CN106483468A - 锂电池初始荷电状态的多因素估算方法 - Google Patents

锂电池初始荷电状态的多因素估算方法 Download PDF

Info

Publication number
CN106483468A
CN106483468A CN201610864289.0A CN201610864289A CN106483468A CN 106483468 A CN106483468 A CN 106483468A CN 201610864289 A CN201610864289 A CN 201610864289A CN 106483468 A CN106483468 A CN 106483468A
Authority
CN
China
Prior art keywords
battery
charge
delta
soc
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610864289.0A
Other languages
English (en)
Inventor
吕杰
宋文吉
林仕立
冯自平
张艳辉
陈永珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201610864289.0A priority Critical patent/CN106483468A/zh
Publication of CN106483468A publication Critical patent/CN106483468A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种锂电池初始荷电状态的多因素估算方法,充分考虑温度、静置时间、开路电压等因素对锂离子电池初始荷电状态SOC0的影响,采用非线性拟合的方式,将静置时间、开路电压和温度作为自变量,初始荷电状态SOC0作为因变量,获得SOC0函数关系式。本发明突破了原开路电压法需要较长静置时间的弊端,解决原安时积分法无法准确估算初始荷电状态的问题,实时对SOC0进行补偿,有效提高估算精度。

Description

锂电池初始荷电状态的多因素估算方法
技术领域
本发明涉及电池储能技术领域,具体涉及一种锂电池初始荷电状态的多因素估算方法。
背景技术
电池储能技术能够有效提高电能质量,同时逐步降低汽油等燃料在汽车领域中的应用。如何合理使用电池,充分利用电池,延长电池使用寿命,是其进一步发展必须解决的问题。荷电状态(State of Charge,SOC)用于衡量电池在使用过程中产生的容量变化,是电池储能系统控制管理及能量平衡的基础。
早期的电池荷电状态SOC主要使用电池工作过程中的工作电压,表征电池所处的工作状态。然而,随着现代集成电路技术的发展,仅仅考虑电压参数已经不能满足足够的估算精度。例如,电动汽车能量系统的良好的控制策略,电池组之间的不一致性,以及为后续能量管理控制策略和动力总成的控制等均需要有良好的荷电状态估算作为支撑。
安时积分法是电池储能领域荷电状态估算中应用最广的一种方式,但面临初始荷电状态SOC0难以确定,误差累积等弊端。开路电压法是目前确定初始荷电状态最经济和最简单的方式,从而得到广泛的应用,但其缺乏高精度的初始荷电状态,以及未考虑温度影响等参数,限制了其荷电状态估算精度的进一步提高。
急需一种简单且充分考虑温度及使用工况等因素的锂电池初始荷电状态SOC0估算方法,能够实时对SOC0进行补偿,有效提高估算精度,为电池管理以及储能装置能量管理和控制策略提供准确的管理参量。
发明内容
针对现有技术的不足,本发明的目的在于提供一种锂电池初始荷电状态的多因素估算方法,以提高初始荷电状态的估算精度。
为了实现上述目的,本发明采取的技术方案是:
一种锂电池初始荷电状态的多因素估算方法,包括步骤:
通过脉冲充电和脉冲放电及静置过程,获得电池开路电压与荷电状态之间的对应关系,得到曲线拟合关系式;
对电池模型进行动态分析,将电池工况分为放电、放电静置、充电、充电静置四个阶段,获得其数学函数表达式,通过系统参数辨识,获得二阶双极化电池模型参数的数值;
通过电池模型,用最小二乘算法进行曲线拟合,获得充放电工况下SOC与欧姆内阻、电化学极化内阻、浓差极化内阻之间的数学函数表达式;
对比充放电工况下的静止时间,通过最小二乘算法的数学拟合,建立含荷电状态SOC、静置时间t和开路电压u之间的数学关系式;
采用快速温度变化试验箱模拟使用工况温度,分析电池开路电压随温度的变化趋势,获得开路电压与温度变化之间的关系,对SOC0公式进行修正。
与现有技术相比,本发明的有益效果在于:
本发明锂电池初始荷电状态的多因素估算方法,充分考虑温度、静置时间、开路电压等因素对锂离子电池初始荷电状态SOC0的影响,实时对SOC0进行补偿,有效提高估算精度。
附图说明
图1为本发明锂电池初始荷电状态的多因素估算方法的流程示意图;
图2为初始荷电状态估算装置的结构示意图;
图3为二阶双极化电池模型示意图;
图4为本发明锂电池初始荷电状态的多因素估算方法中多个因素的示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
本发明锂电池初始荷电状态的多因素估算方法,如图1所示,包括步骤:
步骤s101、通过脉冲充电和脉冲放电及静置过程,获得电池开路电压与荷电状态之间的对应关系,得到曲线拟合关系式;
步骤s102、对电池模型进行动态分析,将电池工况分为放电、放电静置、充电、充电静置四个阶段,获得其数学函数表达式,通过系统参数辨识,获得二阶双极化电池模型参数的数值;
步骤s103、通过电池模型,用最小二乘算法进行曲线拟合,获得充放电工况下SOC与欧姆内阻、电化学极化内阻、浓差极化内阻之间的数学函数表达式;
步骤s104、对比充放电工况下的静止时间,通过最小二乘算法的数学拟合,建立含荷电状态SOC、静置时间t和开路电压u之间的数学关系式;
步骤s105、采用快速温度变化试验箱模拟使用工况温度,分析电池开路电压随温度的变化趋势,获得开路电压与温度变化之间的关系,对SOC0公式进行修正。
在步骤s102中,可以通过初始荷电状态估算装置对电池模型进行动态分析,如图2所示,所述估算装置包括电池测试模块、数据采集模块和数据分析模块。通过数据分析模块控制电池测试模块和数据分析模块。通过电池测试模块设置电池充放电条件,控制充放电工况,并进行过充过放保护。通过数据采集模块获得电池电压、电流和温度等状态数据。通过数据分析模块完成电池模型动态分析和系统参数识别。
下面对本发明锂电池初始荷电状态的多因素估算方法的5个步骤,详细介绍如下。
1、通过脉冲充放电及静置过程,获得电池开路电压与荷电状态之间的对应关系,得到曲线拟合关系式。
所述的脉冲放电,具体实现步骤为:(1)将电池按照恒流0.3C充电,至电池达到饱和电压3.65V(以磷酸铁锂电池为例);(2)转为恒压3.65V充电,直至充电电流小于0.02C,保证电池处于容量饱和状态;(3)将电池按照0.03C恒流放电,每次放掉额定容量的10%;(4)停歇半个小时以上,让电化学极化和浓差极化充分消失;(5)重复(3)-(4),直至电池达到放电截止电压。
所述的脉冲充电,具体实现步骤为:(a)将电池按照恒流0.2C充电,每次充入额定容量的10%;(b)静置半个小时以上,使电化学极化和浓差极化现象消失,记录此时电池的开路电压;(c)重复(a)-(b),直至达到电池充电截止电压3.65V。
所述的放电过程电池开路电压与荷电状态曲线拟合关系式为:
公式(1)所述的b为拐点因子,所述的p为功率因子。p表征了过拐点处b做一条斜率曲线后的面积。
2、对二阶双极化电池模型进行动态分析,计算电池松弛效应时间。通过初始荷电状态估算装置对电池模型进行动态分析,将电池工况分为放电、放电静置、充电、充电静置四个阶段,获得其数学函数表达式,通过系统参数辨识,获得二阶双极化电池模型参数的数值。
所述的电池模型动态分析,以放电过程为例,关系式如(2):
公式(2)及图3所述的R0为电池的欧姆电阻,Rk为电池的电化学极化电阻,Rd为浓差极化电阻,Ck是电化学极化电容,Cd为电池的浓差极化电容。Vt为电池端电压,Voc为电池正极与负极处于平衡状态时两者之间的电位差。τk,τd分别是并联组件的时间常数。
所述的充放电工况下SOC与欧姆内阻、电化学极化内阻、浓差极化内阻等模型参数之间的关系,随着荷电状态的上升,欧姆内阻下降,放电过程电池欧姆电阻明显大于充电过程。随着SOC的减小,电化学极化内阻不断下降。充电时的最大电化学极化内阻远远大于放电工况。充电时,浓差极化内阻随着SOC的增加逐渐下降。放电时,浓差极化内阻随着SOC的增加逐渐上升。
3、通过电池模型,用最小二乘算法进行曲线拟合,获得充放电工况下SOC与欧姆内阻、电化学极化内阻、浓差极化内阻等模型参数之间的数学函数表达式。
4、对比充放电工况下静止时间。以放电工况为例,脉冲放电工况下,停歇时间分别为5s,1min,5min,15min,30min,得到电池开路电压与SOC之间的关系曲线。实验结果表明,磷酸铁锂电池开路电压波动不大,他们的拟合曲线参数相差不大。(a)根据所得到的5s,1分钟,5分钟和30分钟工况下的,三条端电压与荷电状态SOC之间的关系曲线,采用最小二乘算法拟合的方式,分别得到相应的工程经验公式。(b)根据所得到的表达式中的关键性参数A,B,C,D进行最小二乘算法曲线拟合,得到上述四个主要参数随时间的数学表达式。(c)将上述得到的数学表达式代入(a)中所确定的数学函数,即可得到放电工况下任意静置时间点下的荷电状态SOC估算。
通过最小二乘算法的数学拟合,建立含荷电状态SOC,静置时间t和开路电压u之间的数学关系式,在5s,1分钟,5分钟和30分钟下的荷电状态与其余参数间的数学关系式见式见(3)-(7)。
荷电状态SOC,静置时间t和端电压u之间的数学关系式:
静置时间5s放电工况下开路电压估算荷电状态SOC经验公式:
静置时间1min放电工况下开路电压估算荷电状态SOC经验公式:
静置时间5min放电工况下开路电压估算荷电状态SOC经验公式:
静置时间30min放电工况下开路电压估算荷电状态SOC经验公式:
通过公式(3)-(7)得到参数A,B,C,D与时间参量t(单位:min)的数学表达式:
A=-0.1252t+97.109
B=-0.0416t+85.901
C=0.0007t+3.2827
D=-0.0001t+0.0187 (8)
5、采用快速温度变化试验箱模拟使用工况温度,分析电池开路电压随温度的变化趋势,获得开路电压随温度变化之间的关系,对SOC0公式进行修正。
以SOC50%为例,实验步骤:(a)采用恒流恒压模式将电池充电至饱和状态;(b)采用恒定电流0.3C放电至指定的荷电状态SOC点,静置放置20小时左右,尽可能让电池极化现象完全消失;(c)将电池放入快速温度变化试验箱,将温度调整至3℃,观察此时开路电压的变化趋势,直至开路电压稳定;(d)待开路电压稳定后,逐渐升温至15℃,观察开路电压的状态变化,直至电压稳定,并维持半小时左右;(e)温度继续升高至25℃,35℃和45℃,观察方法类似于3℃和15℃。
实验结果表明,磷酸铁锂电池的开路电压受到环境温度的影响,而且相互之间的呈现严重的非线性特性。开路电压的温度系数在SOC30%-SOC100%之间成正值,而在SOC0%-SOC30%之间成负值。选25℃时的电压为基准电压,统一各个温度点下电池的开路电压。采用非线性拟合方式,将静止时间、开路电压和温度作为自变量,初始荷电状态SOC0作为因变量,获得SOC0函数关系式如下。
其中,参数Δu(T)为开路电压随温度变化的函数关系式。该方式在原先开路电压法基础上,添加了静置时间、温度对开路电压的影响等因子后,将显著提高初始荷状态的估算精度,而且提高电池荷电状态SOC和功率输出的自由度。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (6)

1.一种锂电池初始荷电状态的多因素估算方法,其特征在于,包括步骤:
通过脉冲充电和脉冲放电及静置过程,获得电池开路电压与荷电状态之间的对应关系,得到曲线拟合关系式;
对二阶双极化电池模型进行动态分析,将电池工况分为放电、放电静置、充电、充电静置四个阶段,获得四个阶段的数学函数表达式,通过模型参数辨识,获得二阶双极化电池模型中参数的数值;
通过二阶双极化电池模型,用最小二乘算法进行曲线拟合,获得充放电工况下SOC与欧姆内阻、电化学极化内阻、浓差极化内阻之间的数学函数表达式;
对比充放电工况下的静止时间,通过最小二乘算法的数学拟合,建立SOC、静置时间t和开路电压u之间的数学关系式;
采用快速温度变化试验箱模拟使用工况温度,分析电池开路电压随温度的变化趋势,获得开路电压与温度变化之间的关系,对SOC0公式进行修正。
2.根据权利要求1所述的锂电池初始荷电状态的多因素估算方法,其特征在于,
通过初始荷电状态估算装置对电池模型进行动态分析,所述初始荷电状态估算装置包括电池测试模块、数据采集模块和数据分析模块;
通过所述数据分析模块控制所述电池测试模块和所述数据分析模块;通过所述电池测试模块设置电池充放电条件,控制充放电工况,并进行过充过放保护;通过所述数据采集模块获得电池电压、电流和温度;通过所述数据分析模块完成电池模型动态分析和系统参数识别。
3.根据权利要求2所述的锂电池初始荷电状态的多因素估算方法,其特征在于,
放电过程电池开路电压与荷电状态曲线拟合关系式为:
U = U ( S O C 0 % ) - U ( S O C 100 % ) 1 + ( SOC 0 / b ) p + U ( S O C 100 % )
U为开路电压,U(SOC0%)、U(SOC100%)分别表示荷电状态为0%和100%时的开路电压,b为拐点因子,p为功率因子,p表征过拐点处b做一条斜率曲线后的面积。
4.根据权利要求3所述的锂电池初始荷电状态的多因素估算方法,其特征在于,
放电过程的电池模型动态关系式为:
Vt=V0c-IR0-Vk-Vd
V k = IR k ( 1 - e - t / τ k )
V d = IR d ( 1 - e - t / τ d )
τd=Rd×Cd
τk=Rk×Ck
R0为电池的欧姆电阻,Rk为电池的电化学极化电阻,Rd为浓差极化电阻,Ck是电化学极化电容,Cd为电池的浓差极化电容。Vt为电池端电压,Voc为电池正极与负极处于平衡状态时两者之间的电位差,τk,τd分别是并联组件的时间常数。
5.根据权利要求3所述的锂电池初始荷电状态的多因素估算方法,其特征在于,
荷电状态SOC与静置时间t、端电压u之间的数学关系式为:
S O C = A - B 1 1 + exp ( S O C - C D )
在静置时间为5s,1min,5min和30min时的数学关系式分别为:
S O C = 96.94 - 85.79 1 1 + exp ( S O C - 3.27 0.01771 )
S O C = 97 - 89.0709 1 1 + exp ( S O C - 3.29337 0.01936 )
S O C = 96.654 - 85.656 1 1 + exp ( S O C - 3.29889 0.01763 )
S O C = 93.32456 - 84.656 1 1 + exp ( S O C - 3.304 0.01517 )
通过上述公式得到参数A,B,C,D与时间参量t(单位:min)的数学表达式:
A=-0.1252t+97.109
B=-0.0416t+85.901
C=0.0007t+3.2827
D=-0.0001t+0.0187
6.如权利要求1所述的开路电压随温度变化之间的关系。选25℃时的电压为基准电压,统一各个温度点下电池的开路电压,SOC0函数关系式如下:
SOC 0 = f 3 ( Δ t ) exp 1 f 4 ( Δ t ) ( f 2 ( Δ t ) u - f 1 ( Δ t ) - Δ u ( T ) - 1 )
f 1 ( Δ t ) = 0.27514 - 0.07079 Δ t + 0.00679 Δ 2 t - 2.53447 × 10 - 4 Δ 3 t + 3.31081 × 0 - 6 Δ 4 t f 2 ( Δ t ) = 0.26447 + 3.47694 × 10 - 4 Δ t + 2.20474 × 10 - 4 Δ 2 t f 3 ( Δ t ) = - 0.03535 ( Δ t + 38.89469 ) f 4 ( Δ t ) = - 0.00383 ( Δ t - 925.20757 )
参数Δu(T)为开路电压随温度变化的函数关系式。
CN201610864289.0A 2016-09-29 2016-09-29 锂电池初始荷电状态的多因素估算方法 Pending CN106483468A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610864289.0A CN106483468A (zh) 2016-09-29 2016-09-29 锂电池初始荷电状态的多因素估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610864289.0A CN106483468A (zh) 2016-09-29 2016-09-29 锂电池初始荷电状态的多因素估算方法

Publications (1)

Publication Number Publication Date
CN106483468A true CN106483468A (zh) 2017-03-08

Family

ID=58268986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610864289.0A Pending CN106483468A (zh) 2016-09-29 2016-09-29 锂电池初始荷电状态的多因素估算方法

Country Status (1)

Country Link
CN (1) CN106483468A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020251A (zh) * 2017-03-23 2017-08-08 苏州协鑫集成储能科技有限公司 电池及电池组的筛选方法
CN107167738A (zh) * 2017-04-21 2017-09-15 华南理工大学 一种基于ocv‑soc曲线特征的动力电池soc估算的修正方法及装置
CN107656206A (zh) * 2017-08-08 2018-02-02 中航锂电(洛阳)有限公司 基于特征温度和倍率的短时静置soc和开路电压估算方法
CN107748330A (zh) * 2017-09-20 2018-03-02 镇江恒驰科技有限公司 一种动力锂电池的老化预警方法
CN107991628A (zh) * 2018-01-15 2018-05-04 厦门大学 一种基于相关与回归分析的蓄电池模型建模方法
CN108594125A (zh) * 2018-04-11 2018-09-28 芜湖职业技术学院 锂电池模型参数辨识装置
CN108717164A (zh) * 2018-04-11 2018-10-30 中国电力科学研究院有限公司 电池的荷电状态soc标定方法及系统
CN108872875A (zh) * 2018-07-04 2018-11-23 力信(江苏)能源科技有限责任公司 一种锂电池电化学交流阻抗测试方法
CN109613438A (zh) * 2018-12-17 2019-04-12 欣旺达电动汽车电池有限公司 一种soc-ocv关系估算方法
CN111077459A (zh) * 2018-10-19 2020-04-28 上海顺旅房车有限公司 一种房车电源监测管理系统
CN111123137A (zh) * 2019-12-24 2020-05-08 中航锂电(洛阳)有限公司 电池组的soc和soh的估算方法
CN111381180A (zh) * 2020-03-26 2020-07-07 北京昇科能源科技有限责任公司 一种电池容量的确定方法和装置
CN111537887A (zh) * 2020-04-27 2020-08-14 南京航空航天大学 考虑迟滞特性的混合动力系统电池开路电压模型优化方法
CN113109726A (zh) * 2021-03-25 2021-07-13 广西大学 一种基于误差补偿的多因素动态内阻模型估算锂离子电池内阻方法
CN113805086A (zh) * 2021-09-16 2021-12-17 安徽师范大学 一种锂离子电池内阻的快速估算方法
CN116087793A (zh) * 2023-03-03 2023-05-09 力高(山东)新能源技术股份有限公司 一种基于短时间静置的电压变化趋势校准soc的方法
CN117706390A (zh) * 2024-02-06 2024-03-15 清华大学 一种电池荷电状态滚动优化估计方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018679A (zh) * 2012-12-10 2013-04-03 中国科学院广州能源研究所 一种铅酸电池初始荷电状态soc0的估算方法
CN103529396A (zh) * 2013-10-25 2014-01-22 重庆长安汽车股份有限公司 一种高精度锂离子电池荷电状态初始值估算方法
CN103529398A (zh) * 2013-10-28 2014-01-22 哈尔滨工业大学 基于扩展卡尔曼滤波的锂离子电池soc在线估计方法
CN105203969A (zh) * 2015-10-23 2015-12-30 南昌航空大学 基于修正的rc电池模型的荷电状态估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018679A (zh) * 2012-12-10 2013-04-03 中国科学院广州能源研究所 一种铅酸电池初始荷电状态soc0的估算方法
CN103529396A (zh) * 2013-10-25 2014-01-22 重庆长安汽车股份有限公司 一种高精度锂离子电池荷电状态初始值估算方法
CN103529398A (zh) * 2013-10-28 2014-01-22 哈尔滨工业大学 基于扩展卡尔曼滤波的锂离子电池soc在线估计方法
CN105203969A (zh) * 2015-10-23 2015-12-30 南昌航空大学 基于修正的rc电池模型的荷电状态估计方法
CN105203969B (zh) * 2015-10-23 2018-04-13 南昌航空大学 基于修正的rc电池模型的荷电状态估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张艳辉: "大容量磷酸铁锂电池智能荷电状态估算方法研究", 《万方学位论文》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020251A (zh) * 2017-03-23 2017-08-08 苏州协鑫集成储能科技有限公司 电池及电池组的筛选方法
CN107020251B (zh) * 2017-03-23 2019-03-26 苏州协鑫集成储能科技有限公司 电池及电池组的筛选方法
CN107167738B (zh) * 2017-04-21 2019-08-20 华南理工大学 一种基于ocv-soc曲线特征的动力电池soc估算的修正方法及装置
CN107167738A (zh) * 2017-04-21 2017-09-15 华南理工大学 一种基于ocv‑soc曲线特征的动力电池soc估算的修正方法及装置
CN107656206A (zh) * 2017-08-08 2018-02-02 中航锂电(洛阳)有限公司 基于特征温度和倍率的短时静置soc和开路电压估算方法
CN107656206B (zh) * 2017-08-08 2019-12-13 中航锂电(洛阳)有限公司 基于特征温度和倍率的短时静置soc和开路电压估算方法
CN107748330A (zh) * 2017-09-20 2018-03-02 镇江恒驰科技有限公司 一种动力锂电池的老化预警方法
CN107991628A (zh) * 2018-01-15 2018-05-04 厦门大学 一种基于相关与回归分析的蓄电池模型建模方法
CN107991628B (zh) * 2018-01-15 2019-10-22 厦门大学 一种基于相关与回归分析的蓄电池模型建模方法
CN108717164A (zh) * 2018-04-11 2018-10-30 中国电力科学研究院有限公司 电池的荷电状态soc标定方法及系统
CN108594125A (zh) * 2018-04-11 2018-09-28 芜湖职业技术学院 锂电池模型参数辨识装置
CN108717164B (zh) * 2018-04-11 2022-07-01 中国电力科学研究院有限公司 电池的荷电状态soc标定方法及系统
CN108872875A (zh) * 2018-07-04 2018-11-23 力信(江苏)能源科技有限责任公司 一种锂电池电化学交流阻抗测试方法
CN111077459A (zh) * 2018-10-19 2020-04-28 上海顺旅房车有限公司 一种房车电源监测管理系统
CN109613438A (zh) * 2018-12-17 2019-04-12 欣旺达电动汽车电池有限公司 一种soc-ocv关系估算方法
CN111123137A (zh) * 2019-12-24 2020-05-08 中航锂电(洛阳)有限公司 电池组的soc和soh的估算方法
CN111123137B (zh) * 2019-12-24 2022-03-08 中创新航科技股份有限公司 电池组的soc和soh的估算方法
US11575271B2 (en) 2019-12-24 2023-02-07 Calb Co., Ltd. SOC and SOH estimation methods of battery pack
CN111381180A (zh) * 2020-03-26 2020-07-07 北京昇科能源科技有限责任公司 一种电池容量的确定方法和装置
CN111537887A (zh) * 2020-04-27 2020-08-14 南京航空航天大学 考虑迟滞特性的混合动力系统电池开路电压模型优化方法
CN113109726B (zh) * 2021-03-25 2023-06-23 广西大学 一种基于误差补偿的多因素动态内阻模型估算锂离子电池内阻方法
CN113109726A (zh) * 2021-03-25 2021-07-13 广西大学 一种基于误差补偿的多因素动态内阻模型估算锂离子电池内阻方法
CN113805086A (zh) * 2021-09-16 2021-12-17 安徽师范大学 一种锂离子电池内阻的快速估算方法
CN113805086B (zh) * 2021-09-16 2024-04-30 安徽师范大学 一种锂离子电池内阻的快速估算方法
CN116087793A (zh) * 2023-03-03 2023-05-09 力高(山东)新能源技术股份有限公司 一种基于短时间静置的电压变化趋势校准soc的方法
CN117706390A (zh) * 2024-02-06 2024-03-15 清华大学 一种电池荷电状态滚动优化估计方法及装置
CN117706390B (zh) * 2024-02-06 2024-04-19 清华大学 一种电池荷电状态滚动优化估计方法及装置

Similar Documents

Publication Publication Date Title
CN106483468A (zh) 锂电池初始荷电状态的多因素估算方法
Perez et al. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics
CN109031145B (zh) 一种考虑不一致性的串并联电池组模型及实现方法
Zhang et al. Battery modelling methods for electric vehicles-A review
CN107271905B (zh) 一种用于纯电动汽车的电池容量主动估计方法
Ahmed et al. Model-based parameter identification of healthy and aged li-ion batteries for electric vehicle applications
Chiang et al. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles
CN103926538B (zh) 基于aic准则的变阶数rc等效电路模型及实现方法
Huang et al. A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature
Smith et al. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles
Castano et al. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications
CN103439668B (zh) 动力锂离子电池的电荷状态估算方法与系统
CN102508165B (zh) 一种评价磷酸铁锂电池自放电一致性的方法
CN102540096B (zh) 一种用于磷酸铁锂动力电池剩余容量估算自修正的方法
CN106909716A (zh) 计及容量损耗的磷酸铁锂电池建模及soc估计方法
CN104965179B (zh) 一种锂离子蓄电池的温度组合电路模型及其参数识别方法
Goud et al. An online method of estimating state of health of a Li-ion battery
CN106814329A (zh) 一种基于双卡尔曼滤波算法的电池soc在线估计方法
CN106291378A (zh) 一种电动汽车动力电池soh的测算方法
US20120179435A1 (en) Method For Determining A Power Capability For A Battery
CN108020791A (zh) 一种混合动力船舶磷酸铁锂动力电池组荷电状态估计方法
CN110109019A (zh) 一种基于ekf算法的混合动力锂电池的soc估算方法
CN106199437A (zh) 电动车蓄电池剩余电量监测方法及其监测系统
CN105116338B (zh) 一种基于soc补偿器的并联型电池系统建模方法
CN104537166A (zh) 一种动力电池的等效电路模型方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170308