率提高。
CN201610935739.0A 2016-11-01 2016-11-01 甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法 Active CN106496619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610935739.0A CN106496619B (zh) 2016-11-01 2016-11-01 甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610935739.0A CN106496619B (zh) 2016-11-01 2016-11-01 甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法

Publications (2)

Publication Number Publication Date
CN106496619A true CN106496619A (zh) 2017-03-15
CN106496619B CN106496619B (zh) 2019-06-04

Family

ID=58319076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610935739.0A Active CN106496619B (zh) 2016-11-01 2016-11-01 甲壳素纳米纤维/碳纳米管/聚吡咯复合凝胶膜制备方法

Country Status (1)

Country Link
CN (1) CN106496619B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109161144A (zh) * 2018-07-12 2019-01-08 南京林业大学 一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法
CN116885196A (zh) * 2023-09-06 2023-10-13 潍坊科技学院 聚吡咯@三维空腔碳骨架复合电极材料及其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057485A (zh) * 2016-08-19 2016-10-26 南京林业大学 一种制备超级电容器气凝胶电极材料的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057485A (zh) * 2016-08-19 2016-10-26 南京林业大学 一种制备超级电容器气凝胶电极材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUCHU CHEN等: ""A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper"", 《CARBOHYDRATE POLYMERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109161144A (zh) * 2018-07-12 2019-01-08 南京林业大学 一种聚丙烯酰胺/甲壳素纳米纤维/碳纳米管导电弹性体及其制备方法
CN116885196A (zh) * 2023-09-06 2023-10-13 潍坊科技学院 聚吡咯@三维空腔碳骨架复合电极材料及其制备和应用
CN116885196B (zh) * 2023-09-06 2023-12-22 潍坊科技学院 聚吡咯@三维空腔碳骨架复合电极材料及其制备和应用

Also Published As

Publication number Publication date
CN106496619B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN106496639B (zh) 一种纳米纤维素-聚吡咯-聚乙烯醇复合导电水凝胶及其制备方法和应用
Yu et al. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors
Guan et al. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor
Zheng et al. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors
Armelin et al. Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries
CN105070527B (zh) 石墨烯/聚吡咯/二氧化锰三元复合电极材料的制备方法
CN104992853A (zh) 制备超级电容器柔性可弯曲薄膜电极的方法
CN105206431A (zh) 电极材料的制备方法和由其制备的电极材料
CN105504093A (zh) 甲壳素纳米纤维/碳纳米管复合制备薄膜电极的方法
CN102718210A (zh) 氧化石墨烯三维自组装气凝胶的制备方法及应用
CN106057485A (zh) 一种制备超级电容器气凝胶电极材料的方法
CN104021948B (zh) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
CN103854878A (zh) 一种基于聚吡咯/二氧化锰/碳布的超级电容器及其制备方法
CN105140042B (zh) 一种细菌纤维素/活性碳纤维/碳纳米管膜材料的制备方法及其应用
Wang et al. Biomass‐based materials for advanced supercapacitor: principles, progress, and perspectives
CN103980670A (zh) 一种细菌纤维素/聚3,4-乙烯二氧噻吩纳米导电复合材料及其制备方法
Mondal et al. High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties
CN107195470B (zh) 镍钴铁三元金属氧化物纳米管状复合材料及其制备方法
Hu et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method
CN106158427A (zh) 一种超级电容器复合薄膜电极的制备方法
CN105118686B (zh) 石墨烯/聚苯胺/二氧化锰三元复合电极材料的制备方法
CN108950736A (zh) 纳米多孔碳纤维及其制备方法
CN109961962A (zh) 负载镍锰氧化物和二硫化镍的埃洛石电极材料的制备方法
CN103325579A (zh) 一种还原碳量子点/RuO2复合材料及其制备和应用方法
CN112662099A (zh) 一种应力传感导电气凝胶及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170315

Assignee: Nanjing Meili Decoration Engineering Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2020980003696

Denomination of invention: Preparing method of chitin nanofiber carbon nano tube/polypyrrole plural gel film

Granted publication date: 20190604

License type: Common License

Record date: 20200701

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170315

Assignee: Nanjing Zhiling artificial intelligence technology research and Development Co., Ltd

Assignor: NANJING FORESTRY University

Contract record no.: X2020980006102

Denomination of invention: Preparation of chitin Nanofibers / carbon nanotubes / polypyrrole composite gel films

Granted publication date: 20190604

License type: Common License

Record date: 20200916