CN106475039A - 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用 - Google Patents

一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用 Download PDF

Info

Publication number
CN106475039A
CN106475039A CN201610880486.1A CN201610880486A CN106475039A CN 106475039 A CN106475039 A CN 106475039A CN 201610880486 A CN201610880486 A CN 201610880486A CN 106475039 A CN106475039 A CN 106475039A
Authority
CN
China
Prior art keywords
sno
dimensional
sea urchin
urchin shape
stick array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610880486.1A
Other languages
English (en)
Other versions
CN106475039B (zh
Inventor
陈云
李静
吴庆生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201610880486.1A priority Critical patent/CN106475039B/zh
Publication of CN106475039A publication Critical patent/CN106475039A/zh
Application granted granted Critical
Publication of CN106475039B publication Critical patent/CN106475039B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用,具体为本发明利用常见的四氧化三铁和四氯化锡为前驱体,通过简单的两步生长法,首次合成集吸附和光催化功能为一体的多功能海胆状三维Fe304/SnO2复合材料,并实现了对产品形貌的控制。与现有技术相比,本发明使用材料廉价易得,工艺简单,制备条件通用,产物形貌稳定,纯度高,且产物处理简单,适合中等规模工业生产。

Description

一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用
技术领域
本发明属于无机纳米材料技术领域,尤其是涉及一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用。
背景技术
使用吸附剂对有机污染物和重金属离子进行吸附处理以及使用半导体为基的光催化材料对有机污染物进行光催化降解,是目前研究最多的技术。但是在应用于污水处理过程中时,难分离和回收的特性大大制约了它的广泛应用。光催化剂的磁分离技术是一个理想的解决方案。
二氧化锡作为一种宽禁带(Eg=3.6eV)的半导体材料,广泛应用于气敏、锂离子电池、催化、吸附等领域。由于二氧化锡优良的光电特性、化学稳定性和无毒性,它在光催化领域内的应用前景受到较多关注。
四氧化三铁由于其方便回收和分离,而广泛应用于污水处理领域。
目前文献中以四氧化三铁为基,与二氧化锡复合并形成三维海胆状结构鲜有报道,并且目前,将其用作吸附和光催化领域的报道也较少,吸附和光催化活性需要调整温度、pH等条件才能达到最优值。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用。
本发明的目的可以通过以下技术方案来实现:
技术方案一:海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法包括以下步骤:
(1)将四氧化三铁溶于四氯化锡水溶液中,超声,混合均匀后静置,然后用乙醇冲洗,并干燥;
(2)将(1)所得产品置于由SnCl·5H2O、碱和SDS组成的混合溶液中,超声分散至溶解完全,置于反应釜中水热反应,得到海胆状三维Fe3O4/SnO2纳米棒阵列。
步骤(1)所述的四氧化三铁为空心纳米球结构。
步骤(1)所述的四氧化三铁粒径在400nm以上,这样才能为二氧化锡晶种提供更多附着界面和生长空间。
步骤(1)中,所述的四氧化三铁和四氯化锡的摩尔比为(1~10):1。
步骤(1)中,静置时间在1~24h。
步骤(1)中,干燥温度在60~105℃,干燥时间在0.5~5h。
步骤(2)中,所述的SnCl4·5H2O、碱和SDS的摩尔比为1:(10~50):(1~10)。
步骤(2)所述的四氧化三铁与混合溶液中SDS的摩尔比为1:(1~10)。
步骤(2)所述的碱包括NaOH、KOH或NH4OH。
步骤(2)所述的水热反应温度在150~220℃,水热反应时间在15~36h。
技术方案二:提供上述制备方法得到的海胆状三维Fe3O4/SnO2纳米棒阵列。
技术方案三:提供上述制备方法得到的海胆状三维Fe3O4/SnO2纳米棒阵列用于污水处理中的应用。
所述的海胆状三维Fe3O4/SnO2纳米棒阵列用于对有机污染物吸附去除,或对有机污染物光催化降解。
与现有技术相比,本发明具有以下优点及有益效果:
1、本发明实现了以四氧化三铁空心纳米球为基体,通过晶种负载和外延生长的两步生长法制备了海胆状三维Fe3O4/SnO2纳米棒阵列。其次,将其用作污水处理。在对有机污染物吸附去除的过程中,发现其对210mg/L的高浓度刚果红溶液,吸附容量可达86.6mg/g,循环使用7次之后,吸附容量仍能保持在78mg/g。在对有机污染物光催化降解过程中,发现其对罗丹明B在4h光催化降解率达87%,循环使用7次后,光催化降解率仍能保持在79.8%。
2、本发明的方法对产物的形貌有很高的调控性。
3、本发明采用简单无机盐作为反应物,具有很强的通用性。
4、本发明制备的产物可以作为良好的污水处理材料,有较为广阔的发展前景和应用空间。
5、本发明的工艺简单,制备条件通用,产物形貌稳定、纯度高,且产物处理方便简洁,适合于中等规模工业生产。
6、本发明的方法具有条件温和、加热均匀、节能高效、易于控制等特点。
附图说明
图1为实施例1中在1um的倍数下得到的产物Fe3O4/SnO2的SEM照片。
图2为实施例1中在不同粒径(自上至下依次为10~20nm,200~250nm,400~500nm)的四氧化三铁为基得到的产物Fe3O4/SnO2的SEM照片。
图3为实施例1中在50nm的倍数下得到的底物Fe3O4的TEM照片。
图4为实施例1中在100nm的倍数下得到的产物Fe3O4/SnO2的TEM照片。
图5为实施例1中得到的底物Fe3O4和产物Fe3O4/SnO2的XRD图谱。
图6为实施例1所得底物Fe3O4和产物Fe3O4/SnO2的吸附脱附曲线和孔径分布图。
图7为实施例1所得底物Fe3O4和产物Fe3O4/SnO2的荧光谱图。
图8为实施例1所得底物Fe3O4和产物Fe3O4/SnO2的VSM图谱。
图9为实施例1所得产物Fe3O4/SnO2吸附刚果红溶液的紫外-可见光谱图。
图10为实施例1所得产物Fe3O4/SnO2光催化降解罗丹明B溶液的紫外-可见光谱图(图10a)和自制SnO2与Fe3O4/SnO2对于罗丹明B的光催化降解率曲线图(图10b)。
图11为实施例1所得产物Fe3O4/SnO2循环使用7次吸附刚果红的吸附容量图(图11a)和循环使用7次降解罗丹明B的降解率图(图11b)。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法如下:
第一步:称取0.2g粒径为500nm的Fe3O4置于50mL烧杯A中,加入40mL0.005MSnCl·5H2O中,超声30min,混合均匀,静置12h,乙醇冲洗一次,85℃干燥1h。
第二步:将A中产品置于35mL由SnCl4·5H2O、NaOH和SDS的摩尔比为1:20:4组成的混合溶液中,超声分散至溶解完全,置于50mL反应釜中200℃反应20h。
第三步:将上述产品用无水乙醇和去离子水交替洗涤数次,60℃下真空干燥12h。所得产品的SEM如图1所示。用不同粒径的Fe3O4合成的Fe3O4/SnO2,产物如图2所示,本实施例所用底物Fe3O4的TEM和产物Fe3O4/SnO2的TEM如图3和图4所示。
从图1~图4中可以看到此条件下合成的Fe3O4/SnO2是直径约为0.6~1um的海胆状三维结构的球体。从图5可以看出产物Fe3O4/SnO2确实为二者的复合材料。从图7可以看出,SnO2与Fe3O4复合之后,荧光强度变强,这可能是因为Fe3O4中的Fe3+充当了电子俘获中心,降低了电子-空穴的复合几率,这对于提升其光催化活性有着至关重要的作用。
从图6可以看出该材料的吸附等温线为IV型等温线,滞后环的出现是由于多孔吸附剂的毛细凝聚,H3型滞后环的出现是由于二氧化锡纳米棒的堆积导致在较高相对压力区域没有表现出吸附饱和。从图8可以看出Fe3O4/SnO2仍然具有顺磁性,饱和磁化强度在28emu/g,能够满足磁分离的要求(Ms需要大于1emu/g)。
上述方法得到的Fe3O4/SnO2材料用于污水处理中。
图9可以看出Fe3O4/SnO2对于210mg/L的刚果红溶液在前15min,去除率就能达到72%以上,吸附时间在120min,去除率可达81%以上,经计算,平衡吸附容量为86.6mg/g。图10可以看出Fe3O4/SnO2对于罗丹明B的光催化效果较佳。图11可以看出,在循环使用7次之后,无论是作为吸附剂吸附刚果红,还是作为催化剂催化罗丹明B,Fe3O4/SnO2的循环使用性都较好。
实施例2
一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法如下:
第一步:称取0.2g粒径为500nm的Fe3O4置于50mL烧杯A中,加入40mL0.005MSnCl·5H2O中,超声30min,混合均匀,静置12h,乙醇冲洗一次,85℃干燥1h。
第二步:将A中产品置于35mL由SnCl4·5H2O、KOH和SDS的摩尔比为1:20:2组成的混合溶液中,超声分散至溶解完全,置于50mL反应釜中200℃反应20h。
第三步:将上述产品用无水乙醇和去离子水交替洗涤数次,60℃下真空干燥12h。
上述方法得到的Fe3O4/SnO2材料用于污水处理中。
实施例3
一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法如下:
第一步:称取0.2g粒径为500nm的Fe3O4置于50mL烧杯A中,加入40mL0.005MSnCl·5H2O中,超声30min,混合均匀,静置12h,乙醇冲洗一次,85℃干燥1h。
第二步:将A中产品置于35mL由由SnCl4·5H2O、NH4OH和SDS的摩尔比为1:25:1组成的混合溶液中,超声分散至溶解完全,置于50mL反应釜中200℃反应20h。
第三步:将上述产品用无水乙醇和去离子水交替洗涤数次,60℃下真空干燥12h。
上述方法得到的Fe3O4/SnO2材料用于污水处理中。
实施例4
一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法如下:
第一步:称取0.2g粒径为500nm的Fe3O4置于50mL烧杯A中,加入40mL0.005MSnCl·5H2O中,超声30min,混合均匀,静置12h,乙醇冲洗一次,85℃干燥1h。
第二步:将A中产品置于35mL由SnCl4·5H2O、NaOH和SDS的摩尔比为1:20:2组成的混合溶液中,超声分散至溶解完全,置于50mL反应釜中200℃反应20h。
第三步:将上述产品用无水乙醇和去离子水交替洗涤数次,60℃下真空干燥12h。
上述方法得到的Fe3O4/SnO2材料用于污水处理中。
实施例5
一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法如下:
第一步:称取0.2g粒径为500nm的Fe3O4置于50mL烧杯A中,加入40mL0.005MSnCl·5H2O中,超声30min,混合均匀,静置12h,乙醇冲洗一次,85℃干燥1h。
第二步:将A中产品置于35mL由SnCl4·5H2O、NH4OH和SDS的摩尔比为1:20:2组成的混合溶液中,超声分散至溶解完全,置于50mL反应釜中200℃反应20h。
第三步:将上述产品用无水乙醇和去离子水交替洗涤数次,60℃下真空干燥12h。
上述方法得到的Fe3O4/SnO2材料用于污水处理中。
实施例6
一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法如下:
第一步:称取0.2g粒径为500nm的Fe3O4置于50mL烧杯A中,加入40mL0.005MSnCl·5H2O中,超声30min,混合均匀,静置12h,乙醇冲洗一次,85℃干燥1h。
第二步:将A中产品置于35mL由由SnCl4·5H2O、NaOH和SDS的摩尔比为1:25:1组成的混合溶液中,超声分散至溶解完全,置于50mL反应釜中200℃反应20h。
第三步:将上述产品用无水乙醇和去离子水交替洗涤数次,60℃下真空干燥12h。
上述方法得到的Fe3O4/SnO2材料用于污水处理中。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,包括以下步骤:
(1)将四氧化三铁溶于四氯化锡水溶液中,超声,混合均匀后静置,然后用乙醇冲洗,并干燥;
(2)将(1)所得产品置于由SnCl·5H2O、碱和SDS组成的混合溶液中,超声分散至溶解完全,置于反应釜中水热反应,得到海胆状三维Fe3O4/SnO2纳米棒阵列。
2.根据权利要求1所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,步骤(1)所述的四氧化三铁为空心纳米球结构。
3.根据权利要求1所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,步骤(1)所述的四氧化三铁粒径在400nm以上。
4.根据权利要求1所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,步骤(1)中,所述的四氧化三铁和四氯化锡的摩尔比为(1~10):1。
5.根据权利要求1所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,步骤(2)中,所述的SnCl4·5H2O、碱和SDS的摩尔比为1:(10~50):(1~10)。
6.根据权利要求1所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,步骤(2)所述的四氧化三铁与混合溶液中SDS的摩尔比为1:(1~10)。
7.根据权利要求1所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的合成方法,其特征在于,步骤(2)所述的水热反应温度在150~220℃,水热反应时间在15~36h。
8.采用权利要求1-7任一所述的合成方法制得的海胆状三维Fe3O4/SnO2纳米棒阵列。
9.如权利要求8所述的海胆状三维Fe3O4/SnO2纳米棒阵列用于污水处理中。
10.根据权利要求9所述的一种海胆状三维Fe3O4/SnO2纳米棒阵列的应用,其特征在于,所述的海胆状三维Fe3O4/SnO2纳米棒阵列用于对有机污染物吸附去除,或对有机污染物光催化降解。
CN201610880486.1A 2016-10-09 2016-10-09 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用 Expired - Fee Related CN106475039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610880486.1A CN106475039B (zh) 2016-10-09 2016-10-09 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610880486.1A CN106475039B (zh) 2016-10-09 2016-10-09 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用

Publications (2)

Publication Number Publication Date
CN106475039A true CN106475039A (zh) 2017-03-08
CN106475039B CN106475039B (zh) 2019-05-14

Family

ID=58269478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610880486.1A Expired - Fee Related CN106475039B (zh) 2016-10-09 2016-10-09 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用

Country Status (1)

Country Link
CN (1) CN106475039B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904659A (zh) * 2017-03-23 2017-06-30 吉林大学 一种多层空心二氧化锡花状纳米片表面生长三氧化二铁纳米棒的制备方法
CN109570490A (zh) * 2018-12-28 2019-04-05 中国科学院合肥物质科学研究院 极度纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN111250133A (zh) * 2020-02-11 2020-06-09 四川师范大学 一种除醛抗菌异质结光催化剂的制备方法及应用
CN114160151A (zh) * 2021-12-27 2022-03-11 合肥中镓纳米技术有限公司 一种SnO2/Fe3O4复合纳米催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623656A (zh) * 2004-11-01 2005-06-08 天津大学 高活性纳米磁性复合体的光催化剂及制备方法
US20100294728A1 (en) * 2010-06-28 2010-11-25 Leila Asgharnejad Preparation of nanosized compound zno/sno2 photocatalysts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623656A (zh) * 2004-11-01 2005-06-08 天津大学 高活性纳米磁性复合体的光催化剂及制备方法
US20100294728A1 (en) * 2010-06-28 2010-11-25 Leila Asgharnejad Preparation of nanosized compound zno/sno2 photocatalysts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG-FENG ZHANG等: "Hierarchical Assembly of SnO2 Nanorod Arrays on α-Fe2O3 Nanotubes A Case of Interfacial Lattice Compatibility", 《J. AM. CHEM. SOC.》 *
WEI WU等: "Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures Formation mechanism, and enhanced photocatalytic activity", 《NANOSCALE》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904659A (zh) * 2017-03-23 2017-06-30 吉林大学 一种多层空心二氧化锡花状纳米片表面生长三氧化二铁纳米棒的制备方法
CN106904659B (zh) * 2017-03-23 2018-11-23 吉林大学 一种多层空心二氧化锡花状纳米片表面生长三氧化二铁纳米棒的制备方法
CN109570490A (zh) * 2018-12-28 2019-04-05 中国科学院合肥物质科学研究院 极度纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN109570490B (zh) * 2018-12-28 2021-01-22 中国科学院合肥物质科学研究院 纯净表面形貌可控的海胆状中空金纳米帽的制备方法
CN111250133A (zh) * 2020-02-11 2020-06-09 四川师范大学 一种除醛抗菌异质结光催化剂的制备方法及应用
CN114160151A (zh) * 2021-12-27 2022-03-11 合肥中镓纳米技术有限公司 一种SnO2/Fe3O4复合纳米催化剂的制备方法
CN114160151B (zh) * 2021-12-27 2024-01-09 合肥中镓纳米技术有限公司 一种SnO2/Fe3O4复合纳米催化剂的制备方法

Also Published As

Publication number Publication date
CN106475039B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Wang et al. The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight
Zhang et al. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction
Guo et al. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: The role of microporous amorphous/crystalline composite structure
Chen et al. Construction of CdLa2S4/MIL-88A (Fe) heterojunctions for enhanced photocatalytic H2-evolution activity via a direct Z-scheme electron transfer
Taufik et al. Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal
Yang et al. Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity
Yang et al. Petal-biotemplated synthesis of two-dimensional Co3O4 nanosheets as photocatalyst with enhanced photocatalytic activity
Santhosh et al. Iron oxide nanomaterials for water purification
Bai et al. The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation
Zhou et al. Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route
Yang et al. Two-step hydrothermal synthesis of novel hierarchical Co3O4/Bi2O2CO3 pn heterojunction composite photocatalyst with enhanced visible light photocatalytic activity
Zhao et al. Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48
CN106475039A (zh) 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用
Liang et al. Carbon quantum dots modified BiOBr microspheres with enhanced visible light photocatalytic performance
Liu et al. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite
CN104588110A (zh) 一种石墨烯/壳聚糖/氧化亚铜复合材料及其制备方法和应用
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
Chen et al. Facile synthesis of ZnS nanoparticles and their excellent photocatalytic performance
Wu The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline
Dai et al. Facile preparation of Bi2MoO6/multi-walled carbon nanotube nanocomposite for enhancing photocatalytic performance
CN106622271A (zh) 一种镍掺杂纳米钨酸铋可见光催化剂及其制备和应用
Li et al. Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/PI composites
Feng et al. Two-step construction of WO3@ TiO2/CS-biochar S-scheme heterojunction and its synergic adsorption/photocatalytic removal performance for organic dye and antibiotic
CN112521617B (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514

Termination date: 20211009