CN114160151B - 一种SnO2/Fe3O4复合纳米催化剂的制备方法 - Google Patents

一种SnO2/Fe3O4复合纳米催化剂的制备方法 Download PDF

Info

Publication number
CN114160151B
CN114160151B CN202111625483.0A CN202111625483A CN114160151B CN 114160151 B CN114160151 B CN 114160151B CN 202111625483 A CN202111625483 A CN 202111625483A CN 114160151 B CN114160151 B CN 114160151B
Authority
CN
China
Prior art keywords
sno
feooh
reaction
catalyst
composite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111625483.0A
Other languages
English (en)
Other versions
CN114160151A (zh
Inventor
吴斌
胡园园
沈寿国
杨盛
王劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Zhongga Nanotechnology Co ltd
Original Assignee
Hefei Zhongga Nanotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Zhongga Nanotechnology Co ltd filed Critical Hefei Zhongga Nanotechnology Co ltd
Priority to CN202111625483.0A priority Critical patent/CN114160151B/zh
Publication of CN114160151A publication Critical patent/CN114160151A/zh
Application granted granted Critical
Publication of CN114160151B publication Critical patent/CN114160151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种SnO2/Fe3O4复合纳米催化剂的制备方法,涉及复合纳米催化剂技术领域,包括前驱体的室温制备和水热反应两个过程,首先,在室温下,将水合氧化铁(FeOOH)粉体加入到氯化亚锡(SnCl2)水溶液中,超声分散后加入适量NaOH,搅拌混合后得到反应前驱体;然后,将上述前驱体转入反应釜中通过水热反应便可获得SnO2/Fe3O4复合纳米催化剂。本发明以氯化亚锡(SnCl2)为还原剂,以普通水合氧化铁(FeOOH)为铁源,通过水热反应成功制备出了SnO2/Fe3O4纳米复合材料,该复合材料具有良好的磁性能和可见光吸收特性,可望用于磁性光学器件制造或污水处理用催化剂等领域。

Description

一种SnO2/Fe3O4复合纳米催化剂的制备方法
技术领域
本发明涉及复合纳米催化剂技术领域,具体是涉及一种SnO2/Fe3O4复合纳米催化剂的制备方法。
背景技术
氧化锡(SnO2)是一种N型宽带隙(Eg=3.6eV)氧化物半导体,具有独特的光、电和传感性能,可广泛应用于太阳能电池、透明电极和气体传感器等领域。通常制备SnO2方法是以Sn4+为原料,采用沉淀法来实现。
众所周知,四氧化三铁(Fe3O4)是一种常见的环境友好的磁性材料,在磁流体、微波吸收、催化剂载体、高级催化氧化、生物医药和生物分离等领域应用广泛。而制备Fe3O4可用Fe3+和Fe2+为原料,采用共沉淀法;也可以Fe3+为单一原料用部分还原法来进行。通常,用于还原Fe3+的还原剂主要有抗坏血酸、柠檬酸钠、酒石酸钠和多元醇等。
当前,有关单独制备SnO2和Fe3O4的报道很多,而有关SnO2/Fe3O4复合纳米材料的研究和报道相对较少。其原因主要是因为,两者晶体结构相差较大(SnO2常为正交结构,Fe3O4立方结构),因此,普通的制备方法很难将两者结合到一起形成复合材料。
发明内容
本发明的目的在于提出一种SnO2/Fe3O4复合纳米催化剂的制备方法,克服了现有制备方法很难将两者结合到一起的技术缺陷。制备的复合材料具有良好的磁性能和可见光吸收特性,可望用于磁性光学器件制造或污水处理用催化剂等领域。
为了实现上述目的,本发明所采用的技术方案为:
一种SnO2/Fe3O4复合纳米催化剂的制备方法,包括前驱体的室温制备和水热反应两个过程,首先,在室温下,将水合氧化铁(FeOOH)粉体加入到氯化亚锡(SnCl2)水溶液中,超声分散后加入适量NaOH,搅拌混合后得到反应前驱体;然后,将上述前驱体转入反应釜中通过水热反应便可获得SnO2/Fe3O4复合纳米催化剂。
作为本发明制备方法的优选技术方案:首先将水合氧化铁(FeOOH)粉体加入到氯化亚锡(SnCl2)水溶液中,通过快速超声分散后加入适量NaOH,搅拌混合后得到反应前驱体FeOOH-Sn2+-NaOH-H2O,反应体系的pH值为7~14。
优选地,超声分散时间为1~5min,所述水合氧化铁(FeOOH)粉体与氯化亚锡(SnCl2)之间的重量比为1∶0.5~5。
作为本发明制备方法的优选技术方案:将反应前驱体FeOOH-Sn2+-NaOH-H2O转入反应釜中,于180~220℃下通过水热反应6~24h便可获得SnO2/Fe3O4复合纳米催化剂。
作为本发明制备方法的优选技术方案:水热反应结束后,取出反应釜中的产物,经洗涤和磁分离后便可获得呈浅黑色的磁性SnO2/Fe3O4纳米复合催化剂。
本发明制备的SnO2/Fe3O4复合纳米催化剂中,SnO2∶Fe3O4的比例越大,可见光催化性能越强;SnO2∶Fe3O4的比例越小,类芬顿催化性能越强。
本发明制备的SnO2/Fe3O4复合纳米催化剂可作为可见光催化剂或类芬顿催化剂,应用于催化剂技术领域。
本发明以氯化亚锡(SnCl2)为还原剂,以普通水合氧化铁(FeOOH)为铁源,通过水热反应成功制备出了SnO2/Fe3O4纳米复合材料,该复合材料具有良好的磁性能和可见光吸收特性,可望用于磁性光学器件制造或污水处理用催化剂等领域。
与现有技术相比,本发明的有益效果表现在:
1.实现了成分和性能均可控SnO2/Fe3O4复合纳米催化剂的简单制备,为高性能材料的制备提供了一种新的方法。
2.本发明制备方法中无需特殊实验仪器和设备,直接通过水热法反应合成,操作方便、成本低廉,同时,获得的产物纯度高、产量大。
附图说明
图1为实施例1制备产物的XRD图(a)、FE-SEM图(b)、TEM图(c)以及可见光吸收光谱(d)(插图为带隙估算)。
图2为实施例2制备3种产物的FE-SEM图(a~c)以及XRD谱图(d),(a~c)分别对应FeOOH用量为0.1g、0.3g、0.7g。
图3为实施例3制备3种产物的FE-SEM图(a~c)以及室温磁性能曲线(d),(a~c)分别对应NaOH用量为0.1g、0.4g、0.6g。
图4为实施例4中可见光降解罗丹明b的染料性能,(a)为染料浓度和时间关系曲线;(b)为拟合曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
本发明方法所得产物的结构和形态分别采用X射线粉末衍射(XRD,D3500)和场发射扫描电子显微镜(FE-SEM,SU8010)等仪器来表征和分析。
实施例1:SnO2/Fe3O4复合纳米催化剂制备
将0.5gα-FeOOH粉体加入到50mL浓度为0.2mol/L的SnCl2水溶液中(水合氧化铁(FeOOH)粉体与氯化亚锡(SnCl2)之间的重量比为1∶3.79),经过超声分散5min后加入0.2gNaOH固体,待其完全溶解后获得前驱体FeOOH-Sn2+-NaOH-H2O,体系pH值为8。
将前驱体FeOOH-Sn2+-NaOH-H2O转入到反应釜中,在180℃烘箱中进行水热反应24h,反应后将产物取出进行洗涤和烘干处理。
首先,利用X衍射手段对产物进行物相分析并与块体SnO2标准XRD衍射普(PDF,No.040783)和Fe3O4标准XRD衍射普(PDF,No.040783)进行比较后得知,实验得到的产物为SnO2/Fe3O4(图1a)。接着,利用电子显微镜对上述产物结构进行进一步表征可知,产物的形状为无规则纳米颗粒(图1b),颗粒直径约为10-30nm左右(图1c),其带隙宽度为3.52eV。
上述配位反应可用如下反应式表示:
Sn2++3FeOOH+2OH-→SnO2/Fe3O4+H2O
实施例2:FeOOH用量对产物形态、组成和性能的影响
制备方法同实施例1,调整α-FeOOH粉体的添加量分别为0.1g、0.3g、0.7g,用SEM对产物的形态进行观察,可知,随着反应体系中FeOOH粉体使用量的逐渐增多,产物形态从无规则纳米颗粒逐渐向棒状颗粒转变(图2a~c)。
利用X衍射手段对产物物相分析可知,FeOOH粉体用量过少或过多都使得最终的复合材料物相不纯。可以看出,在其他实验条件均相同时,FeOOH粉体使用量对最终产物形态和结构均影响较大(图2d)。α-FeOOH粉体的添加量介于0.3~0.5g时,制备的产物具有较高的纯度。
实施例3:NaOH用量对产物形态和磁性能的影响
制备方法同实施例1,调整NaOH的添加量分别为0.1g、0.4g、0.6g。
反应体系中,NaOH的使用量对物相的形成和产物的粒度有很大的影响,从而影响到最终产物的性能。从图3结果可以看出,随着NaOH使用量逐渐增加,产物的粒径是逐渐增加的(图3a~c),产物的宏观磁性也是逐渐增强的(图3d)。
实施例4:光催化实验
(1)称取0.04g的罗丹明b放入1000mL的容量瓶中,其初始浓度为40mg/L。
(2)用量筒量取80mL上述溶液3份于烧杯中,分别加入0.03g制备出的复合纳米粉体(制备方法同实施例1,改变SnCl2的添加量,调整制备的复合催化剂中,SnO2∶Fe3O4质量比分别为1∶2、1∶1和2∶1)。
(3)超声均匀后,进行暗反应吸附处理后(约30min后),取出第1个样品,计为0min,然后,将其放置到可见光源下进行光催化反应实验。打开光源,每隔30min取一次样品,一共取6个样品。
(4)重复上述操作(3),完成另外两个样品光催化实验。
通过图4可以看出,随着SnO2∶Fe3O4质量比的提高,制备SnO2/Fe3O4纳米复合催化剂的可见光催化性能逐渐增强。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (3)

1.一种SnO2/Fe3O4复合纳米催化剂的制备方法,其特征在于,首先,在室温下,将水合氧化铁(FeOOH)粉体加入到氯化亚锡(SnCl2)水溶液中,通过快速超声分散后加入适量NaOH,搅拌混合后得到反应前驱体FeOOH-Sn2+-NaOH-H2O,反应体系的pH值为7~14;所述水合氧化铁(FeOOH)粉体与氯化亚锡(SnCl2)之间的重量比为1∶0.5~5超声分散时间为1~5min;
然后,将反应前驱体FeOOH-Sn2+-NaOH-H2O转入反应釜中,于180~220℃下通过水热反应6~24 h,水热反应结束后,取出反应釜中的产物,经洗涤和磁分离后便可获得呈浅黑色的磁性SnO2/Fe3O4纳米复合催化剂。
2.如权利要求1所述方法制备的SnO2/Fe3O4复合纳米催化剂,其特征在于,SnO2/Fe3O4复合纳米催化剂中,SnO2∶Fe3O4的比例越大,可见光催化性能越强;SnO2∶Fe3O4的比例越小,类芬顿催化性能越强。
3.如权利要求1所述方法制备的SnO2/Fe3O4复合纳米催化剂作为可见光催化剂或类芬顿催化剂的应用。
CN202111625483.0A 2021-12-27 2021-12-27 一种SnO2/Fe3O4复合纳米催化剂的制备方法 Active CN114160151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111625483.0A CN114160151B (zh) 2021-12-27 2021-12-27 一种SnO2/Fe3O4复合纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111625483.0A CN114160151B (zh) 2021-12-27 2021-12-27 一种SnO2/Fe3O4复合纳米催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN114160151A CN114160151A (zh) 2022-03-11
CN114160151B true CN114160151B (zh) 2024-01-09

Family

ID=80488326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111625483.0A Active CN114160151B (zh) 2021-12-27 2021-12-27 一种SnO2/Fe3O4复合纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114160151B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586019A (zh) * 2009-03-31 2009-11-25 哈尔滨工程大学 吸收高频电磁波的四氧化三铁/氧化锡核壳纳米棒及制法
JP2010000496A (ja) * 2008-05-22 2010-01-07 Hitachi Maxell Ltd カーボンナノコイル製造用触媒及びその製造方法
CN106475039A (zh) * 2016-10-09 2017-03-08 同济大学 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用
CN108455682A (zh) * 2018-04-08 2018-08-28 合肥学院 一种水性Fe3O4纳米粉体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086567A1 (en) * 2010-01-12 2011-07-21 Council Of Scientific & Industrial Research Magnetic dye-adsorbent catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000496A (ja) * 2008-05-22 2010-01-07 Hitachi Maxell Ltd カーボンナノコイル製造用触媒及びその製造方法
CN101586019A (zh) * 2009-03-31 2009-11-25 哈尔滨工程大学 吸收高频电磁波的四氧化三铁/氧化锡核壳纳米棒及制法
CN106475039A (zh) * 2016-10-09 2017-03-08 同济大学 一种海胆状三维Fe3O4/SnO2纳米棒阵列及其合成方法与应用
CN108455682A (zh) * 2018-04-08 2018-08-28 合肥学院 一种水性Fe3O4纳米粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode";Ruizhi Li et al.;《Chem. Commun.》;第48卷;第5010页右栏最后1段至第5011页左栏第1段、第5011页图1和图2、ESI第1页第1段合成部分 *

Also Published As

Publication number Publication date
CN114160151A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
Hu et al. Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline
Liu et al. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction
Che et al. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme gC 3 N 4/Bi 2 WO 6 heterojunctions
Tan et al. Construction of Bi2O2CO3/Ti3C2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation
Malathi et al. A robust visible-light driven BiFeWO6/BiOI nanohybrid with efficient photocatalytic and photoelectrochemical performance
Chen et al. Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant
Yang et al. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag2O/NaTaO3 nanocubes
Huang et al. Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism
Chen et al. A facile route for the synthesis of ZnS rods with excellent photocatalytic activity
Shang et al. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity
Yu et al. Novel rugby-ball-like Zn3 (PO4) 2@ C3N4 photocatalyst with highly enhanced visible-light photocatalytic performance
Xie et al. Sn 4+ self-doped hollow cubic SnS as an efficient visible-light photocatalyst for Cr (vi) reduction and detoxification of cyanide
Zhang et al. All-solid-state Z-scheme BiOX (Cl, Br)-Au-CdS heterostructure: Photocatalytic activity and degradation pathway
Li et al. Enhanced photocatalytic activity of gC 3 N 4–ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation
Hao et al. Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies
Guo et al. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance
Yang et al. Synthesis of ZnO–SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties
Irshad et al. Nickel doped CoAl2O4@ CNT nanocomposite: synthesis, characterization, and evaluation of sunlight driven catalytic studies
Hu et al. Facile fabrication of heterogeneous TiO2/BiOCl composite with superior visible-light-driven performance towards Cr (VI) and tetracycline
Chen et al. Preparation of single-crystal α-MnO2 nanorods and nanoneedles from aqueous solution
Yan et al. Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline
Peng et al. Synthesis of Bi 2 O 3/gC 3 N 4 for enhanced photocatalytic CO 2 reduction with a Z-scheme mechanism
Zhou et al. Fabrication of Ag 3 PO 4/GO/NiFe 2 O 4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B
Zou et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy
Deng et al. 1D hierarchical CdS NPs/NiO NFs heterostructures with enhanced photocatalytic activity under visible light irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant