CN106446320B - 基于imf瞬时能量曲率差值的井架钢结构损伤识别方法 - Google Patents

基于imf瞬时能量曲率差值的井架钢结构损伤识别方法 Download PDF

Info

Publication number
CN106446320B
CN106446320B CN201610538773.4A CN201610538773A CN106446320B CN 106446320 B CN106446320 B CN 106446320B CN 201610538773 A CN201610538773 A CN 201610538773A CN 106446320 B CN106446320 B CN 106446320B
Authority
CN
China
Prior art keywords
imf
steel structures
instantaneous energy
derrick steel
derrick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610538773.4A
Other languages
English (en)
Other versions
CN106446320A (zh
Inventor
韩东颖
魏世民
时培明
魏庆
王斌
高凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610538773.4A priority Critical patent/CN106446320B/zh
Publication of CN106446320A publication Critical patent/CN106446320A/zh
Application granted granted Critical
Publication of CN106446320B publication Critical patent/CN106446320B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,包括以下步骤:对井架钢结构进行模态分析确定其低阶振动模态,对井架钢结构进行瞬态动力学分析提取其不同部位的振动响应;利用带通滤波方法提取井架钢结构不同部位的低阶振动信号,对其进行EMD分解选取主要的IMF分量,采用中央差分法计算IMF瞬时能量曲率;将井架钢结构损伤前后IMF瞬时能量曲率差值作为损伤敏感性指标,从而实现井架钢结构损伤位置及程度的识别与分析。本发明仅利用井架钢结构的低阶振动信息,即可实现损伤位置的识别,且识别准确率高,解决了大型复杂钢结构高阶振动信息难获取从而无法准确识别损伤的问题。

Description

基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法
技术领域
本发明涉及信号处理技术领域,尤其涉及一种采用HHT信号特征提取技术的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法。
背景技术
随着信号处理技术的发展,基于结构信号特征提取的损伤检测方法应用越来越广泛,此类方法利用振动传感器采集结构的振动响应,采用合适的信号处理方法,提取损伤敏感性指标,进而对结构进行损伤检测或健康监测。
1998年,N.E.Huang提出了Hilbert-Huang变换(HHT)方法,并证明了在很多领域相比小波变换方法HHT具有更强的分解能力。HHT方法由经验模态分解(EMD)和希尔伯特变换两个部分组成,核心是经验模态分解,是一种更具适应性的时频分析方法。
传统的结构损伤识别方法,往往需要先对结构损伤前后的模态参数进行精确识别,且相对而言结构的高阶模态参数(如频率、振型等)对损伤更为敏感。然而实际应用测试时,大型复杂钢结构的高阶模态参数很难获取。鉴于上述缺陷,有必要提供一种仅利用结构低阶振动信息,采用合适的信号处理技术,对大型复杂钢结构进行损伤识别的方法。
发明内容
本发明目的在于提供一种稳定性好、简单易行、定性分析能力强的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法。
为实现上述目的,采用了以下技术方案:本发明所述方法包括以下步骤:
步骤1,对井架钢结构进行模态分析确定井架钢结构低阶振动模态,对井架钢结构进行瞬态动力学分析提取不同部位的振动响应;
步骤2,对提取的振动响应进行傅立叶频谱分析,依据井架钢结构低阶振动模态,确定井架钢结构低阶振动频率;
步骤3,选取合适的截止频率,采用带通滤波的方法,提取井架钢结构的1阶模态振动响应;
步骤4,对提取的井架钢结构1阶模态振动响应进行EMD分解,选取主要的IMF分量;
步骤5,计算所选取的IMF分量的瞬时能量,选取参考点计算IMF瞬时能量相对值,通过中央差分法近似计算IMF瞬时能量曲率;
步骤6,计算井架钢结构损伤前后IMF瞬时能量曲率差值,识别损伤位置及分析损伤程度。
进一步的,步骤1中,提取低阶振动模态的前四阶模态;
第一阶振型表现为整体左右方向(X-Z平面)一阶弯曲振动,顶部振动明显;
第二阶振型表现为整体前后方向(Y-Z平面)一阶弯曲振动,顶部振动明显;
第三阶振型是弯扭的耦合振动,顶部扭振明显;
第四阶振型表现为整体左右方向(X-Z平面)二阶弯曲振动;
振动响应为1阶模态振动方向上的响应。
进一步的,步骤2中,低阶振动频率为参照1阶模态频率,确定振动响应傅里叶谱中的较低频率。
进一步的,步骤3中,截止频率是参照振动响应傅里叶谱中的较低频率确定。
进一步的,步骤4中,主要IMF分量最好选用1阶IMF分量。
进一步的,步骤5中所述IMF瞬时能量曲率的具体计算步骤如下:
信号x(t)的Hilbert谱可表示为:
式中,RE表示取实部,ai(t)为第i阶IMF分量的瞬时幅值函数,ωi(t)为第i阶IMF分量的瞬时频率,n为信号经EMD分解后IMF分量的数目,e为自然底数,j为虚数单位;
信号x(t)的瞬时能量可定义为:
E(t)=∫H2(ω,t)dω
ω表示瞬时频率,t表示时间。
对于某个IMF分量来说,其瞬时能量为:
Ei(t)=∫H2i,t)dω
ωi表示第i阶IMF分量的瞬时频率,t表示时间。
IMF瞬时能量的相对值:
Ei为结构不同部位的IMF瞬时能量,E0为结构参考部位IMF瞬时能量。
IMF瞬时能量曲率:
Ri为井架钢结构计算部位的IMF瞬时能量相对值;Ri+1,Ri-1为井架钢结构计算部位前后相邻处的IMF瞬时能量相对值;l为相邻部位之间的距离。
进一步的,步骤6中所述的IMF瞬时能量曲率差值为:
ΔΦi=Φuidi
式中,Φui为井架钢结构损伤前IMF瞬时能量曲率;Φdi为井架钢结构损伤后IMF瞬时能量曲率。
与现有技术相比,本发明具有如下优点:
1、受结构载荷工况的影响较小,稳定性好;
2、仅提取结构低阶振动信息的特征,实际应用时简单易行;
3、能准确识别井架钢结构前立柱的单一损伤和两处损伤,且能定性分析单元的损伤程度。
附图说明
图1是本发明方法的流程图。
图2是井架钢结构有限元模型图。
图3是井架钢结构前4阶模态振型图。
图4是井架钢结构随机载荷作用下15号节点Y向加速度响应。
图5是井架钢结构冲击载荷作用下15号节点Y向加速度响应。
图6是井架钢结构随机载荷及冲击载荷作用下15号节点加速度响应频谱分析图。
图7是井架钢结构随机载荷作用下15号节点1阶振动响应及其EMD分解图。
图8是井架钢结构冲击载荷作用下15号节点1阶振动响应及其EMD分解图。
具体实施方式
下面结合附图对本发明做进一步说明:
本发明采用的井架钢结构有限元模型如图2所示,该模型右前立柱主要节点由下至上依次为1~20号节点,假设两个节点之间为一个单元,则由下至上依次划分为1~19号单元。
如图1所示,本发明所述方法包括以下步骤:
步骤1,对井架钢结构进行模态分析确定井架钢结构低阶振动模态,对井架钢结构进行瞬态动力学分析提取不同部位的振动响应;
对井架钢结构进行模态分析,提取该模型前4阶振型及频率。如图3所示,该模型第一阶振型主要表现为整体左右方向(X-Z平面)一阶弯曲振动,顶部振动较明显;第二阶振型主要表现为整体前后方向(Y-Z平面)一阶弯曲振动,顶部振动较明显;第三阶振型主要是弯扭的耦合振动,顶部扭振较为明显;第四阶振型主要表现为整体左右方向(X-Z平面)二阶弯曲振动;该模型对应的前4阶频率分别为17.53,18.03,38.71,77.31Hz。振动响应为1阶模态振动方向上的响应。
采用随机噪声加速度载荷对该井架模型进行激励,随机噪声加速度载荷的采样频率为1000Hz,幅值为1.2m/s2,作用于井架钢结构右前立柱顶部节点,方向沿Y轴。利用完全法进行瞬态动力学求解,提取1~20节点Y向加速度响应,其中15号节点的Y向加速度响应如图4所示。
采用冲击载荷对该模型进行激励,冲击载荷大小为150N,作用于井架钢结构右前立柱顶部节点,方向沿-Y轴,载荷作用时间为1E-4s。利用完全法进行瞬态动力学求解,提取1~20节点Y向加速度响应,其中15号节点的Y向加速度响应如图5所示。
步骤2,对提取的振动响应进行傅立叶频谱分析,依据井架钢结构低阶振动模态,确定井架钢结构低阶振动频率;低阶振动频率为参照1阶模态频率,确定振动响应傅里叶谱中的较低频率。
以15号节点为例,对随机载荷及冲击载荷作用下的振动响应进行傅立叶频谱分析,如图6所示。依据模态分析结果,确定两种载荷作用下均以1阶模态频率(17.53Hz)的振动为主。
步骤3,选取合适的截止频率,采用带通滤波的方法,提取井架钢结构的1阶模态振动响应;确定截止频率[17,18]Hz,将其它频率成分过滤,只保留结构1阶模态振动响应。
步骤4,对提取的井架钢结构1阶模态振动响应进行EMD分解,选取主要的IMF分量;
以15号节点为例,井架钢结构在随机载荷及冲击载荷作用下1阶振动响应及其EMD分解过程,如图7和图8所示,选取1阶IMF分量。
步骤5,计算所选取的IMF分量的瞬时能量,选取参考点计算IMF瞬时能量相对值,通过中央差分法近似计算IMF瞬时能量曲率;
IMF瞬时能量曲率的具体计算步骤为:
信号x(t)的Hilbert谱可表示为:
RE表示取实部,ai(t)为第i阶IMF分量的瞬时幅值函数,ωi(t)为第i阶IMF分量的瞬时频率。
信号x(t)的瞬时能量可定义为:
E(t)=∫H2(ω,t)dω
ω表示瞬时频率,t表示时间。
对于某个IMF分量来说,其瞬时能量为:
Ei(t)=∫H2i,t)dω
ωi表示第i阶IMF分量的瞬时频率,t表示时间。
IMF瞬时能量的相对值:
Ei为结构不同部位的IMF瞬时能量,E0为结构参考部位IMF瞬时能量。
IMF瞬时能量曲率:
Ri为井架钢结构计算部位的IMF瞬时能量相对值;Ri+1,Ri-1为井架钢结构计算部位前后相邻处的IMF瞬时能量相对值;l为相邻部位之间的距离。
选取1号节点为参考点进行相关计算。
步骤6,计算井架钢结构损伤前后IMF瞬时能量曲率差值,识别损伤位置及分析损伤程度。
IMF瞬时能量曲率差值为:
ΔΦi=Φuidi
式中,Φui为井架钢结构损伤前IMF瞬时能量曲率;Φdi为井架钢结构损伤后IMF瞬时能量曲率。
下面对本发明方法进行仿真测试。
以井架钢结构右前立柱为例,分别计算1~20号节点在随机载荷及冲击载荷作用下的1阶IMF瞬时能量曲率,并且绘制其与节点之间的关系曲线。结果表明:随机载荷及冲击载荷作用下的井架钢结构右前立柱节点IMF瞬时能量曲率曲线变化趋势基本一致,且数值也很接近,说明IMF瞬时能量曲率受结构载荷工况的影响比较小,稳定性好。
井架钢结构实际工作过程中,其前立柱损伤的可能性最大,故选取其右前立柱为研究对象进行损伤工况设计,具体的损伤工况如表1所示。
表1石油井架钢结构损伤工况表
以井架钢结构承受随机载荷为例,按照IMF瞬时能量曲率差值的计算步骤,分别计算7种损伤工况下1~20号节点IMF瞬时能量曲率差值,绘制IMF瞬时能量曲率差值与节点之间的关系。结果表明:损伤单元的位置与IMF瞬时能量曲率差值的变化有良好的对应关系,根据IMF瞬时能量曲率差值可以准确判断损伤单元的位置,且对于井架钢结构的微弱损伤也有较高的识别度。
假设井架钢结构右前立柱13单元的刚度依次降低5%、10%、15%、20%、25%、30%、35%、40%、45%、50%,分别计算相应损伤程度下13单元两端节点(13、14)的IMF瞬时能量曲率差值,并绘制其绝对值与损伤程度之间的柱状图。结果表明:13号节点IMF瞬时能量曲率差值的绝对值随着损伤程度的增加而变大,且13号节点的IMF瞬时能量曲率差值的绝对值均大于14号节点。
仿真测试结果表明:通过本发明方法,能够仅利用井架钢结构的低阶振动信息,准确识别结构的单一损伤和两处损伤,以及定性分析单元的损伤程度,且该方法具有简单、易行、稳定的特点。
为了进一步验证该发明方法的可行性,对井架钢结构实验室模型进行了损伤位置模拟实验。
ZJ70型井架实验室模型是根据现场7000m钻机原型设备中的井架按照1:18的比例制作而成,井架模型高度2.951m,最大钩载13.9kN,材料为Q235钢。该模型为梁式大腿的前开口模型,由上至下划分为4段,上段为封闭整体结构,其余三段截面均为前开口“∩”形,主体各构件之间采用插销连接。
假设井架钢结构由上至下4段编号依次为1~4号,损伤形式通过松动两段之间的插销来模拟,共模拟了3种损伤工况,如表2所示。
表2井架钢结构模拟损伤实验工况
实验共采用了12个加速度传感器来采集井架钢结构不同部位的振动响应,分别测量记录三种损伤工况下相邻加速度传感器之间的距离,传感器由下至上编号依次为1~12号。
由于IMF瞬时能量曲率受载荷工况的影响较小,为了便于实验,井架钢结构采用的激励形式为敲击,但要确保每种工况下结构损伤前后激励位置相同。获取井架钢结构模拟损伤前后1~12号传感器所采集的时域信号。
按照IMF瞬时能量曲率差值的计算步骤,分别计算3种损伤工况下1~12号传感器的IMF瞬时能量曲率差值,并绘制IMF瞬时能量曲率差值与传感器之间的关系。结果表明:对于单一损伤,IMF瞬时能曲率差值能够准确识别;对于两处损伤,IMF瞬时能量曲率差值能够准确识别其中一处损伤,另一处损伤通过对比相邻传感器IMF瞬时能量曲率差值的大小也能大致识别。
上述井架钢结构损伤位置模拟实验分析进一步验证了该发明方法仅利用结构的低阶振动信息识别损伤的可行性,且简单易行。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

1.一种基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于,所述方法包括以下步骤:
步骤1,对井架钢结构进行模态分析确定井架钢结构低阶振动模态,对井架钢结构进行瞬态动力学分析提取不同部位的振动响应;
步骤2,对提取的振动响应进行傅立叶频谱分析,依据井架钢结构低阶振动模态,确定井架钢结构低阶振动频率;
步骤3,选取合适的截止频率,采用带通滤波的方法,提取井架钢结构的1阶模态振动响应;
步骤4,对提取的井架钢结构1阶模态振动响应进行EMD分解,选取主要的IMF分量;
步骤5,计算所选取的IMF分量的瞬时能量,选取参考点计算IMF瞬时能量相对值,通过中央差分法近似计算IMF瞬时能量曲率;
步骤6,计算井架钢结构损伤前后IMF瞬时能量曲率差值,识别损伤位置及分析损伤程度。
2.根据权利要求1所述的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于:步骤1中,提取低阶振动模态的前四阶模态;
第一阶振型表现为整体左右方向一阶弯曲振动,顶部振动明显;
第二阶振型表现为整体前后方向一阶弯曲振动,顶部振动明显;
第三阶振型是弯扭的耦合振动,顶部扭振明显;
第四阶振型表现为整体左右方向二阶弯曲振动;
振动响应为1阶模态振动方向上的响应;
所述整体左右方向为X-Z平面方向,所述整体前后方向为Y-Z平面方向。
3.根据权利要求1所述的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于:步骤2中,低阶振动频率为参照1阶模态频率,确定振动响应傅里叶谱中的较低频率。
4.根据权利要求1所述的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于:步骤3中,截止频率是参照振动响应傅里叶谱中的较低频率确定。
5.根据权利要求1所述的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于:步骤4中,主要IMF分量选用1阶IMF分量。
6.根据权利要求1所述的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于,步骤5中所述IMF瞬时能量曲率的具体计算步骤如下:
信号x(t)的Hilbert谱可表示为:
式中,RE表示取实部,ai(t)为第i阶IMF分量的瞬时幅值函数,ωi(t)为第i阶IMF分量的瞬时频率;n为信号经EMD分解后IMF分量的数目;e为自然底数;j为虚数单位;
信号x(t)的瞬时能量可定义为:
E(t)=∫H2(ω,t)dω
式中,ω表示瞬时频率,t表示时间;
对于某个IMF分量来说,其瞬时能量为:
Ei(t)=∫H2i,t)dω
ωi表示第i阶IMF分量的瞬时频率,t表示时间;
IMF瞬时能量的相对值:
Ei为结构不同部位的IMF瞬时能量,E0为结构参考部位IMF瞬时能量;
IMF瞬时能量曲率:
Ri为井架钢结构计算部位的IMF瞬时能量相对值;Ri+1,Ri-1为井架钢结构计算部位前后相邻处的IMF瞬时能量相对值;l为相邻部位之间的距离。
7.根据权利要求1所述的基于IMF瞬时能量曲率差值的井架钢结构损伤识别方法,其特征在于:步骤6中所述的IMF瞬时能量曲率差值为:
ΔΦi=Φuidi
式中,Φui为井架钢结构损伤前IMF瞬时能量曲率;Φdi为井架钢结构损伤后IMF瞬时能量曲率。
CN201610538773.4A 2016-07-08 2016-07-08 基于imf瞬时能量曲率差值的井架钢结构损伤识别方法 Expired - Fee Related CN106446320B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610538773.4A CN106446320B (zh) 2016-07-08 2016-07-08 基于imf瞬时能量曲率差值的井架钢结构损伤识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610538773.4A CN106446320B (zh) 2016-07-08 2016-07-08 基于imf瞬时能量曲率差值的井架钢结构损伤识别方法

Publications (2)

Publication Number Publication Date
CN106446320A CN106446320A (zh) 2017-02-22
CN106446320B true CN106446320B (zh) 2019-09-27

Family

ID=58183409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610538773.4A Expired - Fee Related CN106446320B (zh) 2016-07-08 2016-07-08 基于imf瞬时能量曲率差值的井架钢结构损伤识别方法

Country Status (1)

Country Link
CN (1) CN106446320B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111737848A (zh) * 2020-05-12 2020-10-02 南京航空航天大学 基于时域应变信号分解的起重机械主梁结构裂纹识别方法
CN115169409B (zh) * 2022-07-18 2023-05-09 四川省公路规划勘察设计研究院有限公司 基于滑窗的桥梁结构自振频率识别、预警方法及设备
CN117421554B (zh) * 2023-10-23 2024-06-21 江苏科技大学 基于长期振动监测数据的大跨悬索桥结构损伤识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900708A (zh) * 2010-08-18 2010-12-01 哈尔滨工业大学 一种基于振动和声频信号的高速列车轨道伤损探测方法
CN103902834A (zh) * 2014-04-14 2014-07-02 重庆大学 一种基于岭估计和l曲线法的结构损伤识别方法
CN104462785A (zh) * 2014-11-12 2015-03-25 重庆大学 一种两阶段式建筑框架结构损伤检测方法
CN104964837A (zh) * 2015-06-12 2015-10-07 广东电网有限责任公司电力科学研究院 基于emd的结构刚度损伤监测方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150330950A1 (en) * 2014-05-16 2015-11-19 Eric Robert Bechhoefer Structural fatigue crack monitoring system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900708A (zh) * 2010-08-18 2010-12-01 哈尔滨工业大学 一种基于振动和声频信号的高速列车轨道伤损探测方法
CN103902834A (zh) * 2014-04-14 2014-07-02 重庆大学 一种基于岭估计和l曲线法的结构损伤识别方法
CN104462785A (zh) * 2014-11-12 2015-03-25 重庆大学 一种两阶段式建筑框架结构损伤检测方法
CN104964837A (zh) * 2015-06-12 2015-10-07 广东电网有限责任公司电力科学研究院 基于emd的结构刚度损伤监测方法及系统

Also Published As

Publication number Publication date
CN106446320A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN109357822A (zh) 一种基于车桥耦合系统时变动力特征改变的桥梁快速测试与评估方法
CN103575523B (zh) 基于FastICA-谱峭度-包络谱分析的旋转机械故障诊断方法
Putra et al. The need to generate realistic strain signals at an automotive coil spring for durability simulation leading to fatigue life assessment
CN106525226B (zh) 一种基于现场振动载荷识别的评估方法及系统
CN103217213B (zh) 基于响应信号时频联合分布特征的模态参数辨识方法
CN106446320B (zh) 基于imf瞬时能量曲率差值的井架钢结构损伤识别方法
CN107066736B (zh) 一种基于压缩采样的模态分析及结构冲击监测方法
CN103900826B (zh) 实时监测汽车底盘结构疲劳损伤的方法
CN101706355A (zh) 基于NExT/ARMA的结构响应分析方法
CN105181200A (zh) 一种频率法测量索力的精确算法
CN105862935A (zh) 一种用于挡土墙结构系统的损伤识别方法
CN102520070A (zh) 基于非线性输出频率响应函数的结构损伤检测方法
Mao et al. The construction and comparison of damage detection index based on the nonlinear output frequency response function and experimental analysis
CN107024271A (zh) 机械振动信号压缩重构方法及系统
CN104165742A (zh) 一种基于互谱函数的运行模态分析实验方法及装置
CN110057918B (zh) 强噪声背景下的复合材料损伤定量识别方法及系统
CN107748072A (zh) 汽车悬架减振器冲击噪声识别方法
CN112131781B (zh) 基于全连接神经网络与传递率函数的钢结构损伤检测方法
CN108303465A (zh) 一种基于机床振动的故障检测方法及系统
CN106092879A (zh) 基于振动响应信息的爆炸复合管结合状态检测方法
Salehi et al. A structural damage detection technique based on measured frequency response functions
CN106596025A (zh) 基于冲激响应的公路隧道悬挂风机基础稳定性检测方法及系统
CN105890738A (zh) 一种汇流旋涡冲击振动识别方法
CN105651537A (zh) 一种高损伤敏感性的桁架结构损伤实时监测系统
CN103500267A (zh) 利用状态信息判定螺栓连接设备装配可靠度的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190927