CN106438890A - 电磁铁‑超声换能器宏微结合的无极变速传动装置及方法 - Google Patents

电磁铁‑超声换能器宏微结合的无极变速传动装置及方法 Download PDF

Info

Publication number
CN106438890A
CN106438890A CN201610800973.2A CN201610800973A CN106438890A CN 106438890 A CN106438890 A CN 106438890A CN 201610800973 A CN201610800973 A CN 201610800973A CN 106438890 A CN106438890 A CN 106438890A
Authority
CN
China
Prior art keywords
electromagnet
ultrasonic transducer
power shaft
brake disc
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610800973.2A
Other languages
English (en)
Other versions
CN106438890B (zh
Inventor
陈超
陈海鹏
马广野
姚俊飞
杨东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610800973.2A priority Critical patent/CN106438890B/zh
Publication of CN106438890A publication Critical patent/CN106438890A/zh
Application granted granted Critical
Publication of CN106438890B publication Critical patent/CN106438890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6649Friction gearings characterised by the means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2853Electromagnetic solenoids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Braking Arrangements (AREA)

Abstract

本发明公开一种电磁铁‑超声换能器宏微结合的无极变速传动装置及方法,属于变速器领域。它包括箱体(8)、箱体(8)具有前端盖(10)和后端盖(3),还包括安装于箱体前部的输入轴组件、安装于箱体后部的输出轴组件。该装置通过宏观与微观控制相结合来实现无极变速,减速装置体积小,结构简单,易于加工、装配和使用,速度变化连续可调且响应时间快、易控制。

Description

电磁铁-超声换能器宏微结合的无极变速传动装置及方法
技术领域
本发明涉及一种无极变速传动装置,特别是一种电磁铁-超声换能器的宏微的无极变速传动装置及方法,属于变速器领域的无极变速器。
背景技术
随着科学技术及生产力的不断进步,新型变速器的设计都要求做到小型化,对输出转速的精度要求也越来越高。这种发展趋势使得现有的减速器的缺陷愈发明显,如结构复杂、体积庞大、传动精度不高、不耐冲击等。电磁铁结构简单,其磁性有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数多少来控制;也可通过改变电阻控制电流大小来控制磁性大小,在日常生活中有着极其广泛的应用。利用电磁铁吸力产生摩擦力矩,可以在宏观上起到摩擦减速的效果,初步将转速控制在所需范围内(即宏观调速);如果在电磁铁和输出轴之间设计一个转速微幅控制机构,就能够实现转速的精确控制(即微观调速)。
发明内容
本发明的目的在于提供一种基于电磁铁-超声换能器宏微结合的无极变速传动装置及其工作方法,通过宏观与微观控制相结合来实现无极减速,减速装置体积小,易于加工、装配和使用,速度变化连续可调且响应时间快、易控制。
为实现上述功能。本发明采用如下技术方案:
一种电磁铁-超声换能器宏微结合的无极变速传动装置,包括箱体、箱体具有前端盖和后端盖,还包括安装于箱体前部的输入轴组件、安装于箱体后部的输出轴组件;上述输入轴组件包括输入轴;该输入轴具有轴肩结构,输入轴上位于轴肩结构后方依次安装第一轴承、摩擦盘和第一锁紧螺母;上述摩擦盘通过键安装于输入轴上,并通过第一锁紧螺母与轴肩结构固定于输入轴上;第一轴承外圈与箱体配合,并通过箱体的内台阶结构和前端盖固定;输入轴穿过前端盖;摩擦盘与输出轴组件相对的盘面具有摩擦材料层;上述输出轴组件包括制动盘,制动盘中心空腔内安装有电磁铁,制动盘后端通过法兰固定安装输出轴,制动盘盘面上均匀布置若干组超声换能器;上述制动盘安装于第二轴承中,制动盘通过一端的外台阶结构和另一端安装的二锁紧螺母固定于第二轴承内圈;第二轴承外圈与上述箱体内壁间隙配合;第二轴承外圈前端面与固定于箱体内的碟簧接触,第二轴承外圈后端面与后端盖接触并定位;上述电磁铁与所述输入轴的后端面对应,上述超声换能器前端部与上述摩擦盘上的摩擦材料层对应。
本发明利用电磁铁通电产生的磁场,对输入轴产生吸力,超声换能器对摩擦盘施加正压力,从而产生摩擦力矩,实现转矩从输入轴到输出轴之间的传递,通过控制流经电磁铁的电流控制磁场力的大小,进而控制输出轴的速度,使其接近工作所需的速度;初步实现转速的传递后,给超声换能器施加激励信号,通过调节超声换能器的的工作电压、工作频率或者高频开关控制,微幅调节超声换能器与摩擦盘的摩擦力矩,通过速度传感器的信号,实现对制动盘速度的闭环控制,使得输出轴的的转速无限逼近工作所需的速度,达到转速的精确控制;当工作停止时,停止对电磁铁的供电,电磁铁失去磁性,在碟簧的作用下,制动盘会整体向后移动,使超声换能器底部与摩擦盘上表面的摩擦材料层脱离,输出轴停止旋转。
作为本发明进一步的方案:整个减速装置中没有采用齿轮等结构固定减速比,输出轴的转速可以实现连续可调,达到无极变速;在机构中加上速度传感器,还可以实现对本传动装置的闭环控制。
与现有技术相比,本发明的有益效果是:该装置通过宏观与微观控制相结合来实现无极减速,减速装置体积小,易于加工、装配和使用,速度变化连续可调且响应时间快、易控制。
附图说明
图1是一种基于电磁铁-超声换能器宏微结合的无极变速传动装置的结构示意图;
图中标号名称:1.输出轴,2.法兰螺钉,3.后端盖,4.制动盘螺钉,5.制动盘,6.第二轴承,7.碟簧,8.箱体,9.第一轴承,10.前端盖,11.输入轴,12.电磁铁,13.第二锁紧螺母,14.超声换能器,15.摩擦材料层,16.摩擦盘,17.第一锁紧螺母,18.键。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
一种基于电磁铁-超声换能器宏微结合的无极变速传动装置,其包括输入轴11、前端盖10、第一轴承6、第二轴承9、箱体8、碟簧7、制动盘5、后端盖3、输出轴1、电磁铁12、第二锁紧螺母13、第一锁紧螺母17、超声换能器14、摩擦材料层15、摩擦盘16、键18,其中,四个超声换能器分别由制动盘螺钉4,上下两个弹性体以及压电陶瓷组成;制动盘5的上端与输出轴1使用法兰连接,并通过法兰螺钉2固联,电磁铁12通过胶水固定在制动盘5内圈,以防止电磁铁12在制动盘5内晃动,电磁铁12与输入轴11之间有2mm的间隙,制动盘上另钻有四个通孔,与四个超声换能器相连,箱体8内部设计有台阶孔,台阶孔与第二轴承6间放置一碟簧7,在电磁铁未通电时防止电磁铁12与输入轴1接触,制动盘5通过第二轴承6与箱体8连接,通过制动盘5上的台阶及第二锁紧螺母13固定;摩擦盘16上表面粘贴有一圈摩擦材料15,用于提供更好的摩擦减速效果,输入轴11为台阶轴,输入轴11与摩擦盘16使用键18连接,并用第一锁紧螺母17固定;输入轴11中部通过第一轴承9与箱体8连接,并用台阶与端盖10进行固定。
本发明的工作原理是:第二轴承6与箱体8间采用间隙配合,当电磁铁12通电时,其产生的磁场力可以使制动盘5整体向下运动,直至超声换能器的下表面与摩擦盘16上表面接触并施加一定的正压力,产生摩擦力矩,在摩擦力矩的作用下,可以实现输入轴和输出轴之间的转矩传递,通过控制流经电磁铁12的电流可以控制磁场力的大小,进而可以控制输出轴1的速度,使其接近工作所需的速度α(即宏观调速);之后,给超声换能器施加激励信号,通过调节超声换能器的的工作电压、工作频率或者高频开关控制,微幅调节超声换能器与摩擦盘16的摩擦力矩,通过速度传感器的信号,可以实现对制动盘速度的闭环控制,使得输出轴1的的转速无限逼近α,达到转速的精确控制(即微观调速);当工作停止时,可以停止对电磁12铁的供电,电磁铁12失去磁性,在碟簧7的作用下,制动盘5会整体向上移动,使超声换能器底部与摩擦盘16上表面的摩擦材料15脱离,输出轴停止旋转。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (2)

1.一种电磁铁-超声换能器宏微结合的无极变速传动装置,其特征在于:
包括箱体(8)、箱体(8)具有前端盖(10)和后端盖(3),还包括安装于箱体前部的输入轴组件、安装于箱体后部的输出轴组件;
上述输入轴组件包括输入轴(11);该输入轴(11)具有轴肩结构,输入轴(11)上位于轴肩结构后方依次安装第一轴承(9)、摩擦盘(16)和第一锁紧螺母(17);上述摩擦盘(16)通过键(18)安装于输入轴(11)上,并通过第一锁紧螺母(17)与轴肩结构固定于输入轴(11)上;第一轴承(9)外圈与箱体(8)配合,并通过箱体的内台阶结构和前端盖(10)固定;输入轴(11)穿过前端盖(10);摩擦盘(16)与输出轴组件相对的盘面具有摩擦材料层(15);
上述输出轴组件包括制动盘(5),制动盘(5)中心空腔内安装有电磁铁(12),制动盘(5)后端通过法兰固定安装输出轴(1),制动盘(5)盘面上均匀布置若干组超声换能器(14);上述制动盘(5)安装于第二轴承(6)中,制动盘(5)通过一端的外台阶结构和另一端安装的二锁紧螺母(13)固定于第二轴承(6)内圈;第二轴承(6)外圈与上述箱体内壁间隙配合;第二轴承(6)外圈前端面与固定于箱体内的碟簧(7)接触,第二轴承(6)外圈后端面与后端盖(3)接触并定位;上述电磁铁(12)与所述输入轴(11)的后端面对应,上述超声换能器(14)前端部与上述摩擦盘(16)上的摩擦材料层(15)对应。
2.根据权利要求1所述的电磁铁-超声换能器宏微结合的无极变速传动装置的方法,其特征在于:
利用电磁铁(12)通电产生的磁场,对输入轴(11)产生吸力,超声换能器对摩擦盘施加正压力,从而产生摩擦力矩,实现转矩从输入轴到输出轴之间的传递,通过控制流经电磁铁(12)的电流控制磁场力的大小,进而控制输出轴(1)的速度,使其接近工作所需的速度;
初步实现转速的传递后,给超声换能器(14)施加激励信号,利用超声换能器(14)的超声减摩作用,调节超声换能器的的工作电压、工作频率或者高频开关控制,微幅调节超声换能器与摩擦盘(16)的摩擦力矩,通过速度传感器的信号, 实现对制动盘速度的闭环控制,使得输出轴(1)的的转速无限逼近工作所需的速度,达到转速的精确控制;
当工作停止时,停止对电磁铁的供电,电磁铁失去磁性,在碟簧(7)的作用下,制动盘(5)会整体向后移动,使超声换能器底部与摩擦盘(16)上表面的摩擦材料层(15)脱离,输出轴停止旋转。
CN201610800973.2A 2016-09-05 2016-09-05 电磁铁-超声换能器宏微结合的无级变速传动装置及方法 Active CN106438890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610800973.2A CN106438890B (zh) 2016-09-05 2016-09-05 电磁铁-超声换能器宏微结合的无级变速传动装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610800973.2A CN106438890B (zh) 2016-09-05 2016-09-05 电磁铁-超声换能器宏微结合的无级变速传动装置及方法

Publications (2)

Publication Number Publication Date
CN106438890A true CN106438890A (zh) 2017-02-22
CN106438890B CN106438890B (zh) 2018-08-28

Family

ID=58164208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610800973.2A Active CN106438890B (zh) 2016-09-05 2016-09-05 电磁铁-超声换能器宏微结合的无级变速传动装置及方法

Country Status (1)

Country Link
CN (1) CN106438890B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886083A (zh) * 2018-03-22 2020-11-03 思睿逻辑国际半导体有限公司 用于驱动换能器的方法和装置
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
US11259121B2 (en) 2017-07-21 2022-02-22 Cirrus Logic, Inc. Surface speaker
US11263877B2 (en) 2019-03-29 2022-03-01 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
US11269509B2 (en) 2018-10-26 2022-03-08 Cirrus Logic, Inc. Force sensing system and method
US11283337B2 (en) 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11396031B2 (en) 2019-03-29 2022-07-26 Cirrus Logic, Inc. Driver circuitry
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11500469B2 (en) 2017-05-08 2022-11-15 Cirrus Logic, Inc. Integrated haptic system
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11515875B2 (en) 2019-03-29 2022-11-29 Cirrus Logic, Inc. Device comprising force sensors
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths
US11636742B2 (en) 2018-04-04 2023-04-25 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load
US11662821B2 (en) 2020-04-16 2023-05-30 Cirrus Logic, Inc. In-situ monitoring, calibration, and testing of a haptic actuator
US11669165B2 (en) 2019-06-07 2023-06-06 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11765499B2 (en) 2021-06-22 2023-09-19 Cirrus Logic Inc. Methods and systems for managing mixed mode electromechanical actuator drive
US11908310B2 (en) 2021-06-22 2024-02-20 Cirrus Logic Inc. Methods and systems for detecting and managing unexpected spectral content in an amplifier system
US11933822B2 (en) 2021-06-16 2024-03-19 Cirrus Logic Inc. Methods and systems for in-system estimation of actuator parameters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023526A (en) * 1988-10-31 1991-06-11 Aisin Seiki Kabushiki Kaisha Vibratory motor
CN1497618A (zh) * 2002-10-04 2004-05-19 �����Զ�����ʽ���� 电磁螺线管和使用电磁螺线管的变速箱换档致动装置
CN101262184A (zh) * 2008-04-29 2008-09-10 哈尔滨工业大学 纵弯夹心换能器式圆盘定子及使用该定子的超声电机
CN204357830U (zh) * 2014-10-30 2015-05-27 陈鸿宇 一种新型低摩擦单杆双作用气缸
CN206111976U (zh) * 2016-09-05 2017-04-19 南京航空航天大学 电磁铁‑超声换能器宏微结合的无级变速传动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023526A (en) * 1988-10-31 1991-06-11 Aisin Seiki Kabushiki Kaisha Vibratory motor
CN1497618A (zh) * 2002-10-04 2004-05-19 �����Զ�����ʽ���� 电磁螺线管和使用电磁螺线管的变速箱换档致动装置
CN101262184A (zh) * 2008-04-29 2008-09-10 哈尔滨工业大学 纵弯夹心换能器式圆盘定子及使用该定子的超声电机
CN204357830U (zh) * 2014-10-30 2015-05-27 陈鸿宇 一种新型低摩擦单杆双作用气缸
CN206111976U (zh) * 2016-09-05 2017-04-19 南京航空航天大学 电磁铁‑超声换能器宏微结合的无级变速传动装置

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11500469B2 (en) 2017-05-08 2022-11-15 Cirrus Logic, Inc. Integrated haptic system
US11259121B2 (en) 2017-07-21 2022-02-22 Cirrus Logic, Inc. Surface speaker
US11139767B2 (en) 2018-03-22 2021-10-05 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
CN111886083A (zh) * 2018-03-22 2020-11-03 思睿逻辑国际半导体有限公司 用于驱动换能器的方法和装置
CN111886083B (zh) * 2018-03-22 2022-07-05 思睿逻辑国际半导体有限公司 用于驱动换能器的方法和装置
US11636742B2 (en) 2018-04-04 2023-04-25 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11966513B2 (en) 2018-08-14 2024-04-23 Cirrus Logic Inc. Haptic output systems
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
US11972105B2 (en) 2018-10-26 2024-04-30 Cirrus Logic Inc. Force sensing system and method
US11269509B2 (en) 2018-10-26 2022-03-08 Cirrus Logic, Inc. Force sensing system and method
US11507267B2 (en) 2018-10-26 2022-11-22 Cirrus Logic, Inc. Force sensing system and method
US11515875B2 (en) 2019-03-29 2022-11-29 Cirrus Logic, Inc. Device comprising force sensors
US11283337B2 (en) 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US11396031B2 (en) 2019-03-29 2022-07-26 Cirrus Logic, Inc. Driver circuitry
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11736093B2 (en) 2019-03-29 2023-08-22 Cirrus Logic Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11263877B2 (en) 2019-03-29 2022-03-01 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load
US11669165B2 (en) 2019-06-07 2023-06-06 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
US11972057B2 (en) 2019-06-07 2024-04-30 Cirrus Logic Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11692889B2 (en) 2019-10-15 2023-07-04 Cirrus Logic, Inc. Control methods for a force sensor system
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11847906B2 (en) 2019-10-24 2023-12-19 Cirrus Logic Inc. Reproducibility of haptic waveform
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US11662821B2 (en) 2020-04-16 2023-05-30 Cirrus Logic, Inc. In-situ monitoring, calibration, and testing of a haptic actuator
US11933822B2 (en) 2021-06-16 2024-03-19 Cirrus Logic Inc. Methods and systems for in-system estimation of actuator parameters
US11908310B2 (en) 2021-06-22 2024-02-20 Cirrus Logic Inc. Methods and systems for detecting and managing unexpected spectral content in an amplifier system
US11765499B2 (en) 2021-06-22 2023-09-19 Cirrus Logic Inc. Methods and systems for managing mixed mode electromechanical actuator drive
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths

Also Published As

Publication number Publication date
CN106438890B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN106438890A (zh) 电磁铁‑超声换能器宏微结合的无极变速传动装置及方法
US10903763B2 (en) Built-in piezoelectric-type online dynamic balance actuator
CN102658520B (zh) 基于分级结构化复合弹性研抛盘的动压光整系统
CN110504816B (zh) 一种单极磁体旋转式可调速笼型磁力耦合器
CN104734415A (zh) 一种减速电机
CN101916130A (zh) 一种具有中位锁止和操纵阻尼调整功能的电控手柄
CN206111976U (zh) 电磁铁‑超声换能器宏微结合的无级变速传动装置
CN201732313U (zh) 一种具有中位锁止和操纵阻尼调整功能的电控手柄
CN201623614U (zh) 一种用于飞机驾驶杆操纵系统的涡电流阻尼器
CN102777511A (zh) 电磁离合器及使用该离合器的气泵
CN206299718U (zh) 一种电磁式中间轴制动器总成
CN105857271B (zh) 制动能量回收和释放装置
CN207753635U (zh) 一种内置式压电型在线动平衡执行结构
CN201038905Y (zh) 百叶帘电机行程调节机构
JPS61192441A (ja) 回転動力伝達装置
CN102975183A (zh) 磁流变液旋转工作平台装置
CN1300479C (zh) 一种控制静压滑动轴承的方法
CN204436557U (zh) 一种多速电控硅油风扇离合器
JP5001683B2 (ja) 電動ブレーキ
CN207039490U (zh) 一种新型的行波型超声波电机
CN102268730B (zh) 蓝宝石单晶生长变速器及其工作方法
CN106208805B (zh) 一种无极减速装置及其工作方法
CN205904460U (zh) 气、磁悬浮磁力驱动电主轴
JPS6311859B2 (zh)
CN216066985U (zh) 一种基于气泵驱动的打磨头

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant