CN106435495B - 不锈钢薄板表面TiN-Ti复合覆层的制备方法 - Google Patents

不锈钢薄板表面TiN-Ti复合覆层的制备方法 Download PDF

Info

Publication number
CN106435495B
CN106435495B CN201610773760.5A CN201610773760A CN106435495B CN 106435495 B CN106435495 B CN 106435495B CN 201610773760 A CN201610773760 A CN 201610773760A CN 106435495 B CN106435495 B CN 106435495B
Authority
CN
China
Prior art keywords
coating
sheet steel
tin
stainless sheet
stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610773760.5A
Other languages
English (en)
Other versions
CN106435495A (zh
Inventor
李铮
李鲁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU HUALI METAL MATERIAL Co Ltd
Original Assignee
JIANGSU HUALI METAL MATERIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU HUALI METAL MATERIAL Co Ltd filed Critical JIANGSU HUALI METAL MATERIAL Co Ltd
Priority to CN201610773760.5A priority Critical patent/CN106435495B/zh
Publication of CN106435495A publication Critical patent/CN106435495A/zh
Application granted granted Critical
Publication of CN106435495B publication Critical patent/CN106435495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种不锈钢薄板表面TiN‑Ti复合覆层的制备方法,包括以下步骤:包括以下步骤:(1)不锈钢薄板的清洗;(2)制备Ti覆层;(3)制备TiN‑Ti复合覆层;采用磁控溅射技术,覆层与不锈钢薄板之间的结合强度高,且覆层机械强度高,采用离子扩散制得TiN‑Ti复合覆层,使得TiN与Ti之间的界面扩散层连续,从而获得富TiN表层保持了TiN高硬、耐磨等优良性能;而在次表层形成的钛扩散过渡层增强了基体对硬质TiN表层的综合承载能力,使不锈钢薄板的耐磨性得到了明显的提高。

Description

不锈钢薄板表面TiN-Ti复合覆层的制备方法
技术领域
本发明涉及一种金属材料表面改性技术领域,特别涉及一种不锈钢薄板表面TiN-Ti复合覆层的制备方法。
背景技术
目前,不锈钢薄板是一种价格不高的材料,已经广泛应用于各行各业,但是客户对它的表面质量要求非常高。不锈薄板在生产过程中不可避免会出现各种缺陷,如划伤、麻点、沙孔、暗线、折痕、污染等,从而其表面质量,象划伤、折痕等这些缺陷是高级材不允许出现的,而麻点、沙孔这种缺陷在勺、匙、叉、制作时也是决不允许的,因为抛光时很难抛掉它。需要根据表面各种缺陷出现的程度和频率,来确定其表质量等级,从而来确定产品等级。
因此,现在有必要研发出一种不锈钢薄板表面TiN-Ti复合覆层的制备方法,来增加不锈钢表面的耐磨性。
发明内容
本发明要解决的技术问题是,针对现有的不足,提供一种沉积速率快、质量可控、工作效率高的不锈钢薄板表面TiN-Ti复合覆层的制备方法。
为了解决上述技术问题,本发明采用的技术方案是,该不锈钢薄板表面TiN-Ti复合覆层的制备方法,包括以下步骤:
(1)不锈钢薄板的清洗:为了去除油渍,先用浓度为3.5~4.5 %碳酸钠碱液清洗不锈钢薄板10~15min,清洗时温度为65~75℃;然后为了去除氧化皮在浓度为3.5~4.5%稀硫酸中清洗10~15min;再将不锈钢薄板先后放入丙酮溶液、乙醇溶液和去离子水中超声25~35min,以提高基板表面活性,吹干待用;
(2)制备Ti覆层:将步骤(1)中清洗后的不锈钢薄板置于磁控溅射设备的基片台上作为阳极,将金属钛靶放入磁控溅射设备的靶材座上作为阴极,且调节靶材座与基片座的距离,使两者之间的距离保持在20mm;启动机械泵,打开旁抽阀Ⅱ,对真空腔室抽真空;当真空度达到1~8Pa时,关闭旁抽阀Ⅱ,打开旁抽阀Ⅰ,并启动分子泵,打开闸板阀,采用分子泵对真空腔室进一步抽真空;当分子泵加速后稳定运行直至真空度达到1~5×10-3Pa;打开氩气阀,通入氩气,对基板进行离子束清洗,清洗时间为3~5 min;待磁控溅射设备的真空度达到4~8Pa时,调节磁控溅射沉积条件:预热不锈钢薄板至300~500℃;放电电压300V~400V、电流10~20A、沉积速率为1.0~2.0μm/min;沉积时间20~60min,制得Ti覆层的不锈钢薄板;依次关闭电流、放电电压和氩气阀,解除真空,关闭分子泵,开启进气阀,通入空气,并待不锈钢薄板冷却至室温后,取出Ti覆层的不锈钢薄板;
(3)制备TiN-Ti复合覆层:将步骤(2)制得Ti覆层的不锈钢薄板放入离子氮化炉中,选择NH3为渗氮气体,气压为450~500Pa,渗氮温度为800~900℃,阴电极电压为600~700V,渗氮8~12h后,再维持正常辉光放电冷却1h,断开电源,关闭气体,随炉冷却至室温,即得TiN-Ti复合覆层的不锈钢薄板。
进一步改进在于,在所述步骤(3)中不锈钢薄板表面沉积的Ti覆层的厚度为20~80μm。
与现有技术相比,本发明的有益效果是:采用磁控溅射技术,覆层与不锈钢薄板之间的结合强度高,且覆层机械强度高,采用离子扩散制得TiN-Ti复合覆层,使得TiN与Ti之间的界面扩散层连续,从而获得富TiN表层保持了TiN高硬、耐磨等优良性能;而在次表层形成的钛扩散过渡层增强了基体对硬质TiN表层的综合承载能力,使不锈钢薄板的耐磨性得到了明显的提高,此该制备方法工艺简单、质量可控、工作效率高,制备过程在全真空条件下,无污染环境、危害人体安全等问题,因此极其适合工业化应用;制备工艺也能适合工业化连续生产,产品成品率高,质量稳定,而且制造成本低廉。
具体实施方式
实施例1:不锈钢薄板表面TiN-Ti复合覆层的制备方法,包括如下步骤:
(1)不锈钢薄板的清洗:为了去除油渍,先用浓度为3.5 %碳酸钠碱液清洗不锈钢薄板15min,清洗时温度为75℃;然后为了去除氧化皮在浓度为3.5%稀硫酸中清洗15min;再将不锈钢薄板先后放入丙酮溶液、乙醇溶液和去离子水中超声25min,以提高基板表面活性,吹干待用;
(2)制备Ti覆层:将步骤(1)中清洗后的不锈钢薄板置于磁控溅射设备的基片台上作为阳极,将金属钛靶放入磁控溅射设备的靶材座上作为阴极,且调节靶材座与基片座的距离,使两者之间的距离保持在20mm;启动机械泵,打开旁抽阀Ⅱ,对真空腔室抽真空;当真空度达到6Pa时,关闭旁抽阀Ⅱ,打开旁抽阀Ⅰ,并启动分子泵,打开闸板阀,采用分子泵对真空腔室进一步抽真空;当分子泵加速后稳定运行直至真空度达到5×10-3Pa;打开氩气阀,通入氩气,对基板进行离子束清洗,清洗时间为5 min;待磁控溅射设备的真空度达到4Pa时,调节磁控溅射沉积条件:预热不锈钢薄板至300℃;放电电压300V、电流15A、沉积速率为1.2μm/min;沉积时间40min,制得Ti覆层的不锈钢薄板;Ti覆层的厚度为48μm;依次关闭电流、放电电压和氩气阀,解除真空,关闭分子泵,开启进气阀,通入空气,并待不锈钢薄板冷却至室温后,取出Ti覆层的不锈钢薄板;
(3)制备TiN-Ti复合覆层:将步骤(2)制得Ti覆层的不锈钢薄板放入离子氮化炉中,选择NH3为渗氮气体,气压为500Pa,渗氮温度为800℃,阴电极电压为700V,渗氮9h后,再维持正常辉光放电冷却1h,断开电源,关闭气体,随炉冷却至室温,即得TiN-Ti复合覆层的不锈钢薄板。
实施例2:不锈钢薄板表面TiN-Ti复合覆层的制备方法,包括如下步骤:
(1)不锈钢薄板的清洗:为了去除油渍,先用浓度为4.5 %碳酸钠碱液清洗不锈钢薄板10min,清洗时温度为65℃;然后为了去除氧化皮在浓度为4.5%稀硫酸中清洗10min;再将不锈钢薄板先后放入丙酮溶液、乙醇溶液和去离子水中超声35min,以提高基板表面活性,吹干待用;
(2)制备Ti覆层:将步骤(1)中清洗后的不锈钢薄板置于磁控溅射设备的基片台上作为阳极,将金属钛靶放入磁控溅射设备的靶材座上作为阴极,且调节靶材座与基片座的距离,使两者之间的距离保持在20mm;启动机械泵,打开旁抽阀Ⅱ,对真空腔室抽真空;当真空度达到5Pa时,关闭旁抽阀Ⅱ,打开旁抽阀Ⅰ,并启动分子泵,打开闸板阀,采用分子泵对真空腔室进一步抽真空;当分子泵加速后稳定运行直至真空度达到5×10-3Pa;打开氩气阀,通入氩气,对基板进行离子束清洗,清洗时间为5 min;待磁控溅射设备的真空度达到6Pa时,调节磁控溅射沉积条件:预热不锈钢薄板至500℃;放电电压400V、电流20A、沉积速率为2.0μm/min;沉积时间30min,制得Ti覆层的不锈钢薄板;Ti覆层的厚度为60μm;依次关闭电流、放电电压和氩气阀,解除真空,关闭分子泵,开启进气阀,通入空气,并待不锈钢薄板冷却至室温后,取出Ti覆层的不锈钢薄板;
(3)制备TiN-Ti复合覆层:将步骤(2)制得Ti覆层的不锈钢薄板放入离子氮化炉中,选择NH3为渗氮气体,气压为450Pa,渗氮温度为900℃,阴电极电压为600V,渗氮12h后,再维持正常辉光放电冷却1h,断开电源,关闭气体,随炉冷却至室温,即得TiN-Ti复合覆层的不锈钢薄板。
实施例3:不锈钢薄板表面TiN-Ti复合覆层的制备方法,包括如下步骤:
(1)不锈钢薄板的清洗:为了去除油渍,先用浓度为4.5 %碳酸钠碱液清洗不锈钢薄板10min,清洗时温度为65℃;然后为了去除氧化皮在浓度为4.5%稀硫酸中清洗10min;再将不锈钢薄板先后放入丙酮溶液、乙醇溶液和去离子水中超声35min,以提高基板表面活性,吹干待用;
(2)制备Ti覆层:将步骤(1)中清洗后的不锈钢薄板置于磁控溅射设备的基片台上作为阳极,将金属钛靶放入磁控溅射设备的靶材座上作为阴极,且调节靶材座与基片座的距离,使两者之间的距离保持在20mm;启动机械泵,打开旁抽阀Ⅱ,对真空腔室抽真空;当真空度达到5Pa时,关闭旁抽阀Ⅱ,打开旁抽阀Ⅰ,并启动分子泵,打开闸板阀,采用分子泵对真空腔室进一步抽真空;当分子泵加速后稳定运行直至真空度达到5×10-3Pa;打开氩气阀,通入氩气,对基板进行离子束清洗,清洗时间为5 min;待磁控溅射设备的真空度达到6Pa时,调节磁控溅射沉积条件:预热不锈钢薄板至400℃;放电电压350V、电流16A、沉积速率为1.5μm/min;沉积时间52min,制得Ti覆层的不锈钢薄板;Ti覆层的厚度为78μm;依次关闭电流、放电电压和氩气阀,解除真空,关闭分子泵,开启进气阀,通入空气,并待不锈钢薄板冷却至室温后,取出Ti覆层的不锈钢薄板;
(3)制备TiN-Ti复合覆层:将步骤(2)制得Ti覆层的不锈钢薄板放入离子氮化炉中,选择NH3为渗氮气体,气压为400Pa,渗氮温度为850℃,阴电极电压为650V,渗氮10h后,再维持正常辉光放电冷却1h,断开电源,关闭气体,随炉冷却至室温,即得TiN-Ti复合覆层的不锈钢薄板。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (1)

1.一种不锈钢薄板表面TiN-Ti复合覆层的制备方法,其特征在于,包括以下步骤:
(1)不锈钢薄板的清洗:为了去除油渍,先用浓度为3.5~4.5%碳酸钠碱液清洗不锈钢薄板10~15min,清洗时温度为65~75℃;然后为了去除氧化皮在浓度为3.5~4.5%稀硫酸中清洗10~15min;再将不锈钢薄板先后放入丙酮溶液、乙醇溶液和去离子水中超声25~35min,以提高基板表面活性,吹干待用;
(2)制备Ti覆层:将步骤(1)中清洗后的不锈钢薄板置于磁控溅射设备的基片台上作为阳极,将金属钛靶放入磁控溅射设备的靶材座上作为阴极,且调节靶材座与基片座的距离,使两者之间的距离保持在20mm;启动机械泵,打开旁抽阀Ⅱ,对真空腔室抽真空;当真空度达到1~8Pa时,关闭旁抽阀Ⅱ,打开旁抽阀Ⅰ,并启动分子泵,打开闸板阀,采用分子泵对真空腔室进一步抽真空;当分子泵加速后稳定运行直至真空度达到1~5×10-3Pa;打开氩气阀,通入氩气,对基板进行离子束清洗,清洗时间为3~5min;待磁控溅射设备的真空度达到4~8Pa时,调节磁控溅射沉积条件:预热不锈钢薄板至300~500℃;放电电压300V~400V、电流10~20A、沉积速率为1.0~2.0μm/min;沉积时间20~60min,制得Ti覆层的不锈钢薄板;依次关闭电流、放电电压和氩气阀,解除真空,关闭分子泵,开启进气阀,通入空气,并待不锈钢薄板冷却至室温后,取出Ti覆层的不锈钢薄板;
(3)制备TiN-Ti复合覆层:将步骤(2)制得Ti覆层的不锈钢薄板放入离子氮化炉中,选择NH3为渗氮气体,气压为450~500Pa,渗氮温度为800~900℃,阴电极电压为600~700V,渗氮8~12h后,再维持正常辉光放电冷却1h,断开电源,关闭气体,随炉冷却至室温,即得TiN-Ti复合覆层的不锈钢薄板;在所述步骤(3)中不锈钢薄板表面沉积的Ti覆层的厚度为20~80μm。
CN201610773760.5A 2016-08-31 2016-08-31 不锈钢薄板表面TiN-Ti复合覆层的制备方法 Active CN106435495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610773760.5A CN106435495B (zh) 2016-08-31 2016-08-31 不锈钢薄板表面TiN-Ti复合覆层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610773760.5A CN106435495B (zh) 2016-08-31 2016-08-31 不锈钢薄板表面TiN-Ti复合覆层的制备方法

Publications (2)

Publication Number Publication Date
CN106435495A CN106435495A (zh) 2017-02-22
CN106435495B true CN106435495B (zh) 2019-01-22

Family

ID=58091790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610773760.5A Active CN106435495B (zh) 2016-08-31 2016-08-31 不锈钢薄板表面TiN-Ti复合覆层的制备方法

Country Status (1)

Country Link
CN (1) CN106435495B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102239A (zh) * 2022-12-30 2023-05-12 江苏弘扬石英制品有限公司 一种单晶用石英大口径扩散炉管镀膜工艺及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307428A (zh) * 2008-05-29 2008-11-19 玉环县金源比特科技发展有限公司 磁控溅射与多弧离子镀复合式真空镀膜方法
CN103233219A (zh) * 2013-03-22 2013-08-07 常州大学 一种制备金属TiN陶瓷涂层的工艺方法
CN105568229A (zh) * 2016-03-09 2016-05-11 无锡南理工科技发展有限公司 一种掺氮二氧化钛薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307428A (zh) * 2008-05-29 2008-11-19 玉环县金源比特科技发展有限公司 磁控溅射与多弧离子镀复合式真空镀膜方法
CN103233219A (zh) * 2013-03-22 2013-08-07 常州大学 一种制备金属TiN陶瓷涂层的工艺方法
CN105568229A (zh) * 2016-03-09 2016-05-11 无锡南理工科技发展有限公司 一种掺氮二氧化钛薄膜的制备方法

Also Published As

Publication number Publication date
CN106435495A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US20140186654A1 (en) Surface treatment method for stainless steel and housing made from the treated stainless steel
CN104060224B (zh) 一种金属件的真空镀膜方法
EP3056584B1 (en) Method for making nd-fe-b permanent magnets with anti-corrosive composite coating
CN105525266A (zh) 一种铝合金轮毂真空镀膜工艺
EP3056585A1 (en) A method of disposing an aluminum coating on nd-fe-b permanent magnets
CN104073855A (zh) 一种金属件的表面处理方法
CN106435495B (zh) 不锈钢薄板表面TiN-Ti复合覆层的制备方法
CN106282950A (zh) 一种提高锂电池负极铝箔集电极电性能的方法
CN107779833A (zh) 一种复合镀膜工艺
CN105506567B (zh) 用于后续阳极氧化处理的压铸铝合金外壳铝基过渡涂层制备方法
CN107675136B (zh) 一种工件表面pvd镀膜的方法
CN106381474B (zh) 不锈钢板表面复合耐磨涂层的制备方法
CN111378947B (zh) 一种类金刚石薄膜的制备方法
US20120107606A1 (en) Article made of aluminum or aluminum alloy and method for manufacturing
CN105154819A (zh) 超轻反射镜表面制备反射膜的方法
CN106119795A (zh) 利用真空磁控溅射镀膜技术制备锂电池C‑Si负极涂层的方法
CN103774110B (zh) 磁控溅射制备导电薄膜的方法
CN102965634B (zh) 采用连续磁控溅射物理气相沉积法制备铍铜合金薄板的方法
CN103590003A (zh) 物理气相沉积在旋转机械叶片表面制备硬阻尼涂层的方法
CN108735825A (zh) 太阳能电池背电极和太阳能电池及其制备方法
CN103014634A (zh) 采用连续多弧离子镀物理气相沉积法制备铍铜合金薄板的方法
CN106282952B (zh) 镍铜合金薄板材料的制备方法
CN105506561B (zh) 抑制叶片耐冲蚀涂层制备过程中边缘效应的方法
CN111168182B (zh) 一种应用于真空扩散焊接中间过渡层的制备方法
CN103882400B (zh) Tft基板的防静电方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant