CN106492801A - 一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法 - Google Patents

一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法 Download PDF

Info

Publication number
CN106492801A
CN106492801A CN201610796754.1A CN201610796754A CN106492801A CN 106492801 A CN106492801 A CN 106492801A CN 201610796754 A CN201610796754 A CN 201610796754A CN 106492801 A CN106492801 A CN 106492801A
Authority
CN
China
Prior art keywords
base catalyst
preparation
titanium dioxide
formaldehyde
catalyst according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610796754.1A
Other languages
English (en)
Inventor
姜文静
刘辉
何汉根
王佳园
沈智然
富娟法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Xingtian Environmental Protection Technology Co Ltd
Original Assignee
Jiaxing Xingtian Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Xingtian Environmental Protection Technology Co Ltd filed Critical Jiaxing Xingtian Environmental Protection Technology Co Ltd
Priority to CN201610796754.1A priority Critical patent/CN106492801A/zh
Publication of CN106492801A publication Critical patent/CN106492801A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

本发明公开了一种钛基催化剂的制备方法,应用于VOCs光催化氧化处理本,首先通过阳极氧化法制得定向生长的二氧化钛纳米管阵列TiO2NTs,在其表面沉积石墨烯来克服二氧化钛量子效率低、导电性差等缺点,通过简单的电化学沉积技术,在石墨烯‑TiO2NTs基底上制备出了结晶良好、催化活性高且较为稳定的Cu2O/rGO/TNTs复合材料。将制得的复合材料作为催化剂,成功将挥发性有机气体氧化为CO2、H2O等小分子有机物,并且材料具有良好的耐热性、稳定性和较高的催化活性。本发明操作成本低、简单快捷、易于控制、绿色无污染,由于材料具有一体性,便于回收利用。

Description

一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除 方法
技术领域
本发明涉及质子交换膜燃料电池及能源转化领域,尤其涉及一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法。
背景技术
挥发性有机气体会使周围空气环境严重恶化,使厂区周围居民的日常生活受到严重干扰,导致人体健康和生态环境受到危害,因此VOCs的去除受到了全社会的关注。目前,传统的热破坏、吸收技术、活性炭吸附、生物处理技术普遍存在成本高、反应条件苛刻、较难运行维护等问题,有的技术甚至会造成二次污染,而光催化氧化技术在常温常压下便可进行,处理效率高、适用性广、维护简便,且成本较低不会造成二次污染。
在光催化氧化技术应用过程中,催化剂的选择和制备至关重要。二氧化钛纳米管具有比表面积大、物化性质稳定、催化活性高等特点,且来源丰富价格低廉,是复合催化剂良好的载体材料。由于二氧化钛本身导电性差且电子和空穴易重组,通过对其修饰改性克服以上问题可以拓宽二氧化钛的实用性。石墨烯具有良好的导电性,其在室温下的电子迁移率高达15000cm2V-1s-1,是目前已知的具有最高迁移率的锑化铟材料的2倍,在低温骤冷等特定条件下,其迁移率甚至高达25000cm2V-1s-1,此外,石墨烯具有突出的导热性能,常温下石墨烯热导率约为5×103W/m·K,远远高于铜和硅。石墨烯本身极具柔韧性,抗拉强度和弹性模量分别为125GPa和1.1Tpa,是已知材料中强度和硬度最高的纳米晶体结构。Cu2O禁带宽度约为2.1eV,可以吸收波长小于590nm的太阳光,Cu2O同时兼具无毒、廉价以及制备原料充沛等众多优点,被广泛应用于有机物降解、光催化领域。基于三者有以上优点,采取简便快捷、绿色、可控的技术将三者复合构筑催化剂应用于VOCs的去除,有望展示出优异的光催化活性。
目前,Cu2O的制备有很多种方法,主要包括传统的湿化学法、辐射法、水热法,这些方法存在成本高、操作复杂、Cu2+/Cu2O转化不充分、Cu2O形貌不可控等问题,而电化学法以其流程短、成本低、操作简单、产量高、工作环境良好和产品质量高等优点而最具工业化前景,受到各行业人士的青睐。
发明内容
本发明的目的在于通过对二氧化钛纳米管进行改进,提高导电性和催化活性,并应用于VOCs的去除,克服现有催化剂成本高、效率低、易造成二次污染等缺点。
本发明解决上述问题所采用的技术方案是:
一种钛基催化剂的制备方法,包括如下步骤:
S1:预处理柔性钛丝;
S2:以柔性钛丝为阳极、以铂片为阴极,在直流电压作用下,在二甲基亚砜和氢氟酸溶液中氧化得到无定形态二氧化钛纳米管;
S3:煅烧所述的二氧化钛纳米管,得到金红石型二氧化钛和锐钛矿型二氧化钛;
S4:将所述的金红石型二氧化钛和锐钛矿型二氧化钛作为工作电极,将铂片作为对电极,在氧化石墨溶液中通过循环伏安法将氧化石墨还原得到rGO-TNTs;
S5:以rGO-TNTs为工作电极,在CuSO4和NaOH电解液中,采用多电位阶跃法将Cu2+还原为Cu单质膜;
S6:以NaOH为电解液,采用恒电位技术制备Cu2O/rGO/TNTs催化剂。
优选地,步骤S2中的所述的直流电压值为30V。
优选地,步骤S2中的所述二甲基亚砜的容积为37.83mL,所述氢氟酸溶液的容积为2.17mL。
优选地,步骤S3中的煅烧温度为500℃,煅烧时间为4小时。
优选地,步骤S4中得循环伏安法中的石墨烯负载量由循环伏安扫描圈数控制。
优选地,所述的扫描圈数为30圈。
优选地,步骤S5中的CuSO4的浓度为5mmol/L,NaOH的浓度为1mol/L。
优选地,步骤S6中的所述恒电位技术中的沉积电位为-0.5V,沉积时间为30min。
优选地,步骤S6中的NaOH的浓度为1mol/L。
本发明又提出了一种采用上述钛基催化剂的制备方法制备的钛基催化剂的甲醛去除方法,其特征在于,包括如下步骤:
S101:取上述制备的钛基催化剂100微升,甲醛100微升,在自制反应器中,在可见光条件下反应3小时;
S102:采用GC-14C气相色谱仪测定甲醛浓度,其中气相色谱程序升温条件:柱温50℃,保持10min;以5℃/min的速率升至250℃,保持10min,设置进样口温度250℃、检测器温度280℃、柱前压100kpa、高纯氮气为载气;
S103:色谱分析至目标组分流出。
优选地,步骤S101中的可见光由MICROSOLAR300型氙灯提供。
本发明与现有技术相比,具有以下技术效果:本发明制备的催化剂对可见光具有高度的响应,可以广泛应用于挥发性有机废气的去除领域。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为本发明的一种钛基催化剂通过三电极体系的制备方法示意图。
附图标记:1-参比电极,2-工作电极,3-对电极,4-电解液。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
实施例一
以工业用柔性钛丝为基底,截取40cm长并人工绕成螺旋状,经过丙酮、乙醇、超纯水中分别超声30min预处理后作为阳极,以铂片为阴极,在30V直流电压作用下,在37.83mL二甲基亚砜和2.17mL氢氟酸溶液中氧化8小时即得到无定形态二氧化钛纳米管,500℃下煅烧4小时得到结晶度好的TiO2NTs;配置pH=6的柠檬酸-柠檬酸钠体系缓冲溶液,然后称取一定质量干燥的氧化石墨于上述缓冲溶液中,搅拌,得到浓度约为0.3mg mL-1氧化石墨烯胶体分散液。以此氧化石墨烯分散液为电解液,采用循环伏安法将氧化石墨烯还原并沉积到TiO2纳米管基底上,得到rGO-TiO2纳米管阵列。电沉积实验在标准三电极体系中进行,晶化后的TiO2纳米管/Ti丝,Pt片和饱和甘汞电极分别作为工作电、对电极和参比电极。如图1所示,1为参比电极,2为工作电极,3为对电极,4为电解液。循环伏安扫描范围-1.5~0.6V,扫描速率为25mV s-1。石墨烯负载量由循环伏安扫描圈数控制,本发明的技术方案中,扫描圈数为30;以rGO-TNTs为工作电极,同样地在三电极体系、5mmol/LCuSO4和1mol/LNaOH电解液中,采用多电位阶跃将Cu2+还原为Cu单质膜,其中阶跃电位为-0.5V,通断比为1:10,脉冲循环数为40;以得到的材料作为工作电极在三电极体系中,恒电位制备Cu2O,沉积电位为-0.5V,沉积时间为30min,最终成功制得Cu2O/rGO/TNTs。
本发明提出了一种以制得的Cu2O/rGO/TNTs光催化剂的甲醛去除方法,包括如下步骤:
S101:取上述制备的钛基催化剂100微升,甲醛100微升,在自制反应器中,在可见光条件下反应3小时;
S102:采用GC-14C气相色谱仪测定甲醛浓度,其中气相色谱程序升温条件:柱温50℃,保持10min;以5℃/min的速率升至250℃,保持10min,设置进样口温度250℃、检测器温度280℃、柱前压100kpa、高纯氮气为载气;GC-14C气相色谱仪,也即是带氢火焰离子化检测器。
S103:色谱分析至目标组分流出。
其中,步骤S101中的可见光由MICROSOLAR300型氙灯提供。
通过检测,甲醛去除率为85%。
此外,本发明以Cu2O/rGO/TNTs为光催化剂,在相同条件下重复利用四次,测定其在可见光条件下对甲醛的去除效果,并经过比对探究催化剂稳定性。通过检测,甲醛去除率分别为85%、82%、80%、78%。由此可知,本发明钛基催化剂的甲醛去除方法的效果良好。
基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (10)

1.一种钛基催化剂的制备方法,其特征在于,包括以下步骤:
S1:预处理柔性钛丝;
S2:以柔性钛丝为阳极、以铂片为阴极,在直流电压作用下,在二甲基亚砜和氢氟酸溶液中氧化得到无定形态二氧化钛纳米管;
S3:煅烧所述的二氧化钛纳米管,得到金红石型二氧化钛和锐钛矿型二氧化钛;
S4:将所述的金红石型二氧化钛和锐钛矿型二氧化钛作为工作电极,将铂片作为对电极,在氧化石墨溶液中通过循环伏安法将氧化石墨还原得到rGO-TNTs;
S5:以rGO-TNTs为工作电极,在CuSO4和NaOH电解液中,采用多电位阶跃法将Cu2+还原为Cu单质膜;
S6:以NaOH为电解液,采用恒电位技术制备Cu2O/rGO/TNTs催化剂。
2.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S2中的所述的直流电压值为30V。
3.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S2中的所述二甲基亚砜的容积为37.83mL,所述氢氟酸溶液的容积为2.17mL。
4.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S3中的煅烧温度为500℃,煅烧时间为4小时。
5.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S4中得循环伏安法中的石墨烯负载量由循环伏安扫描圈数控制,所述的扫描圈数为30圈。
6.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S5中的CuSO4的浓度为5mmol/L,NaOH的浓度为1mol/L。
7.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S6中的所述恒电位技术中的沉积电位为-0.5V,沉积时间为30min。
8.根据权利要求1所述的一种钛基催化剂的制备方法,其特征在于,步骤S6中的NaOH的浓度为1mol/L。
9.一种采用权利要求1-8任一项所述钛基催化剂的制备方法制备的钛基催化剂的甲醛去除方法,其特征在于,包括如下步骤:
S101:取权利要求1-8制备的钛基催化剂100微升,甲醛100微升,在自制反应器中,在可见光条件下反应3小时;
S102:采用GC-14C气相色谱仪测定甲醛浓度,其中气相色谱程序升温条件:柱温50℃,保持10min;以5℃/min的速率升至250℃,保持10min,设置进样口温度250℃、检测器温度280℃、柱前压100kpa、高纯氮气为载气;
S103:色谱分析至目标组分流出。
10.根据权利要求9所述的甲醛去除方法,其特征在于,步骤S101中的可见光由MICROSOLAR300型氙灯提供。
CN201610796754.1A 2016-08-31 2016-08-31 一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法 Pending CN106492801A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610796754.1A CN106492801A (zh) 2016-08-31 2016-08-31 一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610796754.1A CN106492801A (zh) 2016-08-31 2016-08-31 一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法

Publications (1)

Publication Number Publication Date
CN106492801A true CN106492801A (zh) 2017-03-15

Family

ID=58290517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610796754.1A Pending CN106492801A (zh) 2016-08-31 2016-08-31 一种钛基催化剂的制备方法及采用钛基催化剂的甲醛去除方法

Country Status (1)

Country Link
CN (1) CN106492801A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157027A (zh) * 2007-11-09 2008-04-09 浙江大学 经过改性的非金属掺杂的纳米TiO2光催化剂及其制备方法
CN101851772A (zh) * 2010-06-30 2010-10-06 湖南大学 一种Cu2OTiO2纳米管阵列及其制备方法
CN102309973A (zh) * 2011-06-01 2012-01-11 湖南大学 一种复合光电催化剂及制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157027A (zh) * 2007-11-09 2008-04-09 浙江大学 经过改性的非金属掺杂的纳米TiO2光催化剂及其制备方法
CN101851772A (zh) * 2010-06-30 2010-10-06 湖南大学 一种Cu2OTiO2纳米管阵列及其制备方法
CN102309973A (zh) * 2011-06-01 2012-01-11 湖南大学 一种复合光电催化剂及制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIXIA YANG,ET AL: ""Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/ Cu2O"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
李娟: ""TiO2纳米复合物的制备及性质研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
CN106167912B (zh) 铂纳米颗粒/二氧化钛纳米管阵列的制备方法、电极、非酶葡萄糖传感器和复合材料
Teng et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition
Wang et al. Self-biased solar-microbial device for sustainable hydrogen generation
Lai et al. Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: Improved water-splitting hydrogen generation performance
Li et al. BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity
Fang et al. Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation
Wu et al. Novel Bi2Sn2O7 quantum dots/TiO2 nanotube arrays S-scheme heterojunction for enhanced photoelectrocatalytic degradation of sulfamethazine
CN106745474B (zh) 可见光响应的三氧化钨-钒酸铋异质结薄膜电极制备方法
CN102703952B (zh) 利用离子液体在钛基上制备碳硼氮掺杂双管二氧化钛纳米管阵列的方法及其应用
Ampelli et al. Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells
CN111705419B (zh) 一种负载金属掺杂氮化碳的石墨烯基柔性无纺布及其制备方法和应用
CN108149300B (zh) 一种CeO2纳米颗粒/TiO2纳米管阵列复合异质结薄膜的制备方法
Saboo et al. Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh
Pang et al. Synthesis of α-Bi2Mo3O12/TiO2 nanotube arrays for photoelectrochemical COD detection application
Qiao et al. High yield of H2O2 and efficient S recovery from toxic H2S splitting through a self-driven photoelectrocatalytic system with a microporous GDE cathode
CN103614759A (zh) 氮掺杂二氧化钛纳米复合结构制备方法及应用
Ying et al. Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
Mahmoud et al. Stacked titanium dioxide nanotubes photoanode facilitates unbiased hydrogen production in a solar-driven photoelectrochemical cell powered with a microbial fuel cell treating animal manure wastewater
CN109589993A (zh) 电化学改性的钒酸铋-硫化钼-四氧化三钴催化电极及其制备方法和应用
He et al. The dual-function of photoelectrochemical glucose oxidation for sensor application and solar-to-electricity production
Momeni et al. Copper photodeposition on titania nanotube arrays and study of their optical and photocatalytic properties
Tang et al. The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@ carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@ carbon felt as photo electrodes
Raj et al. Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes
CN111509336A (zh) 选择性催化氧化同步产电的光电燃料电池系统及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315