CN106431421A - 轴向层状陶瓷金刚石复合材料喷嘴及其制备方法 - Google Patents

轴向层状陶瓷金刚石复合材料喷嘴及其制备方法 Download PDF

Info

Publication number
CN106431421A
CN106431421A CN201610853432.6A CN201610853432A CN106431421A CN 106431421 A CN106431421 A CN 106431421A CN 201610853432 A CN201610853432 A CN 201610853432A CN 106431421 A CN106431421 A CN 106431421A
Authority
CN
China
Prior art keywords
silicon nitride
diamond
axial direction
preparation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610853432.6A
Other languages
English (en)
Other versions
CN106431421B (zh
Inventor
王成勇
王宏建
林华泰
郑李娟
胡小月
伍尚华
王启民
郭伟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610853432.6A priority Critical patent/CN106431421B/zh
Publication of CN106431421A publication Critical patent/CN106431421A/zh
Application granted granted Critical
Publication of CN106431421B publication Critical patent/CN106431421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种轴向层状陶瓷金刚石复合材料喷嘴及其制备方法,该喷嘴采用氮化硅为基体,氧化物为烧结助剂,金刚石为强化相的复合材料热压烧结制备得到,金刚石含量沿喷嘴轴向由中间向两边按层逐步增加,层状数量大于或等于3。本发明将原料制成浆料并干燥造粒得到粉体,通过热压烧结成型,制备成本低,即可满足喷嘴对高耐磨的需求,又可缩短生产周期,提高生产效率。

Description

轴向层状陶瓷金刚石复合材料喷嘴及其制备方法
技术领域
本发明涉及工业用喷嘴加工技术领域,具体为一种复合材料喷嘴及其制备方法。
背景技术
喷嘴是表面清洗、强化和喷射切割等设备的关键部件之一,属于易磨耗产品,广泛应用于工业领域。金属、硬质合金等材料制成的喷嘴硬度低、耐磨性差,导致喷嘴使用寿命短,严重影响了生产效率。陶瓷材料因具有硬度高、耐磨损等优点,是喷嘴的理想材料之一。通过在陶瓷材料中引入增强相可进一步提高材料的性能。
中国专利“CN 1297513C ”报道了一种在SiC基体中添加(W, Ti)C固溶体作为增强相的梯度功能喷嘴制备方法,但其粉体需强化球磨200~250小时,时间较长,难以满足对喷嘴的快速需求。金刚石因具有极高的硬度,是理想的增强相,但金刚石烧结困难,高温下易发生氧化与石墨化,是材料制备的一大技术难题。为降低或避免金刚石的氧化与石墨化,通常采用放电等离子烧结、高温高压烧结、化学气相沉积的方法制备材料,对设备要求高,制备成本高且工艺复杂,不易控制。
文献(Journal of the European Ceramic Society, 2013, 33(6):1237–1247)报到了使用放电等离子烧结方法制备Si3N4基的金刚石陶瓷材料,对减小或避免金刚石的石墨化起到了显著作用,但成本高。
考虑到上述问题,急需发明一种新技术,既可满足喷嘴对高耐磨的需求,又可缩短生产周期,全面提高喷嘴的使用寿命并可广泛应用。
发明内容
本发明的目的在于提供一种轴向层状陶瓷金刚石复合材料喷嘴及其制备方法,克服现有制备周期长,成本高,耐磨性差的缺陷。
为实现上述目的,本发明采用以下技术方案:
轴向层状陶瓷金刚石复合材料喷嘴,其采用以氮化硅为基体,氧化物为烧结助剂,金刚石为强化相的复合材料热压烧结制备得到,金刚石含量沿喷嘴轴向由中间向两边按层逐步增加,层状数量大于或等于3。
其中,所述的复合材料由以下质量份数的原料制成:氮化硅:90~95份,氧化物粉末:5~10份,金刚石微粉:10~50份,其中氮化硅的纯度>95%,粒径<10μm,氧化物粉末的粒径<0.1μm,金刚石微粉的粒径为10~30μm。
其中,所述的氧化物粉末为Al2O3-Re2O3,其中Re为Sc, Y, La, Ce, Pr, Nd, Pm,Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu的任一种。
优选地,所述的金刚石微粉的表面镀Ni或Ti或Cu。
本发明还公开了轴向层状陶瓷金刚石复合材料喷嘴的制备方法,包括以下步骤:
S1.氮化硅浆料制备:以氮化硅为基体,氧化物为烧结助剂,按氮化硅与氧化物粉末质量分数比=(95%~90%):(5%~10%)配料,以乙醇为溶剂,以氮化硅为球磨介质,球料比为(2~5):1,在行星球磨机上混合8~12h,得到氮化硅浆料。
S2.混合浆料制备:将步骤S1得到的氮化硅浆料分成若干组,依次添加质量分数10%~50%的金刚石微粉,得到金刚石含量递增的不少于3组的混合浆料,每一组混合浆料经搅拌器搅拌均匀。
S3.干燥造粒:将步骤S2得到的各组混合浆料干燥,过100目筛造粒,得到金刚石含量递增的若干组粉末。
S4.装模预压:将步骤S3的粉末按金钢石含量沿喷嘴轴向由中间向两边增加的次序逐层装入石墨模具中,每装一层将粉末铺展开并预压。
S5.热压烧结:将装好粉末的模具热压烧结,控制压力为30MPa~50Mpa,升温速率为10~15℃/min,烧结温度为1600℃~1750℃,保温时间为30~60min,保护气氛为N2或Ar,冷却后即得。
进一步地,步骤S1中氮化硅的纯度>95%,粒径<10μm,氧化物粉末的粒径<0.1μm,金刚石微粉的粒径为10~30μm。所述的氧化物粉末为Al2O3-Re2O3,其中Re为Sc, Y, La, Ce,Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu的任一种。步骤S2中金刚石微粉的表面镀Ni或Ti或Cu。
进一步地,步骤S2中搅拌器以200~400r/min的转速搅拌混合浆料15~30min。
采用上述技术方案后,本发明具有如下优点:本发明喷嘴采用金刚石做为增强相,提高了喷嘴的硬度,且金刚石沿喷嘴轴向由中间向两边逐步增加,实现由中间向两边梯度增强,热压烧结时在入口、出口形成的残余压应力可有效增强喷嘴该处的硬度与耐磨损性能。本发明将原料制成浆料并干燥造粒得到粉体,通过热压烧结成型,制备成本低,即可满足喷嘴对高耐磨的需求,又可缩短生产周期,提高生产效率。
附图说明
图1为本发明的结构示意图。
图2为实施例一,五层轴向层状陶瓷金刚石复合材料喷嘴的示意图。
图3为实施例二,六层轴向层状陶瓷金刚石复合材料喷嘴的示意图。
图4为实施例三,九层轴向层状陶瓷金刚石复合材料喷嘴的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
如图1所示,本发明公开了一种轴向层状陶瓷金刚石复合材料喷嘴,其采用以氮化硅为基体,氧化物为烧结助剂,金刚石为强化相的复合材料热压烧结制备得到,金刚石含量沿喷嘴轴向由中间向两边按层逐步增加,层状数量大于或等于3。
复合材料由以下质量份数的原料制成:
氮化硅(Si3N4):90~95份,氧化物粉末(Al2O3-Re2O3,其中Re为Sc, Y, La, Ce, Pr,Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu的任一种):5~10份,金刚石微粉:10~50份,其中氮化硅的纯度>95%,粒径<10μm,氧化物粉末的粒径<0.1μm,金刚石微粉的粒径为10~30μm。金刚石微粉的表面镀Ni或Ti或Cu。
本发明还公开了上述轴向层状陶瓷金刚石复合材料喷嘴的制备方法,具体过程在以下实施例中详述。
实施例一
原料:Si3N4:纯度>95%,粒径<10μm;Al2O3:纯度>99.9%,粒径<0.1μm;Y2O3:纯度>99.9%,粒径<0.1μm;Al2O3与Y2O3的质量分数比为4%:5%;金刚石微粉镀锌Ni,其粒径为10~30μm。
S1.氮化硅浆料制备:按Si3N4与Al2O3-Y2O3质量分数比=90%:10%配料,以乙醇为溶剂,以Si3N4为球磨介质,球料比为3:1,在行星球磨机上混合8h,得到氮化硅浆料。
S2.混合浆料制备:将步骤S1得到的氮化硅浆料分成三组,依次添加质量分数10%、20%、30%的金刚石微粉,得到金刚石含量递增的三组的混合浆料,每一组混合浆料经搅拌器搅拌均匀,搅拌器转速200r/min,搅拌混合浆料15min。
S3.干燥造粒:将步骤S2得到的三组混合浆料干燥,过100目筛造粒,得到金刚石含量10%、20%、30%的三组粉末。
S4.装模预压:如图2所示,将三组粉末按金钢石含量沿喷嘴轴向由中间向两边增加的次序逐层装入石墨模具中,每装一层将粉末铺展开并预压,得到五层粉末预压铺展的模具。
S5.热压烧结:将装好粉末的模具热压烧结,控制压力为30MPa,升温速率为10℃/min,烧结温度为1600℃,保温时间为30min,保护气氛为N2,冷却后即得五层轴向层状陶瓷金刚石复合材料喷嘴。
实施例二
原料:Si3N4:纯度>95%,粒径<10μm;Al2O3:纯度>99.9%,粒径<0.1μm;Yb2O3:纯度>99.9%,粒径<0.1μm;Al2O3与Y2O3的质量分数比为3%:2%;金刚石微粉镀锌Cu,其粒径为10~30μm。
S1.氮化硅浆料制备:按Si3N4与Al2O3-Yb2O3质量分数比=95%:5%配料,以乙醇为溶剂,以Si3N4为球磨介质,球料比为2:1,在行星球磨机上混合12h,得到氮化硅浆料。
S2.混合浆料制备:将步骤S1得到的氮化硅浆料分成四组,依次添加质量分数10%、20%、30%、40%的金刚石微粉,得到金刚石含量递增的四组的混合浆料,每一组混合浆料经搅拌器搅拌均匀, 搅拌器转速300r/min,搅拌混合浆料15min。
S3.干燥造粒:将步骤S2得到的四组混合浆料干燥,过100目筛造粒,得到金刚石含量为10%、20%、30%、40%的四组粉末。
S4.装模预压:如图3所示,将四组粉末按金钢石含量沿喷嘴轴向由中间向两边增加的次序逐层装入石墨模具中,每装一层将粉末铺展开并预压,得到六层粉末预压铺展的模具。
S5.热压烧结:将装好粉末的模具热压烧结,控制压力为30MPa,升温速率为12℃/min,烧结温度为1700℃,保温时间为50min,保护气氛为N2,冷却后即得六层轴向层状陶瓷金刚石复合材料喷嘴。
实施例三
原料:Si3N4:纯度>95%,粒径<10μm;Al2O3:纯度>99.9%,粒径<0.1μm;Sc2O3:纯度>99.9%,粒径<0.1μm;Al2O3与Sc2O3的质量分数比为3%:2%;金刚石微粉镀锌Ni,其粒径为10~30μm。
S1.氮化硅浆料制备:按Si3N4与Al2O3-Sc2O3质量分数比=92%:8%配料,以乙醇为溶剂,以Si3N4为球磨介质,球料比为5:1,在行星球磨机上混合10h,得到氮化硅浆料。
S2.混合浆料制备:将步骤S1得到的氮化硅浆料分成五组,依次添加质量分数10%、20%、30%、40%、50%的金刚石微粉,得到金刚石含量递增的五组的混合浆料,搅拌器以400r/min的转速搅拌混合浆料30min。
S3.干燥造粒:将步骤S2得到的五组混合浆料干燥,过100目筛造粒,得到金刚石含量10%、20%、30%、40%、50%的五组粉末。
S4.装模预压:如图4所示,将五组粉末按金钢石含量沿喷嘴轴向由中间向两边增加的次序逐层装入石墨模具中,每装一层将粉末铺展开并预压,得到九层粉末预压铺展的模具。
S5.热压烧结:将装好粉末的模具热压烧结,控制压力为30MPa,升温速率为15℃/min,烧结温度为1750℃,保温时间为60min,保护气氛为Ar,冷却后即得九层轴向层状陶瓷金刚石复合材料喷嘴。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (9)

1.轴向层状陶瓷金刚石复合材料喷嘴,其特征在于,其采用以氮化硅为基体,氧化物为烧结助剂,金刚石为强化相的复合材料热压烧结制备得到,金刚石含量沿喷嘴轴向由中间向两边按层逐步增加,层状数量大于或等于3。
2.如权利要求1所述的轴向层状陶瓷金刚石复合材料喷嘴,其特征在于,所述的复合材料由以下质量份数的原料制成:
氮化硅:90~95份,氧化物粉末:5~10份,金刚石微粉:10~50份,其中氮化硅的纯度>95%,粒径<10μm,氧化物粉末的粒径<0.1μm,金刚石微粉的粒径为10~30μm。
3.如权利要求2所述的轴向层状陶瓷金刚石复合材料喷嘴,其特征在于:所述的氧化物粉末为Al2O3-Re2O3,其中Re为Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,Er, Tm, Yb, Lu的任一种。
4.如权利要求2所述的轴向层状陶瓷金刚石复合材料喷嘴,其特征在于:所述的金刚石微粉的表面镀Ni或Ti或Cu。
5.轴向层状陶瓷金刚石复合材料喷嘴的制备方法,其特征在于,包括以下步骤,
S1.氮化硅浆料制备:以氮化硅为基体,氧化物为烧结助剂,按氮化硅与氧化物粉末质量分数比=(95%~90%):(5%~10%)配料,以乙醇为溶剂,以氮化硅为球磨介质,球料比为(2~5):1,在行星球磨机上混合8~12h,得到氮化硅浆料;
S2.混合浆料制备:将步骤S1得到的氮化硅浆料分成若干组,依次添加质量分数10%~50%的金刚石微粉,得到金刚石含量递增的不少于3组的混合浆料,每一组混合浆料经搅拌器搅拌均匀;
S3.干燥造粒:将步骤S2得到的各组混合浆料干燥,过100目筛造粒,得到金刚石含量递增的若干组粉末;
S4.装模预压:将步骤S3的粉末按金刚石含量沿喷嘴轴向由中间向两边增加的次序逐层装入石墨模具中,每装一层将粉末铺展开并预压;
S5.热压烧结:将装好粉末的模具热压烧结,控制压力为30MPa,升温速率为10~15℃/min,烧结温度为1600℃~1750℃,保温时间为30~60min,保护气氛为N2或Ar,冷却后即得。
6.如权利要求5所述的轴向层状陶瓷金刚石复合材料喷嘴的制备方法,其特征在于,步骤S1中氮化硅的纯度>95%,粒径<10μm,氧化物粉末的粒径<0.1μm;步骤S2中金刚石微粉的粒径为10~30μm。
7.如权利要求6所述的轴向层状陶瓷金刚石复合材料喷嘴的制备方法,其特征在于,所述的氧化物粉末为Al2O3-Re2O3,其中Re为Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,Dy, Ho, Er, Tm, Yb, Lu的任一种。
8.如权利要求5或6所述的轴向层状陶瓷金刚石复合材料喷嘴,其特征在于:所述的金刚石微粉的表面镀Ni或Ti或Cu。
9.如权利要求5所述的轴向层状陶瓷金刚石复合材料喷嘴,其特征在于,步骤S2中搅拌器以200~400r/min的转速搅拌混合浆料15~30min。
CN201610853432.6A 2016-09-27 2016-09-27 轴向层状陶瓷金刚石复合材料喷嘴及其制备方法 Active CN106431421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610853432.6A CN106431421B (zh) 2016-09-27 2016-09-27 轴向层状陶瓷金刚石复合材料喷嘴及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610853432.6A CN106431421B (zh) 2016-09-27 2016-09-27 轴向层状陶瓷金刚石复合材料喷嘴及其制备方法

Publications (2)

Publication Number Publication Date
CN106431421A true CN106431421A (zh) 2017-02-22
CN106431421B CN106431421B (zh) 2019-09-10

Family

ID=58170301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610853432.6A Active CN106431421B (zh) 2016-09-27 2016-09-27 轴向层状陶瓷金刚石复合材料喷嘴及其制备方法

Country Status (1)

Country Link
CN (1) CN106431421B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320259A (zh) * 2018-11-16 2019-02-12 广东工业大学 一种氮化硅基金刚石复合材料及其制备方法
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119983A (ja) * 1990-05-18 1992-04-21 Noritake Co Ltd ダイヤモンド被覆セラミックス基材
CN1686941A (zh) * 2005-04-06 2005-10-26 山东大学 一种梯度功能陶瓷水煤浆喷嘴的制备工艺
CN101033842A (zh) * 2007-04-19 2007-09-12 湖南工业大学陶瓷研究所 一种双向梯度功能陶瓷水煤浆喷嘴及其制备方法
CN104355627A (zh) * 2014-10-29 2015-02-18 安徽省皖捷液压科技有限公司 一种纳米氮化硅耐磨陶瓷喷嘴及其制作方法
CN105016738A (zh) * 2014-04-30 2015-11-04 广东工业大学 氮化硅陶瓷及其制备方法
CN105198472A (zh) * 2015-09-25 2015-12-30 西北工业大学 一种氮化硅晶须增强氮化硅层状陶瓷的制备方法
CN105669209A (zh) * 2015-12-30 2016-06-15 刘操 一种氮化硅陶瓷材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119983A (ja) * 1990-05-18 1992-04-21 Noritake Co Ltd ダイヤモンド被覆セラミックス基材
CN1686941A (zh) * 2005-04-06 2005-10-26 山东大学 一种梯度功能陶瓷水煤浆喷嘴的制备工艺
CN101033842A (zh) * 2007-04-19 2007-09-12 湖南工业大学陶瓷研究所 一种双向梯度功能陶瓷水煤浆喷嘴及其制备方法
CN105016738A (zh) * 2014-04-30 2015-11-04 广东工业大学 氮化硅陶瓷及其制备方法
CN104355627A (zh) * 2014-10-29 2015-02-18 安徽省皖捷液压科技有限公司 一种纳米氮化硅耐磨陶瓷喷嘴及其制作方法
CN105198472A (zh) * 2015-09-25 2015-12-30 西北工业大学 一种氮化硅晶须增强氮化硅层状陶瓷的制备方法
CN105669209A (zh) * 2015-12-30 2016-06-15 刘操 一种氮化硅陶瓷材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHUIGEN HUANG ET AL.: ""Diamond dispersed Si3N4 composites obtained by pulsed electric current sintering"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
易健宏: "《粉末冶金材料》", 31 July 2016, 长沙:中南大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320259A (zh) * 2018-11-16 2019-02-12 广东工业大学 一种氮化硅基金刚石复合材料及其制备方法
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN106431421B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
CN100418920C (zh) 耐磨陶瓷涂料
CN102260814B (zh) 一种原位纳米TiC陶瓷颗粒增强铝基复合材料及其制备方法
CN106737255B (zh) 一种陶瓷结合剂、陶瓷结合剂磨盘及其制备方法
CN103924144B (zh) 一种无粘结相超细wc硬质合金制备方法
CN107747070B (zh) 一种高温耐磨复合材料及其制备方法
CN106216687B (zh) 一种梯度碳化钨基微纳复合刀具材料及其制备方法
CN110483060B (zh) 一种高热导率氮化硅陶瓷及其制备方法
CN101508574A (zh) 一种具有非晶/纳米晶结构的陶瓷材料及其制备方法
CN105016733A (zh) 石墨烯复合b4c超硬材料的制备方法
CN112159231B (zh) 一种超硬轻质金刚石-B4C-SiC三元复合陶瓷的快速制备方法
CN109320259A (zh) 一种氮化硅基金刚石复合材料及其制备方法
CN106431421A (zh) 轴向层状陶瓷金刚石复合材料喷嘴及其制备方法
CN108424174B (zh) 多元复相纳米硼化物、相应超高温抗氧化涂层及制备方法
CN106631038B (zh) 一种喷嘴用高耐磨Si3N4基金刚石复合陶瓷材料及其制备方法
CN106083065A (zh) 一种高性能Si3N4‑TiC0.5N0.5复合梯度陶瓷刀具材料及其制备方法
CN105734347A (zh) 一种放电等离子烧结制备硼化钛颗粒增强铝基复合材料的方法
CN108546128B (zh) 一种碳化硅陶瓷无压烧结工艺
CN104451238A (zh) 一种电子封装用新型高导热率金属复合材料的制备方法
CN105112707B (zh) 一种金刚石/铝复合材料的制备方法
CN107774984A (zh) 一种碳化钨颗粒增强钢基复合材料及其制备方法
CN114574789A (zh) 碳化硅纤维及中高熵陶瓷增强金属基复合材料及制备方法
CN106518088A (zh) 一种高性能氮化硅密封环的制备方法
CN101172877B (zh) 一种包括晶须、纤维的多元组合增韧碳化硅陶瓷制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant