CN106430130B - 一种五氧化二氮的在线制备和标准发生系统及制备方法 - Google Patents

一种五氧化二氮的在线制备和标准发生系统及制备方法 Download PDF

Info

Publication number
CN106430130B
CN106430130B CN201610894699.XA CN201610894699A CN106430130B CN 106430130 B CN106430130 B CN 106430130B CN 201610894699 A CN201610894699 A CN 201610894699A CN 106430130 B CN106430130 B CN 106430130B
Authority
CN
China
Prior art keywords
way valve
condensation chamber
way
flow controller
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610894699.XA
Other languages
English (en)
Other versions
CN106430130A (zh
Inventor
王炜罡
彭超
葛茂发
周力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201610894699.XA priority Critical patent/CN106430130B/zh
Publication of CN106430130A publication Critical patent/CN106430130A/zh
Application granted granted Critical
Publication of CN106430130B publication Critical patent/CN106430130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/206Nitric anhydride (N2O5)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种五氧化二氮的在线制备和标准发生系统及制备方法,它包括第一标气、臭氧发生装置、第一混合室、第二标气、第一冷凝室、第一低温反应浴、循环提纯系统、第二冷凝室、第二低温反应浴、高压气源、第二混合室、反应装置和N2O5检测系统。第一标气瓶与臭氧发生装置一端连接,臭氧发生装置另一端与第一混合室入口连通,第二标气瓶也与第一混合室入口连通,第一混合室出口与第一冷凝室入口连通,第一冷凝室出口经循环提纯系统与第二冷凝室入口连通。高压气源出口与第二冷凝室上端进气口连接,高压气源出口还与第二混合室入口连通,第二冷凝室出口与第二混合室入口连通,第二混合室出口分别与反应装置和N2O5检测系统连通。

Description

一种五氧化二氮的在线制备和标准发生系统及制备方法
技术领域
本发明涉及一种在线制备和标准发生系统及制备方法,特别是关于一种在大气环境检测及实验科学研究领域中使用的五氧化二氮的在线制备和标准发生系统及制备方法。
背景技术
目前,随着我国经济发展及城市化进程的加快,氮氧化物等大气污染气体排放日趋严重,灰霾事件频发,严重影响大气环境质量。五氧化二氮(N2O5)作为大气夜间化学过程中最主要的大气氧化剂,对对流层的氧化剂水平、新粒子的形成及二次细颗粒物的生成都具有重大影响,因此对大气中挥发性有机物五氧化二氮的氧化过程正成为国内外研究的关注热点之一。但由于五氧化二氮具有反应活性高、易热解、不易保存等特点,五氧化二氮的合成制备一直是相关研究的制约因素。传统的合成方法是在低温条件下,向发烟硝酸中加入五氧化二磷,通过硝酸脱水、二次提纯等步骤得到五氧化二氮粉末,此种方法的主要问题是制备的样品中难以避免含有残存的硝酸,制约了其在大气环境检测方面的应用。因此,开发出一套五氧化二氮的标准发生系统对于大气环境检测研究,特别是对于研究以氮氧化物为中心的大气氧化及污染过程具有重要意义。
发明内容
针对上述问题,本发明的目的是提供一种五氧化二氮的在线制备和标准发生系统及制备方法,其避免了液态硝酸使用带来的杂质干扰,同时可以实现气态五氧化二氮的定量发生。
为实现上述目的,本发明采取以下技术方案:一种五氧化二氮的在线制备和标准发生系统,其特征在于它包括第一标气瓶、臭氧发生装置、第一混合室、第二标气瓶、第一冷凝室、第一低温反应浴、循环提纯系统、第二冷凝室、第二低温反应浴、高压气源、第二混合室、反应装置和N2O5检测系统;所述第一标气瓶与所述臭氧发生装置一端连接,所述臭氧发生装置另一端经第一三通接头与所述第一混合室入口连通,所述第二标气瓶经第一三通接头也与所述第一混合室入口连通,所述第一混合室出口经第一二通阀门与所述第一冷凝室入口连通,所述第一冷凝室下部设置在所述第一低温反应浴内,所述第一冷凝室出口经循环提纯系统与所述第二冷凝室入口连通,所述第二冷凝室下部设置在所述第二低温反应浴内;所述高压气源出口与所述第二冷凝室上端进气口连接,所述高压气源出口还经第二三通接头与所述第二混合室入口连通,所述第二冷凝室出口经第二三通接头与所述第二混合室入口连通,所述第二混合室出口经三通球阀分别与所述反应装置和所述N2O5检测系统连接。
优选地,所述第一标气瓶与所述臭氧发生装置之间设置有第一流量控制器,所述第二标气瓶与所述第一三通接头之间设置有第二流量控制器,所述第一流量控制器和所述第二流量控制器均与流量反馈装置电连接,所述流量反馈装置与检测器电连接,所述检测器设置在所述第一混合室内;所述高压气源与所述第二冷凝室之间设置有第三流量控制器,所述高压气源与所述第二三通接头之间设置有第四流量控制器。
优选地,所述循环提纯系统由第三冷凝室、第三低温反应浴、第四冷凝室、第四低温反应浴、扫吹气源和第五流量控制器构成;所述第一冷凝室出口依次经第二二通阀门、第三三通接头、第四三通接头和第三二通阀门与所述第三冷凝室入口连通,所述第三冷凝室下部设置在所述第三低温反应浴内,所述第三冷凝室出口与所述第四冷凝室入口连通,所述第四冷凝室下部设置在所述第四低温反应浴内,所述第四冷凝室出口依次经第四二通阀门、第五三通接头、第六三通接头和第五二通阀门与所述第二冷凝室入口连通;所述扫吹气源出口经所述第五流量控制器与第七三通接头一端连接,第七三通接头其余两端分别与第六二通阀门一端和第七二通阀门一端连通,第六二通阀门另一端与第三三通接头一端连通,第七二通阀门另一端与第六三通接头一端连通,第八三通接头两端分别经第八二通阀门和第九二通阀门与第四三通接头第三端和第五三通接头第三端连通,第八三通接头第三端与废气物出口连通。
优选地,所述第一冷凝室和所述第二冷凝室之间能设置多个所述循环提纯系统。
优选地,所述第一标气瓶内的标气采用高纯氧气、合成空气或净化后的空气,所述第二标气瓶采用NO标气或NO2标气;所述扫吹气源内的气体采用臭氧、高纯氧气或合成空气;所述高压气源内的气体采用合成空气、高纯氮气或净化后的空气。
优选地,各个流量控制器均采用质量流量计、浮子流量计、针阀或比例电磁阀。
优选地,所述臭氧发生装置采用高压放电或紫外灯光解方法产生臭氧;所述N2O5检测系统的检测方法为化学转化荧光吸收法、化学电离质谱法或激光诱导荧光法。
优选地,各个三通接头、二通阀门以及三通球阀均采用玻璃、塑料、聚四氟乙烯、可溶性聚四氟乙烯或不锈钢材料制成;两个混合室和各冷凝室均采用玻璃、石英材质、不锈钢或聚四氟乙烯材料制成。
优选地,所述检测器能外接NO2浓度检测器或荧光转化吸收检测器。
一种五氧化二氮的制备方法,其特征在于它包括以下步骤:1)打开第一二通阀门、第二二通阀门和第八二通阀门,关闭三通球阀、第三二通阀门、第四二通阀门、第五二通阀门、第六二通阀门、第七二通阀门和第九二通阀门,预先设置第一流量控制器和第二流量控制器,设置第一低温反应浴的温度低于零下40℃;2)开启第一标气瓶、第二标气瓶和臭氧发生装置,经第一三通接头后使路反应气在第一混合室充分反应;3)在第一混合室内生成N2O5气体,检测器检测NO2的浓度,并将NO2的浓度信息传输给流量反馈装置,流量反馈装置与预先设置的NO2浓度比较;4)流量反馈装置根据比较结果,调节第一流量控制器和第二流量控制器,防止NO2过量;5)生成的N2O5气体在第一冷凝室中沉积冷凝,并形成白色N2O5固体;6)制备完成预先设置的质量后,关闭第二流量控制器,若只需一次提纯操作时,第一冷凝室直接与第二冷凝室连通,升高第一低温反应浴的温度,并且高于第二低温反应浴的温度,通过蒸发冷凝将第一冷凝室内的N2O5固体进行一次提纯,提纯之后的N2O5固体沉积于第二冷凝室内;7)若需要多次循环提纯时,关闭第八二通阀门,打开第三二通阀门、第四二通阀门和第九二通阀门,将第一冷凝室内的N2O5转移到第三冷凝室内,关闭第二二通阀门;8)设置第五流量控制器,当从第三冷凝室向第四冷凝室提纯N2O5时,关闭第七二通阀门和第八二通阀门,打开第六二通阀门和第九二通阀门;9)当从第四冷凝室向第三冷凝室提纯N2O5时,关闭第六二通阀门和第九二通阀门,打开第七二通阀门和第八二通阀门;10)重复步骤8)和步骤9),即可改变吹起方向,实现N2O5固体的多次提纯;11)最后关闭第七二通阀门、第八二通阀门和第九二通阀门,开启第五二通阀门、第六二通阀门和三通球阀,将N2O5固体吹扫出循环提纯装置,并存储在第二冷凝室中;12)若需要预先设定量的N2O5时,关闭第五二通阀门,开启并设置第三流量控制器和第四流量控制器的稀释气的流量,调节第二第二反应浴的温度;13)使N2O5气体与稀释气进入第二混合室中混合,再进入N2O5检测系统中进行浓度检测,并对化学电离质谱、光腔衰荡光谱或激光诱导荧光检测器进行标定;14)切换三通球阀,将特定浓度的N2O5气体进入反应装置内。
本发明由于采取以上技术方案,其具有以下优点:1、本发明采用五氧化二氮的在线合成、循环提纯及定量发生系统,基于化学反应、冷凝提纯及相间转化的方法,可以实现对五氧化二氮标准固体的合成制备,避免了液态硝酸使用带来的杂质干扰,同时通过温度及载气流量控制,可以实现气态五氧化二氮的定量发生。2、本发明采用五氧化二氮的在线合成、循环提纯及定量发生系统,可以较好的满足大气环境相关的外场观测研究,实验室研究以及设备标定等方面的需求。
附图说明
图1是本发明的整体结构示意图;
图2是本发明的循环提纯系统结构示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图1所示,本发明提供一种五氧化二氮的在线制备和标准发生系统,其包括第一标气瓶1、第一流量控制器2、臭氧发生装置3、第一混合室4、第二标气瓶5、第二流量控制器6、流量反馈装置7、检测器8、第一冷凝室9、第一低温反应浴10、循环提纯系统11、第二冷凝室12、第二低温反应浴13、高压气源14、第三流量控制器15、第四流量控制器16、第二混合室17、反应装置18和N2O5检测系统19。第一标气瓶1经第一流量控制器2与臭氧发生装置3一端连接,臭氧发生装置3另一端经第一三通接头20一端与第一混合室4入口连通,第二标气瓶5依次经第二流量控制器6和第一三通接头20另一端也与第一混合室4入口连通。第一流量控制器2和第二流量控制器6均与流量反馈装置7电连接,流量反馈装置7与检测器8电连接,检测器8设置在第一混合室4内,流量反馈装置7通过检测器8获得第一混合室4内各气体含量,进而通过调节第一流量控制器2和第二流量控制器6控制第一标气瓶1和第二标气瓶5的进气量。第一混合室4出口经第一二通阀门21与第一冷凝室9入口连通,第一冷凝室9下部设置在第一低温反应浴10内,第一冷凝室9出口经循环提纯系统11与第二冷凝室12入口连通,第二冷凝室12下部设置在第二低温反应浴13内。高压气源14出口经第三流量控制器15与第二冷凝室12上端进气口连接,第二冷凝室12出口与第二三通接头22一端连通;高压气源14出口还经第四流量控制器16与第二三通接头22另一端连通,第二三通接头22第三端与第二混合室17入口连通;第二混合室17出口经三通球阀23分别与反应装置18和N2O5检测系统19连接。
上述实施例中,如图2所示,循环提纯系统11由第三冷凝室24、第三低温反应浴25、第四冷凝室26、第四低温反应浴27、扫吹气源28和第五流量控制器29构成。第一冷凝室9出口依次经第二二通阀门30、第三三通接头31、第四三通接头32和第三二通阀门33与第三冷凝室24入口连通,第三冷凝室24下部设置在第三低温反应浴25内,第三冷凝室24出口与第四冷凝室26入口连通,第四冷凝室26下部设置在第四低温反应浴27内,第四冷凝室26出口依次经第四二通阀门34、第五三通接头35、第六三通接头36和第五二通阀门37与第二冷凝室12入口连通。扫吹气源28出口经第五流量控制器29与第七三通接头38一端连接,第七三通接头38其余两端分别与第六二通阀门39一端和第七二通阀门40一端连通,第六二通阀门39另一端与第三三通接头31第三端连通,第七二通阀门40另一端与第六三通接头36第三端连通,第八三通接头41两端分别经第八二通阀门42和第九二通阀门43与第四三通接头32第三端和第五三通接头35第三端连通,第八三通接头41第三端与废弃物出口连通。
上述实施例中,根据N2O5的提纯要求,可以在第一冷凝室9和第二冷凝室13之间设置多个循环提纯系统11。
上述各实施例中,第一标气瓶1内的标气可以采用高纯氧气、合成空气或净化后的空气等,第二标气瓶5内的标气可以采用NO标气或NO2标气。
上述各实施例中,各个流量控制器均可以采用质量流量计、浮子流量计、针阀或比例电磁阀等。
上述各实施例中,臭氧发生装置3可以采用高压放电或紫外灯光解等方法产生臭氧。
上述各实施例中,各个三通接头、二通阀门以及三通球阀23均可采用玻璃、塑料、聚四氟乙烯(PTFE)、可溶性聚四氟乙烯(PFA)或不锈钢等材料制成。
上述各实施例中,检测器8可以采用外接NO2浓度检测器或荧光转化吸收检测器等。
上述各实施例中,两个混合室和各冷凝室均采用玻璃、石英材质、不锈钢或聚四氟乙烯等材料制成。
上述各实施例中,各低温反应浴均为自制或商业用低温恒温搅拌反应浴装置,操作温度范围为10℃至-200℃。
上述各实施例中,扫吹气源28内的气体可以采用臭氧、高纯氧气或合成空气等,通过阀门切换改变载气方向,实现在第三冷凝室24和第四冷凝室26之间N2O5的多次提纯;同时根据需要可以在第三冷凝室24和第四冷凝室26之间增加其他冷凝装置,达到进一步提纯的效果。
上述各实施例中,高压气源14内的气体可以采用合成空气、高纯氮气或净化后的空气。
上述各实施例中,N2O5检测系统19可采用自制或商业化检测设备,其检测方法可以为化学转化荧光吸收法、化学电离质谱法或激光诱导荧光法等。
基于上述系统,本发明还提供一种五氧化二氮的制备方法,其具体步骤如下:
1)打开第一二通阀门21、第二二通阀门30和第八二通阀门42,关闭三通球阀23、第三二通阀门33、第四二通阀门34、第五二通阀门37、第六二通阀门39、第七二通阀门40和第九二通阀门43,预先设置第一流量控制器2和第二流量控制器6,设置第一低温反应浴10的温度低于零下40℃;
2)开启第一标气瓶1、第二标气瓶5和臭氧发生装置3,经第一三通接头20后使反应气在第一混合室4充分反应;
3)在第一混合室4内生成N2O5气体,检测器8检测NO2的浓度,并将NO2的浓度信息传输给流量反馈装置7,流量反馈装置7与预先设置的NO2浓度比较;
4)流量反馈装置7根据比较结果,调节第一流量控制器2和第二流量控制器6,防止NO2过量;
5)生成的N2O5气体在第一冷凝室9中沉积冷凝,并形成白色N2O5固体;
6)制备完成预先设置的质量后,关闭第二流量控制器6,若只需一次提纯操作时,第一冷凝室9直接与第二冷凝室13连通,升高第一低温反应浴10的温度,并且高于第二低温反应浴13的温度,通过蒸发冷凝将第一冷凝室9内的N2O5固体进行一次提纯,提纯之后的N2O5固体沉积于第二冷凝室12内;
7)若需要多次循环提纯时,关闭第八二通阀门42,打开第三二通阀门33、第四二通阀门34和第九二通阀门43,将第一冷凝室9内的N2O5转移到第三冷凝室24内,关闭第二二通阀门30;
8)设置第五流量控制器29,当从第三冷凝室24向第四冷凝室26提纯N2O5时,关闭第七二通阀门40和第八二通阀门42,打开第六二通阀门39和第九二通阀门43;
9)当从第四冷凝室26向第三冷凝室24提纯N2O5时,关闭第六二通阀门39和第九二通阀门43,打开第七二通阀门40和第八二通阀门42;
10)重复步骤8)和步骤9),即可改变吹起方向,实现N2O5固体的多次提纯;
11)最后关闭第七二通阀门40、第八二通阀门42和第九二通阀门43,开启第五二通阀门37、第六二通阀门39和三通球阀23,将N2O5固体吹扫出循环提纯装置11,并存储在第二冷凝室12中;
12)若需要预先设定量的N2O5时,关闭第五二通阀门37,开启并设置第三流量控制器15和第四流量控制器16的稀释气的流量,调节第二第二反应浴13的温度;
13)使N2O5气体与稀释气进入第二混合室17中混合,再进入N2O5检测系统19中进行浓度检测,并对化学电离质谱、光腔衰荡光谱或激光诱导荧光检测器等设备进行标定;
14)切换三通球阀23,将特定浓度的N2O5气体进入反应装置18内。
上述各实施例仅用于说明本发明,各部件的结构、尺寸、设置位置及形状都是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进和等同变换,均不应排除在本发明的保护范围之外。

Claims (8)

1.一种五氧化二氮的在线制备和标准发生系统,其特征在于:它包括第一标气瓶、臭氧发生装置、第一混合室、第二标气瓶、第一冷凝室、第一低温反应浴、循环提纯系统、第二冷凝室、第二低温反应浴、高压气源、第二混合室、反应装置和N2O5检测系统;所述第一标气瓶与所述臭氧发生装置一端连接,所述臭氧发生装置另一端经第一三通接头与所述第一混合室入口连通,所述第二标气瓶经第一三通接头也与所述第一混合室入口连通,所述第一混合室出口经第一二通阀门与所述第一冷凝室入口连通,所述第一冷凝室下部设置在所述第一低温反应浴内,所述第一冷凝室出口经循环提纯系统与所述第二冷凝室入口连通,所述第二冷凝室下部设置在所述第二低温反应浴内;所述高压气源出口与所述第二冷凝室上端进气口连接,所述高压气源出口还经第二三通接头与所述第二混合室入口连通,所述第二冷凝室出口经第二三通接头与所述第二混合室入口连通,所述第二混合室出口经三通球阀分别与所述反应装置和所述N2O5检测系统连接;
所述循环提纯系统由第三冷凝室、第三低温反应浴、第四冷凝室、第四低温反应浴、扫吹气源和第五流量控制器构成;所述第一冷凝室出口依次经第二二通阀门、第三三通接头、第四三通接头和第三二通阀门与所述第三冷凝室入口连通,所述第三冷凝室下部设置在所述第三低温反应浴内,所述第三冷凝室出口与所述第四冷凝室入口连通,所述第四冷凝室下部设置在所述第四低温反应浴内,所述第四冷凝室出口依次经第四二通阀门、第五三通接头、第六三通接头和第五二通阀门与所述第二冷凝室入口连通;所述扫吹气源出口经所述第五流量控制器与第七三通接头一端连接,第七三通接头其余两端分别与第六二通阀门一端和第七二通阀门一端连通,第六二通阀门另一端与第三三通接头一端连通,第七二通阀门另一端与第六三通接头一端连通,第八三通接头两端分别经第八二通阀门和第九二通阀门与第四三通接头第三端和第五三通接头第三端连通,第八三通接头第三端与废气物出口连通;
所述第一标气瓶内的标气采用高纯氧气、合成空气或净化后的空气,所述第二标气瓶采用NO2标气;所述扫吹气源内的气体采用臭氧、高纯氧气或合成空气;所述高压气源内的气体采用合成空气、高纯氮气或净化后的空气。
2.如权利要求1所述的一种五氧化二氮的在线制备和标准发生系统,其特征在于:所述第一标气瓶与所述臭氧发生装置之间设置有第一流量控制器,所述第二标气瓶与所述第一三通接头之间设置有第二流量控制器,所述第一流量控制器和所述第二流量控制器均与流量反馈装置电连接,所述流量反馈装置与检测器电连接,所述检测器设置在所述第一混合室内;所述高压气源与所述第二冷凝室之间设置有第三流量控制器,所述高压气源与所述第二三通接头之间设置有第四流量控制器。
3.如权利要求1所述的一种五氧化二氮的在线制备和标准发生系统,其特征在于:所述第一冷凝室和所述第二冷凝室之间能设置多个所述循环提纯系统。
4.如权利要求2所述的一种五氧化二氮的在线制备和标准发生系统,其特征在于:各个流量控制器均采用质量流量计、浮子流量计、针阀或比例电磁阀。
5.如权利要求1所述的一种五氧化二氮的在线制备和标准发生系统,其特征在于:所述臭氧发生装置采用高压放电或紫外灯光解方法产生臭氧;所述N2O5检测系统的检测方法为化学转化荧光吸收法、化学电离质谱法或激光诱导荧光法。
6.如权利要求1-3任一项所述的一种五氧化二氮的在线制备和标准发生系统,其特征在于:各个三通接头、二通阀门以及三通球阀均采用玻璃、塑料、聚四氟乙烯、可溶性聚四氟乙烯或不锈钢材料制成;两个混合室和各冷凝室均采用玻璃、石英材质、不锈钢或聚四氟乙烯材料制成。
7.如权利要求2所述的一种五氧化二氮的在线制备和标准发生系统,其特征在于:所述检测器能外接NO2浓度检测器或荧光转化吸收检测器。
8.一种如权利要求1-7任一项所述在线制备和标准发生系统的五氧化二氮的制备方法,其特征在于,该方法包括以下步骤:
1)打开第一二通阀门、第二二通阀门和第八二通阀门,关闭三通球阀、第三二通阀门、第四二通阀门、第五二通阀门、第六二通阀门、第七二通阀门和第九二通阀门,预先设置第一流量控制器和第二流量控制器,设置第一低温反应浴的温度低于零下40℃;
2)开启第一标气瓶、第二标气瓶和臭氧发生装置,经第一三通接头后使反应气在第一混合室充分反应;
3)在第一混合室内生成N2O5气体,检测器检测NO2的浓度,并将NO2的浓度信息传输给流量反馈装置,流量反馈装置与预先设置的NO2浓度比较;
4)流量反馈装置根据比较结果,调节第一流量控制器和第二流量控制器,防止NO2过量;
5)生成的N2O5气体在第一冷凝室中沉积冷凝,并形成白色N2O5固体;
6)制备完成预先设置的质量后,关闭第二流量控制器;多次循环提纯,关闭第八二通阀门,打开第三二通阀门、第四二通阀门和第九二通阀门,将第一冷凝室内的N2O5转移到第三冷凝室内,关闭第二二通阀门,
7)设置第五流量控制器,当从第三冷凝室向第四冷凝室提纯N2O5时,关闭第七二通阀门和第八二通阀门,打开第六二通阀门和第九二通阀门;
8)当从第四冷凝室向第三冷凝室提纯N2O5时,关闭第六二通阀门和第九二通阀门,打开第七二通阀门和第八二通阀门;
9)重复步骤7)和步骤8),即可改变吹气方向,实现N2O5固体的多次提纯;
10)最后关闭第七二通阀门、第八二通阀门和第九二通阀门,开启第五二通阀门、第六二通阀门和三通球阀,将N2O5固体吹扫出循环提纯装置,并存储在第二冷凝室中;
11)若需要预先设定量的N2O5时,关闭第五二通阀门,开启并设置第三流量控制器和第四流量控制器的稀释气的流量,调节第二反应浴的温度;
12)使N2O5气体与稀释气进入第二混合室中混合,再进入N2O5检测系统中进行浓度检测,并对化学电离质谱、光腔衰荡光谱或激光诱导荧光检测器进行标定;
13)切换三通球阀,将特定浓度的N2O5气体进入反应装置内。
CN201610894699.XA 2016-10-13 2016-10-13 一种五氧化二氮的在线制备和标准发生系统及制备方法 Active CN106430130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610894699.XA CN106430130B (zh) 2016-10-13 2016-10-13 一种五氧化二氮的在线制备和标准发生系统及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610894699.XA CN106430130B (zh) 2016-10-13 2016-10-13 一种五氧化二氮的在线制备和标准发生系统及制备方法

Publications (2)

Publication Number Publication Date
CN106430130A CN106430130A (zh) 2017-02-22
CN106430130B true CN106430130B (zh) 2018-06-12

Family

ID=58174530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610894699.XA Active CN106430130B (zh) 2016-10-13 2016-10-13 一种五氧化二氮的在线制备和标准发生系统及制备方法

Country Status (1)

Country Link
CN (1) CN106430130B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127639A (zh) * 2019-05-27 2019-08-16 中国科学院化学研究所 一种在线标准浓度硝酰氯的制备系统及制备方法
US20230312345A1 (en) * 2020-08-07 2023-10-05 Tohoku University Dinitrogen pentoxide generating device and method for generating dinitrogen pentoxide
CN113155561A (zh) * 2021-03-31 2021-07-23 杭州谱育科技发展有限公司 五氧化二氮标气的提供装置和方法
CN113233433B (zh) * 2021-05-13 2022-08-05 杭州谱育科技发展有限公司 五氧化二氮浓度的调整装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118260A (ja) * 1974-05-17 1976-02-13 Mitsubishi Heavy Ind Ltd Nenshohaigasuyorichitsusosankabutsu o jokyosuru hoho
CN101428772B (zh) * 2008-12-10 2010-08-11 天津大学 绿色硝化剂五氧化二氮分离提纯方法
RU2547752C2 (ru) * 2012-12-18 2015-04-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт машиностроения" (ФГУП "НИИМаш") Способ производства динитрогена тетраоксида
CN103977739B (zh) * 2014-05-16 2016-04-20 中国环境科学研究院 一种大气环境浓度过氧化物气体发生系统及其方法

Also Published As

Publication number Publication date
CN106430130A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106430130B (zh) 一种五氧化二氮的在线制备和标准发生系统及制备方法
Essalah et al. Structural, optical, photoluminescence properties and Ab initio calculations of new Zn2SiO4/ZnO composite for white light emitting diodes
CN100592082C (zh) 甲醛气敏材料及其制备方法以及甲醛气敏器件的制作方法
CN107164839B (zh) 具有超高灵敏度和选择性的甲醛敏感材料CdGa2O4及其制备方法
CN106904659A (zh) 一种多层空心二氧化锡花状纳米片表面生长三氧化二铁纳米棒的制备方法
CN108872033A (zh) 大气环境中气态污染物的非均相反应活性测量装置和方法
CN112345599B (zh) 一种氧化锌基气敏材料的制备方法、制得的气敏材料及其应用
CN113155912A (zh) 一种CuO-ZnO花状结构复合敏感材料制备方法及其应用
Shi et al. Straw-sheaf-like terbium-based coordination polymer architectures: microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions
CN101216433B (zh) 水泥熟料中硫铝酸钙含量的测定方法
CN207067152U (zh) 一种移动式scr脱硝系统烟气分析装置
Niu et al. Preparation of MOF-199/polyacrylonitrile nanofiber membrane and its application in the preparation of flexible VOC gas sensors
Deng et al. Low-temperature cataluminescence sensor for sulfur hexafluoride utilizing coral like Zn-doped SnO2 composite
CN101424603B (zh) 一种pan标气生成系统及方法
CN103386309A (zh) 以粉煤灰空心微球为基底的光催化复合材料及其制备方法
CN101532176A (zh) 一种制备多晶纳米钙铝氧化物的方法
CN208596120U (zh) 一种超极化稀有惰性气体发生装置
CN109133183B (zh) α-Fe2O3纳米微球硫化氢气敏材料及元件的制作
CN208596121U (zh) 一种超极化稀有惰性气体发生用极化池
CN209148614U (zh) 一种有机废气处理效率在线监测装置
Yong et al. MOFs-derived Co-doped In2O3 hollow hexagonal cylinder for selective detection of ethanol
CN207730718U (zh) 一种新型甲醛发生器
CN108303297A (zh) 一种氢法和锌法两用的14c样品制备系统
CN111234251B (zh) 一种基于两性配体的铅的金属-有机框架材料及其制备方法和在荧光检测中的应用
CN114280110A (zh) 一种mof-聚苯乙烯微球复合材料及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant