CN106449807A - 一种光伏电池及其制备方法 - Google Patents

一种光伏电池及其制备方法 Download PDF

Info

Publication number
CN106449807A
CN106449807A CN201611040123.3A CN201611040123A CN106449807A CN 106449807 A CN106449807 A CN 106449807A CN 201611040123 A CN201611040123 A CN 201611040123A CN 106449807 A CN106449807 A CN 106449807A
Authority
CN
China
Prior art keywords
shell
layer
photovoltaic cell
type
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611040123.3A
Other languages
English (en)
Other versions
CN106449807B (zh
Inventor
李光林
蔡坤良
马永红
吕娓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University of Technology
Original Assignee
Liaoning University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University of Technology filed Critical Liaoning University of Technology
Priority to CN201611040123.3A priority Critical patent/CN106449807B/zh
Publication of CN106449807A publication Critical patent/CN106449807A/zh
Application granted granted Critical
Publication of CN106449807B publication Critical patent/CN106449807B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种光伏电池及其制备方法,所述光伏电池包括:背电极;衬底层,其设置在所背电极上方;以及n型InaAlaGa1‑2aN层,其设置在所述衬底层上方,0.18≤a≤0.30;掺杂InbAlbGa1‑2bN层,其设置在所述n型InaAlaGa1‑2aN层上方,0.32≤b≤0.48;p型IncAlcGa1‑2cN层,其设置在所述掺杂InbAlbGa1‑2bN层上方,0.12≤c≤0.38;窗口层,其设置在所述p型IncAlcGa1‑2cN层的上方;正电极,其设置在所述窗口层的上方;其中,在所述衬底层、n型InaAlaGa1‑2aN层、掺杂InbAlbGa1‑2bN层、p型IncAlcGa1‑2cN层和窗口层分别设有陷光结构,本发明使光伏电池具有较高的输出功率和较高的光电转化率,还提供一种光伏电池陷光结构锥角和蚀刻计算公式,能够提高光在光伏电池中的光程,使光吸收增加,提高光电转化率。

Description

一种光伏电池及其制备方法
技术领域
本发明涉及一种光伏领域,尤其是一种光伏电池及其制备方法。
背景技术
太阳能光伏电池(简称光伏电池)用于把太阳的光能直接转化为电能。目前地面光伏系统大量使用的是以硅为基底的硅太阳能电池,可分为单晶硅、多晶硅、非晶硅太阳能电池。在能量转换效率和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。多晶硅比单晶硅转换效率低,但价格更便宜。
以砷化镓为代表的III-V族太阳电池具有低成本、高效率、稳定性好等优点,是公认的最具有发展和市场潜力的第二代光伏电池。人们对其研究兴起于上个世纪八十年代初,经过二十多年发展并取得了可喜的成果。
但是,第二代光伏电池为了保证入射光的充分吸收,需要吸收层厚度较厚,需要消耗更多的材料,增加材料成本。
发明内容
本发明的一个目的提供一种光伏电池,其选用氮化镓铝铟材料,使光伏电池具有较高的输出功率和较高的光电转化率。
本发明还有一个目的提供一种光伏电池,其设有陷光结构,能够提高光在光伏电池中的光程,使光吸收增加,提高光电转化率。
本发明还有一个目的提供一种光伏电池的制备方法,给出陷光结构锥角和等离子体蚀刻时间的计算公式,有效降低了光伏电池的反射率。
为实现上述目的,本发明提供一种光伏电池,包括:
背电极;
衬底层,其设置在所背电极上方;以及
n型InaAlaGa1-2aN层,其设置在所述衬底层上方,0.18≤a≤0.30;
掺杂InbAlbGa1-2bN层,其设置在所述n型InaAlaGa1-2aN层上方,0.32≤b≤0.48;
p型IncAlcGa1-2cN层,其设置在所述掺杂InbAlbGa1-2bN层上方,0.12≤c≤0.38;
窗口层,其设置在所述p型IncAlcGa1-2cN层的上方;
正电极,其设置在所述窗口层的上方;
其中,在所述衬底层、n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层、p型IncAlcGa1-2cN层和窗口层分别设有陷光结构。
优选的是,还包括:
籽晶层,其设置在所述衬底层与n型InaAlaGa1-2aN层之间,厚度为0.05-0.08μm。
优选的是,还包括:
缓冲层,其设置在所述籽晶层与n型InaAlaGa1-2aN层间,厚度为0.5-2.0μm。
优选的是,还包括:
减反射导电膜,其设置在所述窗口层上除正电极覆盖的区域,用于提高透光性能。
优选的是,所述陷光结构为均布设置的圆锥体。
优选的是,在所述衬底层、n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层、p型IncAlcGa1-2cN层和窗口层上的陷光结构中,圆锥体的密度由下至上依次降低。
优选的是,所述n型InaAlaGa1-2aN层的厚度为0.08-0.28μm,所述掺杂InbAlbGa1-2bN层的厚度为0.2-0.5μm,所述p型IncAlcGa1-2cN层的厚度为0.05-0.2μm。
优选的是,所述窗口层由ZnS材料制成,厚度为0.08-0.15μm。
优选的是,所述衬底层为硅衬底。
一种光伏电池的制备方法,包括如下步骤:
步骤一:通过物理气相沉积法或电化学沉积法,硅衬底表面沉积背电极层得到沉积了背电极的衬底层;
步骤二:在衬底层上选取基区依次沉积制备n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层和p型IncAlcGa1-2cN层,其中,0.18≤a≤0.30,0.32≤b≤0.48,0.12≤c≤0.38;
步骤三:通过电子束蒸发法在具有p-n结的电池膜层上方依次沉积窗口层和正电极;
步骤四:采用等离子束刻蚀工艺在n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层和p型IncAlcGa1-2cN层形成锥形陷光结构,所述陷光结构的锥角为:
其中,D为陷光结构的开槽宽度,W为电池表面积,P为电池表面设置陷光结构的孔隙率,h为刻蚀厚度。
等离子体化学刻蚀的腐蚀气体为BCl3、Ar和Cl2的混合气体,设备压强为48-55Pa,刻蚀制备时间为:
其中t为刻蚀制备时间,Q为腐蚀气体流速,ρ为膜层密度,ng为对应膜层材料的分子个数,nr为腐蚀气体的平均分子个数,为腐蚀气体的平均摩尔质量,R为热力学常数,T为制备设备的开氏温度,P为刻蚀设备内部压强,P0为标准大气压强。
本发明的有益效果是:1、其选用氮化镓铝铟材料,使光伏电池具有较高的输出功率和较高的光电转化率;2、在所述衬底层、n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层、p型IncAlcGa1-2cN层和窗口层分别设有陷光结构,能够将入射光线分散到各个角度,从而提高光在光伏电池中的光程,使光吸收增加,提高光电转化率;3、各层的陷光结构中,圆锥体的密度由下至上依次降低,是光线易于射入,不易射出,进一步提高了光电转化率。
附图说明
图1是本发明一种光伏电池的结构图;
图2是本发明中窗口层的陷光结构的示意图。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
如图1-2所示,本发明的一种实现形式,为实现上述目的,本发明采用如下技术方案,包括:
背电极111,由金属材料制成,用于传导电流。作为一种优选,所述背电极111由金或镍金或铬金材料制成,背电极111的厚度为1-5μm。
衬底层120设置在所背电极111上方。作为一种优选,所述衬底层120为硅衬底,。
n型InaAlaGa1-2aN层150设置在所述衬底层120上方,其中,0.18≤a≤0.30。n型InaAlaGa1-2aN层150为太阳电池p-i-n结的n区。作为一种优选,所述n型InaAlaGa1-2aN层150的厚度为0.08-0.28μm。
掺杂InbAlbGa1-2bN层160设置在所述n型InaAlaGa1-2aN层150上方,其中,0.32≤b≤0.48。掺杂InbAlbGa1-2bN层160为太阳电池p-i-n结的i区。作为一种优选,所述掺杂InbAlbGa1-2bN层160的厚度为0.2-0.5μm。
p型IncAlcGa1-2cN层170,设置在所述掺杂InbAlbGa1-2bN,160的上方,其中0.12≤c≤0.38。p型IncAlcGa1-2cN层170为太阳电池p-i-n结的p区。作为一种优选,所述p型IncAlcGa1- 2cN层170的厚度为0.05-0.2μm。
窗口层180,由ZnS材料制成。窗口层180设置在所述p型IncAlcGa1-2cN层170的上方。窗口层180的厚度为0.08-0.15μm。
正电极112,由金属材料制成,用于传导电流。正电极112设置在所述窗口层180的上方;
其中,在所述衬底层120、n型InaAlaGa1-2aN层150、掺杂InbAlbGa1-2bN层160、p型IncAlcGa1-2cN层170和窗口层180分别设有陷光结构,作为一种优选,所述陷光结构为为均布设置的圆锥体,如图2所示设置在所述窗口层180上的圆锥体181。作为进一步优选,在所述衬底层、n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层、p型IncAlcGa1-2cN层和窗口层上的陷光结构中,圆锥体的密度由下至上依次降低。
在使用过程中,入射光线自窗口层射入,依次进入p型IncAlcGa1-2cN层170、掺杂InbAlbGa1-2bN层160、n型InaAlaGa1-2aN层150,最终到达衬底层120。在此过程中,p型IncAlcGa1-2cN层170、掺杂InbAlbGa1-2bN层160和n型InaAlaGa1-2aN层150进行光电转化,产生的电流自背电极111和正电极112流出。在此过程中,由于衬底层120、n型InaAlaGa1-2aN层150、掺杂InbAlbGa1-2bN层160、p型IncAlcGa1-2cN层170和窗口层180上分别设有陷光结构,使光线不断地发生折射,延长了光在光伏电池中的光程,使光吸收增加,提高光电转化率。同时,由p型IncAlcGa1-2cN层170、掺杂InbAlbGa1-2bN层160和n型InaAlaGa1-2aN层150形成的n-i-p结具有较高的输出功率和较高的光电转化率。
在另一个实施例中,还包括:籽晶层130。籽晶层130设置在所述衬底层120与n型InaAlaGa1-2aN层150之间,厚度为0.05-0.08μm。所述籽晶层130为氧化锌籽晶层,用于提高太阳能电池的晶体质量。
在另一个实施例中,还包括:缓冲层140。缓冲层140设置在所述籽晶层130与n型InaAlaGa1-2aN层150间,厚度为0.5-2.0μm。所述缓冲层为的氧化锌纳米阵列缓冲层,用于进一步提高太阳能电池的晶体质量。
在另一个实施例中,还包括:减反射导电膜190。减反射导电膜190设置在所述窗口层180上除正电极112覆盖的区域,用于提高透光性能。作为一种优选,所述减反射导电膜190为ITO导电膜,厚度为0.05-0.1μm。
在另一个实施例中,所述陷光结构为均布设置的圆锥体,如图2所示,设置在所述窗口层180上的圆锥体181。
在另一个实施例中,在所述衬底层120、n型InaAlaGa1-2aN层150、掺杂InbAlbGa1-2bN层160、p型IncAlcGa1-2cN层170和窗口层180上的陷光结构中,圆锥体的密度由下至上依次降低。圆锥体的密度由下至上依次降低,使光线越进入到太阳能电池的底部产生的折射越多,光在光伏电池中的光程越长,进一步使光吸收增加,提高光电转化率。
在另一个实施例中,所述n型InaAlaGa1-2aN层150的厚度为0.08-0.28μm,所述掺杂InbAlbGa1-2bN层160的厚度为0.2-0.5μm,所述p型IncAlcGa1-2cN层170的厚度为0.05-0.2μm。
在另一个实施例中,所述窗口层180由ZnS材料制成,厚度为0.08-0.15μm。
在另一个实施例中,所述衬底层120为硅衬底。硅衬底价格低廉,尺寸大。
一种光伏电池的制备方法,包括如下步骤:
步骤一:通过物理气相沉积法或电化学沉积法,硅衬底表面沉积背电极层得到沉积了背电极的衬底层;
步骤二:在衬底层上选取基区依次沉积制备n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层和p型IncAlcGa1-2cN层,其中,0.18≤a≤0.30,0.32≤b≤0.48,0.12≤c≤0.38;
步骤三:通过电子束蒸发法在具有p-n结的电池膜层上方依次沉积窗口层和正电极;
步骤四:采用等离子束刻蚀工艺在n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层和p型IncAlcGa1-2cN层形成锥形陷光结构,所述陷光结构的锥角为:
其中,D为陷光结构的开槽宽度,单位为nm;W为电池表面积,单位为平方米;P为电池表面设置陷光结构的孔隙率,为百分数;h为刻蚀厚度单位为nm。
等离子体化学刻蚀的腐蚀气体为BCl3、Ar和Cl2的混合气体,设备压强为48-55Pa,刻蚀制备时间为:
其中t为刻蚀制备时间,单位为min;Q为腐蚀气体流速,单位为mL/min;ρ为膜层密度,其单位为kg/m3;ng为对应膜层材料的分子个数,nr为腐蚀气体的平均分子个数,为腐蚀气体的平均摩尔质量,单位为g/mol;R为热力学常数,为8.314J/mol·K;T为制备设备的开氏温度,单位为K;P为刻蚀设备内部压强,单位为Pa;P0为标准大气压强,单位为Pa。
如上所述本发明一种光伏电池1,选用氮化镓铝铟材料,使光伏电池具有较高的输出功率和较高的光电转化率;在所述衬底层120、n型InaAlaGa1-2aN层150、掺杂InbAlbGa1-2bN层160、p型IncAlcGa1-2cN层170和窗口层180分别设有陷光结构,能够将入射光线分散到各个角度,从而提高光在光伏电池1中的光程,使光吸收增加,提高光电转化率;3、各层的陷光结构中,圆锥体的密度由下至上依次降低,是光线易于射入,不易射出,进一步提高了光电转化率。
尽管本发明的实施方案已公开如上,但其并不仅仅限于明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (10)

1.一种光伏电池,其特征在于,包括:
背电极;
衬底层,其设置在所背电极上方;以及
n型InaAlaGa1-2aN层,其设置在所述衬底层上方,0.18≤a≤0.30;
掺杂InbAlbGa1-2bN层,其设置在所述n型InaAlaGa1-2aN层上方,0.32≤b≤0.48;
p型IncAlcGa1-2cN层,其设置在所述掺杂InbAlbGa1-2bN层上方,0.12≤c≤0.38;
窗口层,其设置在所述p型IncAlcGa1-2cN层的上方;
正电极,其设置在所述窗口层的上方;
其中,在所述衬底层、n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层、p型IncAlcGa1-2cN层和窗口层分别设有陷光结构。
2.如权利要求1所述的光伏电池,其特征在于,还包括:
籽晶层,其设置在所述衬底层与n型InaAlaGa1-2aN层之间,厚度为0.05-0.08μm。
3.如权利要求2所述的光伏电池,其特征在于,还包括:
缓冲层,其设置在所述籽晶层与n型InaAlaGa1-2aN层间,厚度为0.5-2.0μm。
4.如权利要求1或2所述的光伏电池,其特征在于,还包括:
减反射导电膜,其设置在所述窗口层上除正电极覆盖的区域,用 于提高透光性能。
5.如权利要求1所述的光伏电池,其特征在于:所述陷光结构为均布设置的圆锥体。
6.如权利要求5所述的光伏电池,其特征在于:在所述衬底层、n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层、p型IncAlcGa1-2cN层和窗口层上的陷光结构中,圆锥体的密度由下至上依次降低。
7.如权利要求1或2所述的光伏电池,其特征在于:所述n型InaAlaGa1-2aN层的厚度为0.08-0.28μm,所述掺杂InbAlbGa1-2bN层的厚度为0.2-0.5μm,所述p型IncAlcGa1-2cN层的厚度为0.05-0.2μm。
8.如权利要求1或2所述的光伏电池,其特征在于:所述窗口层由ZnS材料制成,厚度为0.08-0.15μm。
9.如权利要求1或2所述的光伏电池,其特征在于:所述衬底层为硅衬底。
10.一种光伏电池的制备方法,其特征在于,包括如下步骤:
步骤一:通过物理气相沉积法或电化学沉积法,硅衬底表面沉积背电极层得到沉积了背电极的衬底层;
步骤二:在衬底层上选取基区依次沉积制备n型InaAlaGa1-2aN层、掺杂InbAlbGa1-2bN层和p型IncAlcGa1-2cN层,其中,0.18≤a≤0.30,0.32≤b≤0.48,0.12≤c≤0.38;
步骤三:通过电子束蒸发法在具有p-n结的电池膜层上方依次沉积窗口层和正电极;
步骤四:采用等离子束刻蚀工艺在n型InaAlaGa1-2aN层、掺杂 InbAlbGa1-2bN层和p型IncAlcGa1-2cN层形成锥形陷光结构,所述陷光结构的锥角为:
其中,D为陷光结构的开槽宽度,W为电池表面积,P为电池表面设置陷光结构的孔隙率,h为刻蚀厚度。
等离子体化学刻蚀的腐蚀气体为BCl3、Ar和Cl2的混合气体,设备压强为48-55Pa,刻蚀制备时间为:
其中t为刻蚀制备时间,Q为腐蚀气体流速,ρ为膜层密度,ng为对应膜层材料的分子个数,nr为腐蚀气体的平均分子个数,为腐蚀气体的平均摩尔质量,R为热力学常数,T为制备设备的开氏温度,P为刻蚀设备内部压强,P0为标准大气压强。
CN201611040123.3A 2016-11-11 2016-11-11 一种光伏电池及其制备方法 Expired - Fee Related CN106449807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611040123.3A CN106449807B (zh) 2016-11-11 2016-11-11 一种光伏电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611040123.3A CN106449807B (zh) 2016-11-11 2016-11-11 一种光伏电池及其制备方法

Publications (2)

Publication Number Publication Date
CN106449807A true CN106449807A (zh) 2017-02-22
CN106449807B CN106449807B (zh) 2018-08-28

Family

ID=58221918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611040123.3A Expired - Fee Related CN106449807B (zh) 2016-11-11 2016-11-11 一种光伏电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106449807B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786730A (zh) * 2020-12-17 2021-05-11 隆基绿能科技股份有限公司 叠层光伏器件
CN113540281A (zh) * 2020-04-13 2021-10-22 隆基绿能科技股份有限公司 叠层光伏器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009346A (zh) * 2006-01-27 2007-08-01 中国科学院物理研究所 硅衬底上生长的非极性a面氮化物薄膜及其制法和用途
CN101866967A (zh) * 2010-04-30 2010-10-20 华中科技大学 太阳能电池
JP2011198975A (ja) * 2010-03-19 2011-10-06 Nippon Telegr & Teleph Corp <Ntt> タンデム型太陽電池
CN202871803U (zh) * 2012-09-21 2013-04-10 蚌埠玻璃工业设计研究院 一种铜铟镓硒薄膜太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009346A (zh) * 2006-01-27 2007-08-01 中国科学院物理研究所 硅衬底上生长的非极性a面氮化物薄膜及其制法和用途
JP2011198975A (ja) * 2010-03-19 2011-10-06 Nippon Telegr & Teleph Corp <Ntt> タンデム型太陽電池
CN101866967A (zh) * 2010-04-30 2010-10-20 华中科技大学 太阳能电池
CN202871803U (zh) * 2012-09-21 2013-04-10 蚌埠玻璃工业设计研究院 一种铜铟镓硒薄膜太阳能电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540281A (zh) * 2020-04-13 2021-10-22 隆基绿能科技股份有限公司 叠层光伏器件
CN113540281B (zh) * 2020-04-13 2024-03-29 隆基绿能科技股份有限公司 叠层光伏器件
CN112786730A (zh) * 2020-12-17 2021-05-11 隆基绿能科技股份有限公司 叠层光伏器件
WO2022127669A1 (zh) * 2020-12-17 2022-06-23 隆基绿能科技股份有限公司 叠层光伏器件

Also Published As

Publication number Publication date
CN106449807B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6975368B1 (ja) 太陽電池及び太陽電池モジュール
Xiao et al. High-efficiency silicon solar cells—materials and devices physics
CN106531816B (zh) 一种背结背接触太阳能电池
KR20090065895A (ko) 이종접합 태양전지 및 그 제조방법
CN209183556U (zh) 硅基太阳能电池及光伏组件
CN102751371A (zh) 一种太阳能薄膜电池及其制造方法
CN103413841A (zh) 太阳能电池表面钝化层结构及其制备方法
CN106684160A (zh) 一种背结背接触太阳能电池
CN107104165A (zh) 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法
CN106449807B (zh) 一种光伏电池及其制备方法
CN106449850B (zh) 一种高效硅基异质结双面电池及其制备方法
CN102544184B (zh) 一种横向结构的pin太阳能电池及其制备方法
CN103094378A (zh) 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池
CN206259371U (zh) 一种多孔硅太阳能电池组件
CN102280513A (zh) 广谱吸收的非晶硅黑硅异质结太阳能电池结构及制作方法
CN102157594B (zh) 一种超晶格量子阱太阳电池及其制备方法
CN204315603U (zh) 一种背面抛光晶硅太阳能电池
CN107146819B (zh) 新型薄膜太阳电池
CN103594535A (zh) 一种硅纳米线量子阱太阳能电池及其制备方法
CN209729915U (zh) 一种钝化接触的p型mwt电池
CN101635318A (zh) 太阳能电池
CN206210816U (zh) 一种光伏电池
CN201360010Y (zh) 薄膜光伏器件
CN205723562U (zh) 一种高效彩色多晶太阳能电池
CN108538952A (zh) 晶体硅高效太阳能电池结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180828

Termination date: 20191111

CF01 Termination of patent right due to non-payment of annual fee