CN106485867A - Multiparameter mine exogenous fire monitoring and alarming system - Google Patents
Multiparameter mine exogenous fire monitoring and alarming system Download PDFInfo
- Publication number
- CN106485867A CN106485867A CN201610918361.3A CN201610918361A CN106485867A CN 106485867 A CN106485867 A CN 106485867A CN 201610918361 A CN201610918361 A CN 201610918361A CN 106485867 A CN106485867 A CN 106485867A
- Authority
- CN
- China
- Prior art keywords
- gas concentration
- monitoring
- laser
- sensoring
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 79
- 238000012806 monitoring device Methods 0.000 claims abstract description 29
- 238000004891 communication Methods 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims description 115
- 238000000034 method Methods 0.000 claims description 26
- 239000004065 semiconductor Substances 0.000 claims description 21
- 239000000779 smoke Substances 0.000 claims description 13
- 239000007921 spray Substances 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 230000005619 thermoelectricity Effects 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 3
- 229910052756 noble gas Inorganic materials 0.000 claims description 3
- 150000002835 noble gases Chemical class 0.000 claims description 3
- 238000004880 explosion Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 239000003245 coal Substances 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000010365 information processing Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 244000249914 Hemigraphis reptans Species 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002817 coal dust Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- RJIWZDNTCBHXAL-UHFFFAOYSA-N nitroxoline Chemical compound C1=CN=C2C(O)=CC=C([N+]([O-])=O)C2=C1 RJIWZDNTCBHXAL-UHFFFAOYSA-N 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/06—Electric actuation of the alarm, e.g. using a thermally-operated switch
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/18—Special adaptations of signalling or alarm devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/12—Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
- G08B17/125—Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The invention discloses a kind of multiparameter mine exogenous fire monitoring and alarming system.Mine exogenous fire has the features such as discovery is difficult, development is swift and violent, and traditional exogenous fire warning system response time is long, easily misrepresents deliberately and fails to report, so that the intensity of a fire can not be controlled in time, cause a tremendous loss of lives.Described system mainly includes netscape messaging server Netscape, alarm device, communication network, extinguishing device, gas concentration monitoring device and all kinds of environment monitoring device;System can be monitored to the gas concentration in the environment of monitored area by gas concentration monitoring device, and the Analysis on monitoring data by obtaining to all kinds of environment monitoring devices, sends fire alarm self-extinguishing.Described system can accurate measurements exogenous fire characteristic gas, substantially increase warning accuracy, for Safety of Coal Mine Production provide important leverage.
Description
Technical field
The present invention relates to a kind of multiparameter mine exogenous fire monitoring and alarming system, this system is related to sensor technology, swashs
The fields such as light technology, spectral analysis technique, signal processing technology.
Background technology
Coal is China's main energy sources, accounts for primary energy 70%.Coal industry is high risk industries, gas, fire, top
The accidents such as plate, coal dust annoying Safety of Coal Mine Production.Coal mine fire includes breeding fire and exogenous fire, mine exopathogenic factor fire
Calamity has discovery hardly possible, develops the features such as swift and violent, fire extinguishing and rescue difficulty.Fire is once occur, if the intensity of a fire can not obtain in time
Control, involving scope will expand rapidly, cause a tremendous loss of lives.Therefore find that mine exogenous fire putting out has weight in time
Want meaning.The monitoring method of mine exogenous fire mainly adopts temperature monitoring and smoke monitoring etc. at present, and smoke monitoring exists anti-
Should be slow, the shortcomings of rate of false alarm and rate of failing to report are high;Temperature monitoring method relatively advanced at present is using fiber optic Distributed Temperature monitoring,
But optical fiber haves such problems as that fragile, installation is complex, difficult in maintenance.It is thus desirable to new mine exogenous fire monitoring alarm
System is to meet Safety of Coal Mine Production requirement.
Content of the invention
Present invention aim at providing a kind of multiparameter mine exogenous fire monitoring and alarming system, can remote sensing monitoring relatively long distance
The change of the multiple environmental datas causing from interior exogenous fire, particularly exogenous fire characteristic gas CO, CO2、O2、CH4With
NOXConcentration change and distribution characteristicss, fire alarm is carried out according to the data that obtains of monitoring, and conflagration area can be gone out
Fire, reduces fire hazard scope.System mainly includes gas concentration monitoring device, device for detecting temperature, wind direction monitoring device, wind
Slowdown monitoring device, flame monitoring apparatus, smoke monitoring device, netscape messaging server Netscape, alarm device, communication network and fire extinguishing dress
Put;Netscape messaging server Netscape be responsible for processing gas concentration data, ambient temperature data, wind direction Monitoring Data, air monitoring data,
Flame monitoring data and smoke monitoring data, when Monitoring Data meets alert if, then send sound and light alarm by alarm unit,
Fire alarm information is sent by communication network, and is put out a fire by extinguishing device.
1. described in, system further includes:The gas concentration monitoring device of system is gas concentration sensoring;Gas is dense
Degree sensoring mainly includes generating laser, laser pickoff, control process unit and display unit;Gas concentration remote sensing fills
Put using open air chamber, remote sensing monitoring can be carried out to multiple gases concentration in environment;Gas concentration sensoring has Laser Measuring
Away from function.
2. described in, system further includes:The gas concentration sensoring of system carries out different distance area using following methods
The gas concentration monitoring in domain:Device launches two bundle laser of different directions in same point, and pip A and B of different distance is entered
Row measurement;If the distance recording pip A is LA, gas mean concentration is MA, the distance recording pip B is LB, gas is average
Concentration is MB, then the gas concentration of A point to B point distance areas is availableApproximate representation.
3. described in, system further includes:The gas concentration sensoring of system is swept using following scanning monitoring methods
Retouch monitoring:The laser beam of the laser transmitter projects different directions of gas concentration sensoring carries out gas concentration and distance prison
Survey, obtain the data sequence of gas concentration, distance and direction of the launch composition, the gas obtaining different distance region after treatment is dense
Degree.
4. described in, system further includes:The generating laser of the gas concentration sensoring of system is using can automatically adjust
The generating laser of the direction of the launch, control process unit controls laser transmitter projects direction to scan monitoring mode, carries out not
Equidirectional gas concentration and distance monitoring.
5. described in, system further includes:The generating laser of the gas concentration sensoring of system is produced by lasing light emitter
Laser, a lasing light emitter can produce the laser for detecting multiple gases.
6. described in, system further includes:The generating laser of the gas concentration sensoring of system is produced by lasing light emitter
Laser, generating laser includes multiple lasing light emitters, and each lasing light emitter is used for producing a kind of laser of gas of detection.
7. described in, system further includes:The gas concentration sensoring of system carries out three dimensions area using following methods
The gas concentration monitoring in domain:Gas concentration sensoring launches the reflection to different distance for the laser beam of different directions in same point
Point measures, and obtains the distance away from each pip for the launch point;With launch point as reference point, to pip distance and Laser emission
Bearing data is processed, and obtains the coordinate data of each pip, according to all reflection point coordinate data, obtains three dimensions mould
Type, will be corresponding with three-dimensional space model for the gas concentration in the different distance region being obtained by computing, obtains three dimensions area
The gas concentration in domain.
8. described in, system further includes:The generating laser lasing light emitter of the gas concentration sensoring of system adopts adjustable
Humorous semiconductor laser;The controlled processing unit of semiconductor laser with tunable controls, and sends the laser of different wave length;Laser connects
Receive the laser that device reception reflects, laser signal is converted to the signal of telecommunication, the control process cell processing signal of telecommunication, obtain corresponding
Gas concentration.
9. described in, system further includes:The generating laser of the gas concentration sensoring of system can send CO, CO2、
O2、CH4And NOXThe laser of the different wave length of molecule absorption peak value.
10. described in, system further includes:The equipment being arranged in system in explosion environment is explosion-proof type equipment.
Described in 11., system further includes:The wind direction monitoring device of system and air monitoring device include integrative ultrasonic
Ripple wind direction and wind velocity sensor.
Described in 12., system further includes:The flame monitoring apparatus of system include video surveillance devices.
Described in 13., system further includes:The smoke monitoring device of system includes video surveillance devices.
Described in 14., system further includes:The device for detecting temperature of system includes Fibre Optical Sensor, temperature sensor, red
Outer thermal imaging system, infrared thermoelectricity are released or infrared radiation thermometer.
Described in 15., system further includes:The extinguishing device of system includes sprinkling water sprinkling equipment, foam spray appliance, lazy
Property gas injection device or aerosol spray appliance.
Brief description
Fig. 1 multiparameter mine exogenous fire monitoring and alarming system composition schematic diagram.
Fig. 2 multiparameter mine exogenous fire monitoring and alarming system workflow diagram.
Fig. 3 gas concentration sensoring embodiment 1 principle schematic.
Fig. 4 gas concentration sensoring embodiment 2 principle schematic.
Fig. 5 gas concentration sensoring embodiment 2 collimator arrangement architecture schematic diagram.
Fig. 6 gas concentration sensoring three-dimensional spatial area concentration monitor schematic diagram.
Fig. 7 gas concentration sensoring workflow diagram.
Specific embodiment
Fig. 1 is multiparameter mine exogenous fire monitoring and alarming system composition schematic diagram, and described system composition includes:
1. netscape messaging server Netscape (1):It is responsible for each sensing data is stored, and monitor gas concentration data, temperature
Degrees of data, air speed data, the data variation of wind direction data, flame monitoring data and smoke monitoring data, are become by analytical data
Change and send alarm signal, and control fire extinguishing.
2. alarm device (2):Controlled by netscape messaging server Netscape and send sound and light alarm, pass through with netscape messaging server Netscape
RS232 interface connection communication.
3. monitoring device (3):There is provided data query and production monitoring service for producing management personnel, by information processing services
Device provides field data, has alarm and shows and GIS service function.
4. core switch (4):The management data being responsible for all equipment accessing mining Ethernet exchanges, and hands over down-hole
Change planes (5) connected by optical fiber.Communication network device includes core switch (4), down-hole switch (5) and substation (6).
5. down-hole switch (5):The access data of responsible data substation exchanges, by optical fiber and each down-hole switch with
Looped network mode connects.
6. substation (6):The access data being responsible for each monitoring device exchanges, and has network switch function, hands over down-hole
Change planes and connected by optical fiber;There is RS485 interface.
7. gas concentration monitoring device (7):Using gas concentration sensoring, using open air chamber, can wrap in environment
Include CO, CO2、O2、CH4And NOXMultiple gases concentration carry out remote sensing monitoring, there is laser ranging function, there is three dimensions area
Domain gas concentration monitoring function.
8. device for detecting temperature (8):Fibre Optical Sensor, radio temperature sensor, thermal infrared imager, infrared thermoelectricity can be adopted
Release or infrared radiation thermometer in any one equipment.Fibre Optical Sensor can adopt U.S. DTS Sequence distribution formula Fibre Optical Sensor, leads to
Cross network interface and connect substation;Radio temperature sensor can adopt wireless sensor network equipment, star-like connected mode, by coordinating
Device node device connects substation (6) by RS485 interface;Thermal infrared imager can be using the Haikang DS- with intelligent recognition function
2CD8313PF-E25 infrared thermal imaging web camera, directly connects substation (6) by network interface;Can adopt digital red
Outer thermoelectricity releases alarm, connects substation (6) by RS485 interface module;Infrared radiation thermometer can adopt non-contact infrared temperature
Instrument DT8012B, connects substation (6) by RS485 interface module.
9. air monitoring device (9):Mechanical type air velocity transducer can be adopted, Integral ultrasonic wind speed and direction may also be employed
Sensor.Ultrasonic wind speed and direction sensor obtains wind speed and wind direction by the time difference intersecting ultrasound wave, is directly integrated wind direction
Monitoring device (13).HS-FSSB01 Integral ultrasonic wind speed wind direction sensor can be adopted, be connected by RS485 interface module
Data substation (6).
10. wind direction monitoring device (10):Mechanical type wind transducer can be adopted, Integral ultrasonic wind speed and wind may also be employed
To sensor.
11. flame monitoring apparatus (11):For monitoring the flame of fire generation, camera acquisition video image can be passed through,
Flame is identified by video image identification equipment, the Chaoyang Science and Technology Ltd. intelligent image type detection of Chengdu century can be adopted
Device, connects substation (6) by network interface;Infrared or ultraviolet monitoring equipment may also be employed, such as U.S.'s enlightening wound X3301 infra red flame
Monitor, X2200 ultraviolet flame monitor, connect substation (6) by RS485 interface.
12. smoke monitoring devices (12):For monitoring the smog of fire generation, conventional ion formula or photoelectric smoke can be adopted
Mist sensor, also can pass through video identification smog, can adopt the smog intelligent identification module of Chongqing Hai Pu that camera acquisition is regarded
Frequency image carries out video smoke identification, connects substation (6) by network interface.
13. extinguishing devices (13):Can be using watering sprinkling equipment, foam spray appliance, noble gases spraying equipment or gas
Colloidal sol spray appliance.Extinguishing device passes through RS485 interface and substation (6) connection communication.
Fig. 2 is multiparameter mine exogenous fire monitoring and alarming system workflow diagram:
1. (201) each monitoring device by the gas concentration collecting data, ambient temperature data, wind direction Monitoring Data,
Air monitoring data, flame monitoring data and smoke monitoring data send substation (6) to.
2. each Monitoring Data that (202) substation (6) receives, forwards the data to down-hole switch (5).
3. the Monitoring Data that data substation transmits is transferred to the core switch on well by (203) down-hole switch (5)
(4).
4. (204) core switch (4) transfers data to netscape messaging server Netscape, and netscape messaging server Netscape is to each sensing
Device data is stored, and analytical data change, such as data variation meet alert and if then pass through RS232 Interface Controller warning dress
Put (2) and monitoring device (3) sends alarm signal.Data exception includes CO, CO in specific monitored area2And NOXIn setting time
In interval, concentration lift-off value exceedes given threshold, O2And CH4In setting time interval, concentration decreasing value exceedes given threshold (often
The concentration change planting gas is extremely as an independent data exception);Temperature data lift-off value in setting time is spaced surpasses
Cross given threshold;Air speed data changing value in setting time is spaced exceedes given threshold;Wind direction takes a turn for the worse;Monitor fire
Flame;Monitor smog;When data exception item quantity exceedes given threshold, then it is judged to fire.Each monitoring threshold is according to existing
Field environmental measurement sets or is manually set and obtains.
5. (205) alarm device (2) receive information processing server (1) is believed by the controlling alarm that RS232 interface transmits
Number, send sound and light alarm.
6. the alarm signal that (206) monitoring device (3) receive information processing server (1) is transmitted by core switch (4)
Number, fire location is shown by computer display screen.
7. (207) extinguishing device (13) receives and sends substation (6) by netscape messaging server Netscape (1) to by communication network,
The control signal being forwarded by RS485 interface by substation (6) again, opening controlling valve door carries out injection noble gases, watering sprays,
Foam sprays or aerosol sprays.
Fig. 3 is specific embodiment 1 principle schematic of gas concentration sensoring, mainly includes generating laser, swashs
Optical receiver, control process unit and display unit.Control process unit is responsible for controlling laser transmitter projects laser;Process and swash
The signal that optical receiver returns obtains gas concentration and reverberation distance;Communication interface is controlled to be communicated;Control display screen shows
Show;Receive the operation signal of button and processed accordingly.Core processor (301), signal generator (302), phaselocked loop
Amplifier (303), analog-digital converter (304), digital phase discriminator (305) and other auxiliary element;Range finding is responsible for by generating laser
And the transmitting of the laser signal of gas-monitoring, including lasing light emitter (306) and head (307);Laser pickoff is responsible for receiving laser
Signal, laser signal is converted to the signal of telecommunication, and concrete composition includes receiving lens (308), darkroom (309) and photodetector
(310);Communication interface (311) is used for Monitoring Data and transmits;Display unit is responsible for gas concentration and is shown with working state of device data
The main element showing is display screen (312).Main element includes:
1. core processor (301), using Samsung S3C2440 processor, S3C2440 is micro- based on ARM920T kernel
Processor,;S3C2440 has 3 UART interface, 2 SPI interface, 2 USB interface, 1 IIC-BUS interface;Using embedded
Formula Linux platform realizes drive control communication.
2. signal generator (302), are responsible for producing for controlling laser transmitter projects to be used for the tune of gas concentration monitoring
Sawtooth wave control signal processed and the reference signal of signal analysis, including multiple portion such as DDS generator, filter circuit, adder
Point.
3. phaselocked loop amplifier (303), using two modules, be each responsible for extracting gas absorption signal once, secondary
Harmonic wave, suppresses noise using the orthogonal property of signal and noise, improves signal to noise ratio, mutually can be amplified using LIA-MV-150 lock
Device module.
4. analog-digital converter (304), be responsible for by lock-in amplifier demodulate once, secondary analogue signal be converted into numeral
Signal, can adopt 16 multi-channel a/d converter chips of ADS8364, have 6 fully differential input channels.
5. digital phase discriminator (305), the distance measuring signal that responsible process receives, receipt signal is entered with sending control signal
Row compares, and obtains the phase contrast between signal, and phase contrast is sent to core processor with data mode by interface.
6. lasing light emitter (306), using semiconductor laser with tunable, can send the laser of multi-wavelength, for measurement not
Same gas concentration, can be integrated using IBSG-TO5TEC series semiconductor laser with tunable, this semiconductor laser with tunable
TEC current temperature controls semiconductor element, for temperature adjustment, stabilizing wave lenth of laser and power.
7. head (307), for controlling the direction of the launch of semiconductor laser with tunable (311) and connecing of laser pickoff
Debit to, can by the external MAX485 chip in core processor SPI communication port pass through cradle head control protocol integrated test system head move, cloud
Platform, using video camera standard supervision head, can both horizontally and vertically rotated.
8. receiving lens (308), the laser being responsible for will reflect back into is assembled to photodetector.
9. darkroom (309), using airtight cylindrical structure, inwall applies light absorbent.
10. photodetector (310), are responsible for the laser signal receiving being converted to the signal of telecommunication, including light receiving element
And amplifying circuit;Light receiving element adopts InGaAs PIN photodiode, and amplifying circuit main element adopts AD603, in parallel
Two voltage followers connect phaselocked loop amplifier (307) and digital phase discriminator (309) respectively.
11. communication interfaces (311), including wired communication interface and wireless communication interface, the main core of wired communication interface
Piece adopts the singlechip Ethernet mac controller that DM9000, DM9000 are completely integrated, and the procotol on upper strata is by core processing
The built-in Linux of device drives and supports.DM9000 supports 10/100M self adaptation, supports the supply voltage of 3.3V and 5V.DM9000 leads to
Cross network isolation transformer interface chip YL18-1080S and connect RJ45 network interface, realize the physical connection of network is led to
Letter;Wireless communication interface adopts the Wifi wireless network card of standard USB interface, and in system, USB port drives and Wifi wireless network card drives
Dynamic program realizes network communication services under supporting.
12. display screens (312), using 3.5 cun of color LCD screens, resolution 480x800, carry display by Linux and drive journey
Sequence drives.
13. buttons (313), set for gas concentration sensoring parameter and function and control, include determining, return,
Upper shifting, the function key such as move down.
Fig. 4 is specific embodiment 2 principle schematic of gas concentration sensoring.Embodiment 2 and embodiment 1
One difference is, using the multiple different semiconductor laser with tunable being controlled by multi-channel data selector (314), to be used for
The laser of transmitting different wave length, laser need to be launched by splicer (315) and light path selector and collimator;Another area
It is not that embodiment 2 does not have head, and adopts 8 collimators, each collimator points to different directions, 8 collimators
(317) connect light selector switch (316), splicer (315) is sent by the control of core processor (301) by light selector switch (316)
Laser carry out routing, by laser from select certain road collimator (317) send, thus realize time division multiplexed multiplexing.Involved
Element as follows:
1. multi-channel data selector (314), between responsible signal generator (305) and multichannel semiconductor laser with tunable
Gating, CD4051BC bilateral analog switch can be adopted, control gating, 1 I/O by 3 I/O mouths of core processor (302)
Mouth controlling switch;COMMON IN/OUT mouth is connected with signal generator (305), and 4 IN/OUT mouths connect different tunable respectively
Semiconductor laser (311).
2. lasing light emitter (306), using semiconductor laser with tunable, can send monitored gas absorption peak wavelength
Laser, gas with various adopts the semiconductor laser with tunable of different wave length, can be using SAF117XS Series Belleville tunable half
Conductor semiconductor laser with tunable, this semiconductor laser with tunable integrated TEC current temperature controls semiconductor element.
3. splicer (315), will be a branch of for the Laser synthesizing of different wave length using optical fiber wave multiplexer, this equipment each tunable half
Conductor laser adopts time division emission, so the laser output of outfan most also only one of which wavelength at any time.
4. smooth selector switch (316) can adopt Vispace 1000OSS light routing device, is passed through by core processor (302)
Serial ports controls routing connection.
5. collimator (317), the light beam controlling laser orientation transmitting and being formed in space, is swashed using FC Interface Fiber
Light collimating lenses.
Fig. 5 is gas concentration sensoring embodiment 2 collimator arrangement architecture schematic diagram.
Fig. 6 is gas concentration sensoring three-dimensional spatial area concentration monitor schematic diagram.If device transmitting 8 bundle laser, point
Do not reflected in A, B, C, D, E, F, G, H point, set up three-dimensional system of coordinate with device position for zero it is known that laser
Projection straight line OA is α with the angle of XOY plane, and the angle with YOZ plane is β, then pip A coordinateThe coordinate of other each points can be obtained in the same manner, can be set up as figure according to coordinate points
Three-dimensional space model shown in 6.During scanning monitoring, M is respectively by the gas concentration that each pip recordsA、MB、MC、
MD、ME、MF、MG、MH, K point is any point within shown spatial model, by K point perpendicular to plane and the AB of Y-axis, DC,
EF, HG intersection point is respectively KAB、KDC、KEF、KHG, its coordinate respectively (xAB,yAB,zAB)、(xDC,yDC,zDC)、(xEF,yEF,zEF)、
(xHG,yHG,zHG), then KABThe gas concentration of pointKDCThe gas concentration of pointKEFThe gas concentration of pointKHGThe gas concentration of pointBy K point parallel to the straight line of Z axis and KABKDCAnd KEFKHGIntersection point be respectively
KABCDAnd KEFGH, its X-axis coordinate is respectively xKABCDAnd xKEFGH, obtain KABCDThe gas concentration of pointAnd KEFGHThe gas concentration of point
And then obtain the reference concentration of K pointBy above example algorithm
Can get in three-dimensional spatial area gas concentration a little.
Gas concentration sensoring workflow is as shown in Figure 7:
1. (701), core processor (301) start by set date once monitors scanning process.
2. (702), carry out laser ranging first, core processor (301) control signal generator (302) is just producing 10M
String ripple signal.
3. (703), sine wave signal drives lasing light emitter (306) to send the laser for detection range.Embodiment 1 is sinusoidal
Ripple signal directly drives semiconductor laser with tunable, and embodiment 2 sine wave signal need to be through multi-channel data selector (314)
Behind selection path, then drive corresponding semiconductor laser with tunable, then through splicer (315), light path selector switch (316),
Laser is launched by the collimator (317) of respective angles.
4. (704), range laser runs into reverberation fraction of laser light and is reflected, and receiving lens (308) collection reflects
Laser is assembled to photodetector (310), and the laser signal receiving is converted to the signal of telecommunication by photodetector.
5. the range finding signal of telecommunication that (705), digital phase discriminator (305) process receives, after amplified, mixing etc. is processed, obtains
Obtain and send the phase contrast between control signal, phase contrast sends core processor with data mode to by interface.
6. (706), core processor (301) receiving phase difference data, obtains between equipment and reverberation according to phase contrast
Distance.
7. (707), core processor (301) control signal generator sends the sawtooth signal of 50Hz and with 50kHz's
Sinusoidal signal is modulated.
8. (708), modulated sawtooth signal drives lasing light emitter (306) to send inswept a certain kind GAS ABSORPTION peak value ripple
The laser of long scope.Embodiment 1 sine wave signal directly drives semiconductor laser with tunable;Embodiment 2 sine wave is believed
Number need to select, behind corresponding gas passage, then drive corresponding tunable semiconductor laser through multi-channel data selector (123)
Device, then through splicer (315), light path selector switch (316), laser is launched by corresponding collimator (317).
9. (709), laser passes through the air of tested region to run into reverberation fraction of laser light and is reflected, receiving lens (308)
Collect the laser reflecting to assemble to photodetector (310), the laser signal receiving is converted to electricity by photodetector
Signal.
10. (710), phaselocked loop amplifier (303) receives the signal of telecommunication, and the modulation letter that timesharing receipt signal generator provides
Number and modulated signal frequency-doubled signal, treated extraction timesharing obtain once, second harmonic signal.
11. (711), analog-digital converter (304) will once, second harmonic signal digitized.
12. (712), core processor (301) receives once, the data of second harmonic signal, processes and obtains institute through light path
On surveyed gas concentration.
13. (713), judge whether to have monitored the gas of all kinds, such as do not monitored execution (714), such as monitored
Execution (715).
14. (714), core processor controls another kind of gas concentration of conversion monitoring, repeats the gas of (707) to (712)
Measurement of concetration process.
15. (715), judge whether to complete all angle scannings, execute (716) as unfinished, such as complete to execute
(717).
16. (716), embodiment 1:Core processor (301) controls head (307) to drive lasing light emitter (306) and laser
Receptor rotates an angle;Embodiment 2:Core processor (301) controls multi-channel data selector (121) to select lasing light emitter
(306) path, then drive corresponding lasing light emitter, then through splicer (315), light path selector switch (316), by another angle
Collimator (317) launches laser.Repeat (702) to (712) range finding and the process of gas concentration monitoring.
17. (717), core processor process (301) institute the distance of angled upper acquisition and each gas concentration, obtain difference
Distance areas and each gas concentration data of three-dimensional spatial area
18. (718), core processor processes (301) and uploads data by communication interface (311), and passes through display screen
(312) video data.
Claims (16)
1. a kind of multiparameter mine exogenous fire monitoring and alarming system it is characterised in that:System mainly includes gas concentration monitoring
At device, device for detecting temperature, wind direction monitoring device, air monitoring device, flame monitoring apparatus, smoke monitoring device, information
Reason server, alarm device, communication network and extinguishing device;Netscape messaging server Netscape is responsible for processing gas concentration data, environment
Temperature data, wind direction Monitoring Data, air monitoring data, flame monitoring data and smoke monitoring data, when Monitoring Data meets
Alert if, then send sound and light alarm by alarm unit, sends fire alarm information by communication network, and is filled by fire extinguishing
Put fire extinguishing.
2. monitoring and alarming system as claimed in claim 1 it is characterised in that:The gas concentration monitoring device of system is that gas is dense
Degree sensoring;It is single that gas concentration sensoring mainly includes generating laser, laser pickoff, control process unit and display
Unit;Gas concentration sensoring, using open air chamber, can carry out remote sensing monitoring to multiple gases concentration in environment;Gas concentration is distant
Induction device has laser ranging function.
3. gas concentration sensoring as claimed in claim 2 it is characterised in that:Gas concentration sensoring adopts following sides
Method carries out the gas concentration monitoring in different distance region:Device same point launch different directions two bundle laser, to difference away from
From pip A and B measure;If the distance recording pip A is LA, gas mean concentration is MA, record pip B's
Distance is LB, gas mean concentration is MB, then the gas concentration of A point to B point distance areas is availableClosely
Like expression.
4. gas concentration sensoring as claimed in claim 2 it is characterised in that:Gas concentration sensoring is swept using following
Retouch monitoring method to be scanned monitoring:The laser beam of the laser transmitter projects different directions of gas concentration sensoring enters circulation of qi promoting
Bulk concentration and distance monitoring, obtain the data sequence of gas concentration, distance and direction of the launch composition, obtain after treatment different away from
Gas concentration from region.
5. gas concentration sensoring as claimed in claim 2 it is characterised in that:The Laser emission of gas concentration sensoring
Using the generating laser that can automatically adjust the direction of the launch, control process unit controls generating laser to scan monitoring mode to device
The direction of the launch, carries out different directions gas concentration and distance monitoring.
6. gas concentration sensoring as claimed in claim 2 it is characterised in that:Generating laser is produced by lasing light emitter and swashs
Light, a lasing light emitter can produce the laser for detecting multiple gases.
7. gas concentration sensoring as claimed in claim 2 it is characterised in that:Generating laser is produced by lasing light emitter and swashs
Light, generating laser includes multiple lasing light emitters, and each lasing light emitter is used for producing a kind of laser of gas of detection.
8. gas concentration sensoring as claimed in claim 2 it is characterised in that:Gas concentration sensoring adopts following sides
Method carries out the gas concentration monitoring of three-dimensional spatial area:Gas concentration sensoring launches the laser beam of different directions in same point
The pip of different distance is measured, obtains the distance away from each pip for the launch point;With launch point as reference point, to reflection
Point distance and Laser emission bearing data are processed, and obtain the coordinate data of each pip, according to all pip number of coordinates
According to, obtain three-dimensional space model, will be relative with three-dimensional space model for the gas concentration in the different distance region being obtained by computing
Should, obtain the gas concentration of three-dimensional spatial area.
9. gas concentration sensoring as claimed in claim 2 it is characterised in that:The Laser emission of gas concentration sensoring
Device lasing light emitter adopts semiconductor laser with tunable;The controlled processing unit of semiconductor laser with tunable controls, and sends difference
The laser of wavelength;The laser that laser pickoff reception reflects, laser signal is converted to the signal of telecommunication, at control process unit
The reason signal of telecommunication, obtains corresponding gas concentration.
10. gas concentration sensoring as claimed in claim 2 it is characterised in that:The laser of gas concentration sensoring is sent out
Emitter can send CO, CO2、O2、CH4And NOXThe laser of the different wave length of molecule absorption peak value.
11. monitoring and alarming systems as claimed in claim 1 it is characterised in that:It is arranged on the equipment in explosion environment in system
It is explosion-proof type equipment.
12. monitoring and alarming systems as claimed in claim 1 it is characterised in that:The wind direction monitoring device of system and air monitoring
Device includes Integral ultrasonic wind direction and wind velocity sensor.
13. monitoring and alarming systems as claimed in claim 1 it is characterised in that:The flame monitoring apparatus of system include video prison
Depending on equipment.
14. monitoring and alarming systems as claimed in claim 1 it is characterised in that:The smoke monitoring device of system includes video prison
Depending on equipment.
15. monitoring and alarming systems as claimed in claim 1 it is characterised in that:The device for detecting temperature of system includes optical fiber and passes
Sensor, temperature sensor, thermal infrared imager, infrared thermoelectricity are released or infrared radiation thermometer.
16. monitoring and alarming systems as claimed in claim 1 it is characterised in that:The extinguishing device of system includes watering spray and sets
Standby, foam spray appliance, noble gases spraying equipment or aerosol spray appliance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610918361.3A CN106485867B (en) | 2016-10-21 | 2016-10-21 | Multi-parameter mine external cause fire monitoring and alarming system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610918361.3A CN106485867B (en) | 2016-10-21 | 2016-10-21 | Multi-parameter mine external cause fire monitoring and alarming system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106485867A true CN106485867A (en) | 2017-03-08 |
CN106485867B CN106485867B (en) | 2021-02-02 |
Family
ID=58270332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610918361.3A Active CN106485867B (en) | 2016-10-21 | 2016-10-21 | Multi-parameter mine external cause fire monitoring and alarming system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106485867B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107170182A (en) * | 2017-06-15 | 2017-09-15 | 深圳市泰和安科技有限公司 | A kind of fire detecting method, device and equipment |
CN107489455A (en) * | 2017-08-19 | 2017-12-19 | 中国矿业大学 | A kind of processing unit and method of laser gas remote sensing signal |
CN107884363A (en) * | 2017-10-17 | 2018-04-06 | 中国矿业大学(北京) | A kind of laser mine gas method of telemetering based on machine vision technique |
CN108005724A (en) * | 2017-12-04 | 2018-05-08 | 宝鸡文理学院 | A kind of fire TT&C system |
CN108961662A (en) * | 2018-07-30 | 2018-12-07 | 肥城矿业集团矿业管理服务有限公司 | A kind of coal-mine fire monitoring system based on wireless technology |
CN108986383A (en) * | 2018-08-23 | 2018-12-11 | 泰州淳蓝环保科技有限公司 | A kind of fire disaster intelligently early warning system for public safety |
CN109541145A (en) * | 2018-11-30 | 2019-03-29 | 安徽芯核防务装备技术股份有限公司 | A kind of harmful gas concentration detection method and device |
CN110264660A (en) * | 2019-07-11 | 2019-09-20 | 上海腾盛智能安全科技股份有限公司 | A kind of accurate positioning intelligent fiber grating fire detecting system |
CN110685747A (en) * | 2019-08-27 | 2020-01-14 | 中国矿业大学(北京) | Remote sensing extraction method for coal mining subsidence water body of high diving space |
CN111223394A (en) * | 2020-01-09 | 2020-06-02 | 武汉科技大学 | Mining industry fire safety propaganda warning equipment |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63147391A (en) * | 1986-12-11 | 1988-06-20 | Fujitsu Ltd | Infrared laser element |
US6423016B1 (en) * | 2000-06-08 | 2002-07-23 | Lms Medical Systems Ltd. | System and method for evaluating labor progress during childbirth |
CN1928551A (en) * | 2006-09-28 | 2007-03-14 | 将军经贸有限公司 | Three-dimensional real time measuring method and apparatus for phosphine for tobacco storage and temperature and humidity |
CN101308090A (en) * | 2008-06-09 | 2008-11-19 | 中国科学技术大学 | Fire field multi- parameter optical maser wavelength modulated spectrum detector method and apparatus |
US7851758B1 (en) * | 2005-09-29 | 2010-12-14 | Flir Systems, Inc. | Portable multi-function inspection systems and methods |
CN102662175A (en) * | 2012-05-04 | 2012-09-12 | 山东华辰泰尔信息科技股份有限公司 | Laser radar device for measuring mine gas concentration distribution and working method thereof |
CN103207162A (en) * | 2013-03-19 | 2013-07-17 | 石家庄供电公司 | Online concentration monitoring system for gases in cable tunnel based on optical fiber sensing |
CN103400465A (en) * | 2013-08-15 | 2013-11-20 | 天津卓朗科技发展有限公司 | Multifunctional and highly integrated fire safety precaution emergency system device |
CN103698477A (en) * | 2013-12-18 | 2014-04-02 | 广东电网公司潮州供电局 | Visual monitoring method and system for concentration of SF6 gas in GIS (gas insulated substation) chamber |
CN103761827A (en) * | 2014-01-09 | 2014-04-30 | 毕康建 | Fire monitor system |
US20140204382A1 (en) * | 2013-01-23 | 2014-07-24 | California Institute Of Technology | Miniature tunable laser spectrometer for detection of a trace gas |
CN104083841A (en) * | 2014-07-25 | 2014-10-08 | 电子科技大学 | Fire prevention and control system and method for mine and underground pipe network |
CN105300912A (en) * | 2015-09-16 | 2016-02-03 | 上海安允科技有限公司 | System for monitoring a variety of dangerous gases based on absorption spectrum remote sensing technology |
CN206441305U (en) * | 2016-10-21 | 2017-08-25 | 中国矿业大学(北京) | Multi-parameter mine exogenous fire monitoring and alarming system |
-
2016
- 2016-10-21 CN CN201610918361.3A patent/CN106485867B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63147391A (en) * | 1986-12-11 | 1988-06-20 | Fujitsu Ltd | Infrared laser element |
US6423016B1 (en) * | 2000-06-08 | 2002-07-23 | Lms Medical Systems Ltd. | System and method for evaluating labor progress during childbirth |
US7851758B1 (en) * | 2005-09-29 | 2010-12-14 | Flir Systems, Inc. | Portable multi-function inspection systems and methods |
CN1928551A (en) * | 2006-09-28 | 2007-03-14 | 将军经贸有限公司 | Three-dimensional real time measuring method and apparatus for phosphine for tobacco storage and temperature and humidity |
CN101308090A (en) * | 2008-06-09 | 2008-11-19 | 中国科学技术大学 | Fire field multi- parameter optical maser wavelength modulated spectrum detector method and apparatus |
CN102662175A (en) * | 2012-05-04 | 2012-09-12 | 山东华辰泰尔信息科技股份有限公司 | Laser radar device for measuring mine gas concentration distribution and working method thereof |
US20140204382A1 (en) * | 2013-01-23 | 2014-07-24 | California Institute Of Technology | Miniature tunable laser spectrometer for detection of a trace gas |
CN103207162A (en) * | 2013-03-19 | 2013-07-17 | 石家庄供电公司 | Online concentration monitoring system for gases in cable tunnel based on optical fiber sensing |
CN103400465A (en) * | 2013-08-15 | 2013-11-20 | 天津卓朗科技发展有限公司 | Multifunctional and highly integrated fire safety precaution emergency system device |
CN103698477A (en) * | 2013-12-18 | 2014-04-02 | 广东电网公司潮州供电局 | Visual monitoring method and system for concentration of SF6 gas in GIS (gas insulated substation) chamber |
CN103761827A (en) * | 2014-01-09 | 2014-04-30 | 毕康建 | Fire monitor system |
CN104083841A (en) * | 2014-07-25 | 2014-10-08 | 电子科技大学 | Fire prevention and control system and method for mine and underground pipe network |
CN105300912A (en) * | 2015-09-16 | 2016-02-03 | 上海安允科技有限公司 | System for monitoring a variety of dangerous gases based on absorption spectrum remote sensing technology |
CN206441305U (en) * | 2016-10-21 | 2017-08-25 | 中国矿业大学(北京) | Multi-parameter mine exogenous fire monitoring and alarming system |
Non-Patent Citations (1)
Title |
---|
SUN JI-PING ET AL.: ""ZigBee Based Intelligent Helmet for Coal Miners"", 《2009 WORLD CONGRESS ON COMPUTER SCIENCE AND INFORMATION ENGINEERING》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107170182A (en) * | 2017-06-15 | 2017-09-15 | 深圳市泰和安科技有限公司 | A kind of fire detecting method, device and equipment |
CN107489455A (en) * | 2017-08-19 | 2017-12-19 | 中国矿业大学 | A kind of processing unit and method of laser gas remote sensing signal |
CN107884363A (en) * | 2017-10-17 | 2018-04-06 | 中国矿业大学(北京) | A kind of laser mine gas method of telemetering based on machine vision technique |
CN107884363B (en) * | 2017-10-17 | 2023-10-24 | 中国矿业大学(北京) | Laser mine gas telemetry method based on machine vision technology |
CN108005724A (en) * | 2017-12-04 | 2018-05-08 | 宝鸡文理学院 | A kind of fire TT&C system |
CN108961662A (en) * | 2018-07-30 | 2018-12-07 | 肥城矿业集团矿业管理服务有限公司 | A kind of coal-mine fire monitoring system based on wireless technology |
CN108986383A (en) * | 2018-08-23 | 2018-12-11 | 泰州淳蓝环保科技有限公司 | A kind of fire disaster intelligently early warning system for public safety |
CN109541145A (en) * | 2018-11-30 | 2019-03-29 | 安徽芯核防务装备技术股份有限公司 | A kind of harmful gas concentration detection method and device |
CN110264660A (en) * | 2019-07-11 | 2019-09-20 | 上海腾盛智能安全科技股份有限公司 | A kind of accurate positioning intelligent fiber grating fire detecting system |
CN110685747A (en) * | 2019-08-27 | 2020-01-14 | 中国矿业大学(北京) | Remote sensing extraction method for coal mining subsidence water body of high diving space |
CN111223394A (en) * | 2020-01-09 | 2020-06-02 | 武汉科技大学 | Mining industry fire safety propaganda warning equipment |
Also Published As
Publication number | Publication date |
---|---|
CN106485867B (en) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106485867A (en) | Multiparameter mine exogenous fire monitoring and alarming system | |
CN106401650A (en) | Multi-parameter mine laneway fire monitoring and alarming system | |
CN106647557B (en) | Mine explosion monitoring alarm and control system | |
CN106640195A (en) | Mine explosion monitoring and warning system | |
CN106448020A (en) | Exogenous mine fire monitoring alarm system | |
CN206441305U (en) | Multi-parameter mine exogenous fire monitoring and alarming system | |
CN207261045U (en) | Mine explosion monitor and alarm system | |
CN106355818B (en) | Mine goaf fire monitoring and early warning device | |
CN202393703U (en) | Device for gas leakage monitoring by means of three-dimensional cradle head scanning and laser telemetering | |
CN106323911B (en) | Multi-light source mine post-disaster environmental gas remote sensing equipment | |
CN206440986U (en) | Mine explosion monitoring, alarming and control system | |
CN207866704U (en) | 2-d reconstruction system for TDLAS laser gas remote measurements | |
CN107246281A (en) | Mine self caused fire monitoring early-warning system | |
CN206133843U (en) | Mine external fire monitors alarm system | |
CN106481361A (en) | Mine laneway fire monitoring alarm system | |
CN112798558A (en) | Automatic focusing laser gas remote measuring device | |
CN106323912B (en) | Multi-parameter mine post-disaster environmental gas remote sensing equipment | |
CN107167793A (en) | A kind of alignment system based on laser correlative detector array | |
WO2015103719A1 (en) | Fire monitoring system | |
CN103454243A (en) | Optical fiber distribution type multi-point online gas monitoring system and main engine thereof | |
CN106323910A (en) | Urban comprehensive pipe gallery open type multi-component gas on-line monitoring early warning device | |
CN206092069U (en) | Mine tunnel fire monitoring alarm system | |
CN206092071U (en) | Multi -parameter mine tunnel fire monitoring alarm system | |
CN214794456U (en) | Automatic focusing laser gas remote measuring device | |
CN202047867U (en) | Gas concentration real-time detecting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |